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Abstract

Background

The infectivity of the HIV-1 acute phase has been directly measured only once, from a retro-

spectively identified cohort of serodiscordant heterosexual couples in Rakai, Uganda. Anal-

yses of this cohort underlie the widespread view that the acute phase is highly infectious,

even more so than would be predicted from its elevated viral load, and that transmission oc-

curring shortly after infection may therefore compromise interventions that rely on diagnosis

and treatment, such as antiretroviral treatment as prevention (TasP). Here, we re-estimate

the duration and relative infectivity of the acute phase, while accounting for several possible

sources of bias in published estimates, including the retrospective cohort exclusion criteria

and unmeasured heterogeneity in risk.

Methods and Findings

We estimated acute phase infectivity using two approaches. First, we combined viral load

trajectories and viral load-infectivity relationships to estimate infectivity trajectories over the

course of infection, under the assumption that elevated acute phase infectivity is caused by

elevated viral load alone. Second, we estimated the relative hazard of transmission during

the acute phase versus the chronic phase (RHacute) and the acute phase duration (dacute)
by fitting a couples transmission model to the Rakai retrospective cohort using approximate

Bayesian computation. Our model fit the data well and accounted for characteristics over-

looked by previous analyses, including individual heterogeneity in infectiousness and sus-

ceptibility and the retrospective cohort's exclusion of couples that were recorded as

serodiscordant only once before being censored by loss to follow-up, couple dissolution, or

study termination. Finally, we replicated two highly cited analyses of the Rakai data on simu-

lated data to identify biases underlying the discrepancies between previous estimates and

our own.
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From the Rakai data, we estimated RHacute = 5.3 (95% credibility interval [95% CrI]:

0.79–57) and dacute = 1.7 mo (95% CrI: 0.55–6.8). The wide credibility intervals reflect an in-

ability to distinguish a long, mildly infectious acute phase from a short, highly infectious

acute phase, given the 10-mo Rakai observation intervals. The total additional risk, mea-

sured as excess hazard-months attributable to the acute phase (EHMacute) can be estimat-

ed more precisely: EHMacute = (RHacute - 1) × dacute, and should be interpreted with respect

to the 120 hazard-months generated by a constant untreated chronic phase infectivity over

10 y of infection. From the Rakai data, we estimated that EHMacute = 8.4 (95% CrI: -0.27 to

64). This estimate is considerably lower than previously published estimates, and consis-

tent with our independent estimate from viral load trajectories, 5.6 (95% confidence interval:

3.3–9.1). We found that previous overestimates likely stemmed from failure to account for

risk heterogeneity and bias resulting from the retrospective cohort study design.

Our results reflect the interaction between the retrospective cohort exclusion criteria and

high (47%) rates of censorship amongst incident serodiscordant couples in the Rakai study

due to loss to follow-up, couple dissolution, or study termination. We estimated excess

physiological infectivity during the acute phase from couples data, but not the proportion of

transmission attributable to the acute phase, which would require data on the broader popu-

lation's sexual network structure.

Conclusions

Previous EHMacute estimates relying on the Rakai retrospective cohort data range from 31

to 141. Our results indicate that these are substantial overestimates of HIV-1 acute phase

infectivity, biased by unmodeled heterogeneity in transmission rates between couples and

by inconsistent censoring. Elevated acute phase infectivity is therefore less likely to under-

mine TasP interventions than previously thought. Heterogeneity in infectiousness and sus-

ceptibility may still play an important role in intervention success and deserves attention in

future analyses

Introduction
Antiretroviral therapy (ART) reduces the infectiousness of HIV-infected individuals [1]. Both
mathematical modeling and empirical research have suggested that scaling up antiretroviral
treatment could substantially reduce the rate of new HIV infections [2,3]. However, there are
numerous practical challenges for treatment as prevention (TasP) interventions, including
broad implementation of HIV testing and treatment programs and ensuring adherence. In ad-
dition, HIV transmission immediately following infection may evade TasP if it occurs before
infected persons are diagnosed, linked to care, and virally suppressed [4]. The success of TasP
may therefore hinge on the fraction of HIV incidence attributable to transmission early after
infection (AFearly).

In general, HIV transmission depends on both sexual contact patterns and biological factors
that influence the probability of infection per coital act, both of which can change throughout
the course of infection. HIV viral load trajectories rise rapidly during the first few weeks follow-
ing infection (acute phase) and then, after a cell-mediated host immune response, decrease to a
relatively stable “viral set point” for many years (chronic phase), before rising again and leading
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to AIDS (late phase) [5]. These viral dynamics and the well-established relationship between
viral load and infectivity [6,7] suggest that biological infectiousness is greatest during the
acute phase, when viral load peaks. The enhanced acute phase infectivity is often characterized
using two quantities: the relative hazard of transmission during the acute versus chronic phase
(RHacute) and the acute phase duration (dacute). To clarify, “acute” refers to a period of elevated
biological infectivity following infection, and “early” refers to a post-infection period (often
longer than the acute phase) with a duration set by policy considerations (e.g., the lag between
infection and first treatment) [4].

Acute phase infectivity may be even higher than expected based on viral load alone. Virion
infectivity may decrease after the acute phase, for example because of viral evolution away
from highly infectious strains that survive transmission bottlenecks or because of the accumu-
lation of antibody coatings that reduce infectivity [8,9]. A macaque SIV experiment found that
7.5 to 750 times fewer virions were required to establish successful intravenous infection when
the injected virus was derived from recently versus chronically infected macaques, suggesting
that acutely infected animals may have higher per virion infectiousness [9]. However, we do
not know whether HIV virion infectivity in humans is elevated during the acute phase and, if
so, how quickly it declines to chronic phase levels.

The epidemiological implications of acute phase infectivity depend on the sociological con-
text. In a serially monogamous population with long-lasting partnerships, elevated infectivity
during the acute phase will contribute negligibly to transmission since acutely infected individ-
uals will likely only re-expose the partner that infected them (unless they happen to change
partners in that short period). In contrast, if partnerships are less stable, acutely infectious indi-
viduals may often expose new susceptible partners, and the acute phase may thereby contribute
substantially to transmission. This will occur, for example, when there is a high prevalence of
concurrent partnerships [10], when there is a generally fast partner switching rate, or if individ-
uals exhibit episodic risk behavior (risk “volatility”) [11]. Nonlinear interactions between acute
phase infectivity and patterns of sexual contact may increase AFearly far more than the sum of
their separate effects [10,12]. Thus, it is necessary to understand acute phase infectivity in the
context of sexual contact patterns to assess their joint contributions to transmission dynamics.

Although a high AFearly presents a challenge for TasP, it does not necessarily doom it to fail-
ure, because of an important trade-off between the timing and extent of transmission [13]. The
observed exponential rise in HIV prevalence at the start of an epidemic can be explained by, at
one extreme, infected individuals rapidly infecting a relatively small number of people (low R0
but high AFearly) or, at the other extreme, infected individuals more slowly transmitting to many
more people (high R0 but low AFearly). In general, the amount of intervention required to con-
tain an epidemic decreases with R0 [14]. Thus, early transmission (high AFearly), which implies
relatively low R0, makes early intervention more critical, but generally lowers the bar for success
[4,13]. Consequently, some have proposed that the net effect of AFearly on the projected effec-
tiveness of TasP interventions may be small [15], though this remains debated [16]. Even if our
ability to control HIV transmission is not fundamentally limited by AFearly, understanding the
timing and magnitude of early transmission is critical for the design of cost-effectiveness inter-
ventions that maximally interrupt transmission.

However, estimates of AFearly range widely [4,8], depending on assumptions about RHacute,
dacute, and sexual network characteristics. Here, we review the evidence for elevated acute
phase infectivity, identify possible biases in widely accepted estimates of RHacute and dacute, and
reanalyze the available data to revise them accordingly.

Among 11 estimates of AFearly reviewed by Cohen et al. [8], all five studies focusing on sub-
Saharan Africa used estimates of RHacute and dacute based on a retrospective cohort in Rakai,
Uganda [17–22], which provides the only direct epidemiological measurement of acute phase
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infectivity and duration published to date. Of the remaining studies, none relied on a direct
measure of acute phase infectivity. Instead, they considered the relationship between viral load
trajectory and viral load infectivity [23], or relied on indirect estimates based on fitting a partic-
ular model to observed epidemic growth rates [24–29]. The lack of other data sources on newly
infected HIV cases is not surprising. First, newly infected individuals are rarely tested within
the short acute phase time window, and tests identifying recently infected individuals are not
very reliable [8,30]. Second, newly infected individuals who are infected by their current sexual
partner (who cannot be reinfected) provide no information on acute phase infectivity. Finally,
ethics dictate that, when infected individuals with potentially susceptible partners are identi-
fied, interventions should be taken to prevent further transmission, so that identified individu-
als no longer transmit at rates reflective of the general population.

Given the influence of the Rakai study on the general understanding of the acute phase, we
reanalyzed the results reported from this study to account for several previously overlooked
sources of bias. Specifically, we fit a couples transmission model that accounted for the study
design and for unmeasured transmission heterogeneity between couples. We then replicated
previous analyses on simulated data to systematically explore the differences between our re-
sults, and those reported by the original study [17] and by the most widely cited reanalysis
[18].

Methods
S1 Text provides a complete model description and all scripts needed to reproduce our analy-
ses. All analyses were performed in R [31].

Excess Hazard-Months Attributable to Elevated Acute Infectivity
Previous studies focused on estimating RHacute, the relative hazard (i.e., infectivity) of the acute
phase relative to the chronic phase. However, such estimates are not directly comparable across
studies that assume (or estimate) different dacute values (Fig. 1A and 1B). To overcome this lim-
itation, we introduce a new measure: the excess hazard-months attributable to the acute phase
(EHMacute), which equals (RHacute − 1) × dacute. EHMacute is defined, intuitively, in units of
chronic phase hazard-months. If infectivity is constant throughout disease progression, then
an infectious individual who dies 10 y after infection produces 120 hazard-months. If the acute
phase is 3 mo long and 26 times as infectious as the chronic phase, then the acute phase con-
tributes an additional EHMacute = (26 − 1) ×3 mo = 75 hazard-months, for a total of 195 haz-
ard-months. EHMacute quantifies the total impact of physiologically elevated acute infectivity,
and is comparable across studies. The overall contribution of each disease phase to population-
level transmission is also influenced by sexual behavior (e.g., partner switching and concurren-
cy). However, by focusing on data from stable couples, we separate the contribution of
EHMacute from that of partnership dynamics.

Estimating EHMacute from Viral Load
Published estimates of acute phase infectivity are believed to be higher than would be expected
based on viral load alone [4]. However, viral load trajectories vary throughout the acute phase,
increasing to a peak before declining to the chronic phase set point. If, as is commonly as-
sumed, infectivity varies with viral load, then the instantaneous RHacute also changes through-
out the acute phase, and thus EHMacute attributable to elevated acute phase viral load cannot
be reliably inferred from snapshot estimates of RHacute at the viral load peak [13]. Thus, we es-
timated the expected EHMacute based on the viral load trajectory during the acute phase, rather
than just the peak viral load. Combining empirical acute phase viral load trajectories [32] with
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a fitted log-linear model of infectivity as a function of viral load (with 95% CI [7]), we generat-
ed a relative hazard profile over an average disease progression, and summed the area under
this profile to estimate EHMacute caused solely by elevated acute phase viral load (Fig. 2).

Couples Transmission Model
We adapted our previously published couples transmission model [33] for two purposes. First,
we fit it to the Rakai retrospective cohort data to generate an independent estimate of EHMacute

(Fig. 3). Second, we used the model to simulate cohort data and thereby investigate discrepan-
cies between prior estimates of EHMacute and our own lower estimates.

In the model, partners can be infected prior to couple formation, by a stable partner, or by
an extra-couple partner while in a stable couple. We allowed the transmission rates between

Fig 1. Excess hazard-months due to the acute phase. (A) Schematic diagram of relative infectiousness during HIV progression. In scenarios 1–3, the
duration (dacute) and relative hazard of the acute phase (RHacute) differ; however, they all generate 75 excess hazard-months (EHMacute = [RHacute − 1] ×
dacute). The area of each acute phase rectangle (red; drawn to scale) represents the magnitude of EHMacute. Scenario 2 is the widely assumed acute phase
infectivity that was estimated from the Rakai retrospective cohort using a variable hazard survival model [18]. Scenario 4 is our revised estimate obtained by
fitting a couples transmission model to the same Rakai data (EHMacute = 8.4). Unlike previous estimates, it accounts for unmodeled heterogeneity and the
Rakai study’s exclusion criteria. (B) RHacute versus dacute for scenarios 1–3, along with 95% credibility intervals (95%CrIs) and a 95% credibility contour
around estimates from the variable hazard survival model (scenario 2). Colors indicate EHMacute. Because couples in the Rakai cohort were observed at 10-
mo intervals, the duration of the acute phase is not easily identified—shorter, highly infectious and longer, mildly infectious acute phases are both consistent
with the data. EHMacute, however, can be estimated with greater relative precision. (C) Our best estimate of acute phase characteristics (scenario 4) and
associated 95% CrI and credibility contour.

doi:10.1371/journal.pmed.1001801.g001
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stable partners to vary according to the disease phase of the infected partner—acute, chronic,
late, or AIDS. We also incorporated heterogeneity in risk by drawing individual hazards of in-

fection from log-normal distributions with median �lhazard and standard deviation σhazard. We
set uninformative uniform priors on acute phase parameters, median transmission rates, and
σhazard (S1 Text). For each parameter set, we simulated a population of couples (see below), re-
cording the timing of key events in disease progression (i.e., date of infection, death, and corre-
sponding infection phases) and each individual’s hazard.

We constructed a “cohort” from the output of each simulation above according to the Rakai
Community Cohort Study design [17]. Specifically, each couple’s serostatus was “observed”
at 10-mo intervals from January 1994 through mid-1999. We then censored observations to
simulate loss to follow-up and couple dissolution. Censorship was modeled as a serostatus-
dependent process: couples that were concordant negative, serodiscordant, or incident serodis-
cordant (i.e., changed from concordant negative to serodiscordant between successive cohort
observations) at a given cohort observation had a 25%, 35%, and 47% probability, respectively,
of being censored before the subsequent cohort observation, reflecting empirically observed
rates [35,36].

Using the criteria of Wawer et al. [17], we selected a “retrospective cohort” from each of
these simulated “cohorts” that included all couples that were observed serodiscordant and then
observed in at least one more subsequent visit, along with all couples that were observed con-
cordant negative and then concordant positive at the subsequent visit. Importantly, these crite-
ria exclude couples that were observed concordant negative and then serodiscordant only once
before being censored by loss to follow-up, couple dissolution, or the end of the study (Fig. 4),
under the assumption that these couples did not contribute any person-time at risk. However,

Fig 2. Viral-load-based estimates of excess hazard-months due to the acute phase. (A) The hazard of transmission by viral load category (horizontal
bars with 95% confidence intervals [95% CIs]) from [7] with a fitted log-linear model (blue line). We compare these data to other studies in S7 Fig. (B) The
average viral load trajectory of 19 recently infected individuals in East Africa from the ECHO cohort [32]. (C) Combining the fitted log-linear model (and 95%
CIs on model coefficients) from (A) and the average viral load trajectory from (B), we estimated the relative hazard by disease phase (black line). The
expected EHMacute is the excess hazard-months occurring in the acute phase (area of the purple region), which can be compared with the baseline chronic
hazard of equal duration (hatched orange area). While we drew the acute phase cutoff at 100 d based on the stabilization of the viral load near this time, it can
be seen that EHMacute, because it is defined as excess hazard-months, is relatively insensitive to the cutoff time once the relative hazard approaches that of
the chronic phase level (orange).

doi:10.1371/journal.pmed.1001801.g002
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each couple that transitions from concordant negative to serodiscordant provides evidence for
lower acute phase infectivity, while each couple that transitions from concordant negative to
concordant positive provides evidence for higher acute phase infectivity. The exclusion of the
former but not the latter couples creates sampling bias. By including this sampling process in
our model, we explicitly accounted for this bias.

Retrospective cohort couples were then classified as “incident,” “prevalent,” or “late,” de-
pending on information about the stage of the index partner (i.e., first partner infected). Specif-
ically, “incident” couples were those in which the index partner became infected while the
couple was under cohort observation; the secondary partners (i.e., non-index partner) in such

Fig 3. Model Diagram. (A) The relationship history of an example couple. Male (M, upper) and female (F,
lower) branches begin at each partner’s sexual debut and then join together into a single thick gray line when
they form a couple. Male and female partners are at risk of transmission prior to couple formation at a rate
equal to the product of a transmission coefficient (βM,pre and βF,pre) and the time-varying population
prevalence in the opposite gender (PF and PM). Transmission after the couple has formed from extra-couple
partners is similarly dependent on the population prevalence. Infected individuals infect their stable partner at
a rate equal to the product of a chronic phase transmission rate (βM,within or βF,within) and the relative hazard of
their current disease phase versus the chronic phase (not shown). Once infected, individuals are given
Weibull distributed survival times [33,34] (not shown). (B) A simulated time series of infection, AIDSmortality,
and censorship histories for ten couples. Small arrows indicate longitudinal observations of each couple, up
to five times at 10-mo intervals if they have already formed at the start of observation, if they are not censored
due to loss to follow-up or couple dissolution, and if both partners remain alive. These observations are then
used to create a retrospective cohort (Fig. 4).

doi:10.1371/journal.pmed.1001801.g003
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couples were therefore exposed to an acutely infected index partner during the observation pe-
riod. Couples that were not incident were classified as “prevalent” unless the index partner was
recorded as having died during the study, in which case they were classified as “late.” Late cou-
ples thus constitute couples in which the secondary partner was exposed to an index partner in
the AIDS phase (too sick to infect), and possibly in the late phase (increased infectivity)
preceding it.

The Rakai study used molecular viral linkage assays to identify seroconverting secondary
partners who had been infected by an extra-couple partner, and to exclude them from the co-
hort. To replicate this in our fitted model, we similarly excluded all couples where the second

Fig 4. Rakai retrospective cohort study design. In both the original Rakai study and our simulated cohorts
(Fig. 3), retrospectively identified serodiscordant couples (SDCs) were divided into those in which (1) the
index partner’s infection occurred between study visits (incident SDCs), (2) the index partner’s infection
occurred prior to study enrollment and neither partner died during follow-up (prevalent SDCs), and (3) the
index partner’s infection occurred prior to study enrollment and the index partner died of AIDS during follow-
up (late SDCs). Incident, prevalent, and late SDCs were assumed to reflect acute, chronic, and late phase
infectivity exposure for the secondary partner (i.e., non-index partner). Couples recorded as serodiscordant
only once and never seen again were excluded from the analysis under the assumption that these couples
did not contribute any person-time at risk for transmission, while couples transitioning directly from
concordant negative to concordant positive were included, whether or not they were subsequently observed.
However, just as an immediate transition from concordant negative to concordant positive provides evidence
for higher acute phase infectivity, a transition from concordant negative to serodiscordant provides evidence
for lower acute phase infectivity. Thus, a sampling bias arises from this asymmetric exclusion of couples.

doi:10.1371/journal.pmed.1001801.g004
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partner was infected via extra-couple transmission. We conducted a sensitivity analysis to this
exclusion in the simulation analysis below because such couples do contribute person-time at
risk up until the secondary partner’s infection.

Estimating EHMacute from the Rakai Retrospective Cohort
We fit the couples transmission model to the Rakai retrospective cohort data using approxi-
mate Bayesian computation with sequential Monte Carlo (ABC-SMC) [37] to estimate trans-
mission rates, RHacute, dacute, and σhazard. We describe our approach in detail in S1 Text.
Briefly, we used the model to simulate 4,875 couples (i.e., the Rakai couples cohort size [36])
for each of hundreds of thousands of parameter sets drawn from uninformative prior distribu-
tions (S1 Table). Parameter sets that generated retrospective cohorts sufficiently similar to the
Rakai cohort, as measured by several summary statistics, were accepted, while others were re-
jected. Summary statistics included proportions of secondary partners seroconverting in inci-
dent and prevalent couples and the extent of individual heterogeneity as indicated by
discrepancies between unadjusted and adjusted regression analyses (S2 Table). New parameter
sets, sampled randomly around those accepted in the previous step, were simulated and then
again filtered based on similarity to the Rakai data. This filtering procedure was repeated with
increasingly strict criteria for similarity, until the distribution of parameters converged and the
simulation summary statistics sufficiently matched the real data.

Simulating Previous Estimates of EHMacute

To identify biases underlying discrepancies between our estimates and prior estimates from the
Rakai cohort data, we replicated the two most highly cited analyses of the Rakai retrospective
cohort (Poisson regression [17] and variable hazard survival model [18]) on simulated data
across a wide range of parameter sets (S3 Table). We examined differences between estimated
parameters and the “true” values used in the simulation. To reduce the effect of sampling error,
we simulated cohorts of 100,000 couples in this analysis.

Poisson Regression Model
We replicated the approach of Wawer et al. [17] and estimated RHacute from each simulated
retrospective cohort using a Poisson regression of secondary partner seroconversion against
index partner disease phase (acute, chronic, late), controlling for secondary partner person-
time at risk (as an offset term). Person-time at risk was calculated by assuming that infections
or deaths occurring in a 10-mo interval occurred at the 5-mo midpoint of the interval. Similar-
ly, when both partners were infected in the same interval, this analysis assumed that secondary
partner infection occurred at 7.5 mo. For incident couples, only the interval in which the index
partner seroconverted was considered representative of acute phase exposure for the secondary
partner. Consequently, later observation intervals were excluded from the regression. Given
the person-time assumptions above, this interval represents the secondary partner’s exposure
to the first 0–5 mo of the index partner’s infection. Thus, this approach implicitly assumes that
the acute phase lasts 5 mo.

In [17], observed covariates that potentially affect transmission (coital rate, genital ulcer dis-
ease [GUD], viral load, and age) were included in the regression. Adjusting for observed covari-
ates controls for some, but not all, of the heterogeneity between couples because other sources
of variation remain unobserved. We similarly simulated “observed covariates” that were par-
tially correlated with each individual’s actual hazard and adjusted for these covariates. This al-
lowed us to assess estimation accuracy under the assumption that the study included observed
covariates that account for some but not all of the variance in risk between individuals.

Reassessment of HIV-1 Acute Phase Infectivity
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Variable Hazard Survival Model
Hollingsworth et al. [18] reanalyzed the Rakai retrospective cohort by fitting a variable hazard
survival model to the data. Because their estimates of acute and late phase infectivity and dura-
tion are frequently considered the best available estimates [4,8,10,19,38,39], we also replicated
their analysis on our simulated retrospective cohorts. This model explicitly specifies different
hazards and durations for the acute, chronic, and late phases, and also specifies the existence of
an AIDS phase prior to death during which no transmission occurs (Fig. 1A here and Fig. 1 in
[18]). Rather than assuming a 5-mo acute phase as in [17], this approach explicitly estimates
both phase infectivity and duration.

This model makes the following assumptions. Secondary partners in prevalent couples are
exposed to a chronically infected index partner. Secondary partners in incident SDCs are ex-
posed to an acutely infected index partner for a duration dacute beginning when their partner
was infected, and are exposed to a chronically infected index partner thereafter. Similarly, sec-
ondary partners in late SDCs cannot be infected during the AIDS phase preceding their part-
ner’s death, are exposed to the late phase preceding that, and are exposed to the chronic phase
preceding that. Rather than assuming that infections occurred at the midpoint of an interval,
this model more realistically considered the timing of the index partner’s infection as an un-
known, hidden event that occurred with equal prior probability at each time during the interval
of occurrence.

Hollingsworth et al. estimated phase durations and hazards and 95% CIs using a maximum
likelihood approach, but did not estimate confidence intervals for derived parameters such as
RHacute or EHMacute. We fitted the same model using a Bayesian Markov chain Monte Carlo al-
gorithm, which better facilitated estimation of 95% CrIs (the Bayesian analogue of confidence
intervals) for all parameters of interest. We validated our fitting procedure by fitting to data
simulated by this same variable hazard survival model with known parameters, and assessing
our ability to accurately recover these parameters.

Results
We found that analyses of cohort data with 10-mo survey intervals cannot distinguish between
shorter, highly infectious and longer, less infectious acute phases because of the relatively long
intervals between couple observations. While collinearity between dacute and RHacute prevents
these parameters from being identifiable, EHMacute can be estimated with relatively greater pre-
cision (Fig. 1A and 1B). EHMacute values can be compared to the 120 hazard-months an indi-
vidual would produce over 10 y of infection if infectivity was constant. Thus, an EHMacute of 12
would indicate that the acute phase contributes an additional 10% of the hazard that an indi-
vidual would produce during 10 y of untreated chronic infection.

Based on viral load–infectivity relationships alone, we estimate that the hazard of transmis-
sion at peak viral load is approximately nine times greater than at the chronic phase set point.
However, this peak is transient, and the viral load trajectory across the entire acute phase sug-
gests an EHMacute of only 5.6 (95% CI: 3.3–9.1) (Fig. 2).

We fit a couples transmission model that explicitly accounts for couple dissolution, loss to
follow-up and the cohort exclusion criteria of the Rakai retrospective cohort data (Figs. 3 and
4) to estimate acute phase infectivity and duration, mean transmission rates into and between
couples, and inter-individual heterogeneity in these transmission rates. Our model fit the data
well (S1 Fig.). From this analysis, we estimated EHMacute to be 8.4 (95% CrI: −0.27 to 63), RHa-

cute = 5.3 (95% CrI: 0.79–57), and dacute = 1.7 mo (95% CrI: 0.55–6.8) (Figs. 1C and 5; Table 1).

We estimated the median transmission rate between partners to be �lhazard = 12 (95% CrI: 4.6–
30) per 100 person-years and the heterogeneity in transmission to be σhazard = 2.0 (95% CrI:
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1.2–2.8). A σhazard of 2.0 corresponds to individuals at the 97.5% highest risk quantile,
experiencing transmission rates 50-fold greater than the median.

We replicated previously published methods for estimating acute phase infectivity in simu-
lated populations of 100,000 couples, yielding an average retrospective cohort size of 3,000 cou-
ples (i.e., after excluding couples with no infections or as dictated by the study’s exclusion
criteria), which was sufficient to distinguish inherent biases from random fluctuations (S2
Fig.). We identified four sources of bias that influenced estimates of EHMacute produced by ei-
ther the Poisson regression [17] or variable hazard survival model [18] (Fig. 6B–6D). The first
bias stems from assumptions about the timing of seroconversion between cohort observations.
The Poisson regression approach assumed that the first infection in a given 10-mo observation
interval occurred at the 5-mo midpoint. When an incident infection and secondary infection
occurred in the same interval, this approach assumed that the latter occurred at 7.5 mo (i.e.,
the midpoint between the first infection and the end of the interval). In theory, the interacting
effects of these three assumptions can be complex (S3 Fig.), but our simulations show that, on
the whole, these assumptions led to a small downward bias in estimates of EHMacute. By

Fig 5. Revised acute phase estimates.Our estimates (black) of the excess hazard-months attributable to the acute phase (EHMacute) based on (A) viral
load trajectories (Fig. 2) and (B) our fit of a couples transmission model to the Rakai retrospective cohort. We compare these estimates with previous Rakai-
based estimates that did not adjust for these biases (gray). These include (C) Wawer et al.’s adjusted and (D) unadjusted Poisson regressions [17], (E)
Hollingsworth et al.’s variable hazard survival analysis [18], and (F) Powers et al.’s estimates that used a Bayesian framework to combine estimates from (E)
and a mathematical modeling fit to an epidemic curve [19].

doi:10.1371/journal.pmed.1001801.g005
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Fig 6. Multiple sources of bias for acute phase estimates. (A) The log-normal distributions used to model
variability in individual hazard of infection (color-coding of σhazard used throughout the figure). (B and C)
Estimated excess hazard-months attributable to the acute phase (EHMacute) versus the true (simulated)
EHMacute when analyzing simulated cohort data with the (B) Wawer et al. [17] Poisson regression and (C)
Hollingsworth et al. [18] variable hazard survival model. Thick gray diagonal lines represent unbiased
estimates. Arrows 1–4 indicate how each bias affects estimates of EHMacute. Arrow locations along the x-axis
are chosen for ease of display only; for any true EHMacute, each bias is quantified by the vertical separations
between lines. Dotted lines show the “best case” scenario for these models: if the underlying population is
truly homogenous, the analysis includes all seroincident couples, and late and chronic phase infectivity are
equal. The small downward bias (1) in the Poisson regression arises from assumptions regarding person-
time at risk. The dashed lines reveal additional downward bias (2) in both models stemming from
misclassification of late couples as prevalent couples (assuming the excess hazard-months attributable to
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assuming instead that infection events occurred at unknown times with equal prior probability
distributed throughout an interval, the variable hazard survival model removed this bias.

The second bias stems from misclassification of some late phase couples as chronic phase
couples when they are lost to follow-up just prior to a partner’s death. The accidental inclusion
of some late phase couples leads to overestimates of chronic phase infectivity, which, in turn,
biases estimates of RHacute and EHMacute downward (Figs. 6B, 6C, and S4). Both the regression
and survival models were affected similarly by this small downward bias.

The last two biases caused overestimates of EHMacute that far outweighed the first two
downward biases (Fig. 6). Specifically, the exclusion of incident SDCs lost to follow-up (Fig. 4)
nearly doubles estimates of EHMacute relative to the true value. This bias is best illustrated with
unadjusted hazard calculations. Assuming that index and secondary infections occurred at the
5-mo and 7.5-mo points within each study interval, we can calculate the acute phase hazard
from the original data in which ten of 23 incident couples had both partners seroconvert in the
same interval (S4 Table):

βacute ¼
10 infections

10 � 2:5 þ 13 � 5 person �months
¼ 0:11

infections
person�months

ð1Þ

However, based on empirical rates of loss to follow-up in Rakai, it is likely that approximately
17 incident SDCs were excluded because they were not seen again after their incident serodis-
cordant visit, either because they dissolved, were subsequently lost to follow-up or because
their incident serodiscordant visit coincided with the end of the study period [35,36]. If we cor-
rectly include these couples in our calculation, then the estimated acute phase hazard is much
lower:

βacute ¼
10 infections

10 � 2:5 þ ð13þ 17Þ � 5 person�months

¼ 0:057
infections

person �months
ð2Þ

Our analysis finds that this effect approximately doubled previous estimates of acute phase
transmission that relied on this retrospective cohort. We assumed 17 (43%) of incident SDCs
were excluded from the original data for this illustrative example. However, in fitting our cou-
ples transmission model, we explicitly modeled this sampling procedure, and the proportion of
incident SDCs excluded was variable between simulations fitted to the data and was driven by
empirical estimates of the loss-to-follow-up and couple dissolution rates in Rakai. Our ABC-
-SMC fitted posterior median number of incident SDCs excluded was 17 (95% CrI: 8–35), cor-
responding to 43% (95% CrI: 27%–60%) of incident SDCs being excluded (S1 Text; S5 Fig.).
Importantly, this uncertainty in the exact number excluded by the Rakai study is reflected by
our new estimates of EHMacute.

The fourth bias emerges from unmodeled heterogeneity in the risk of transmission within
SDCs. Couples with higher risk are, by definition, more likely to transmit infection. Thus, cou-
ples that have remained persistently serodiscordant (prevalent and late couples) represent

the late phase was 40). Solid lines show estimates from simulated cohorts when seroincident couples lost to
follow-up are excluded (Fig. 4), causing bias (3). Finally, both analyses are further biased upward (4) when
used to analyze heterogeneous populations. (D) The same trends for σhazard = 0 and 3 from (B), but also
showing how bias (4) can be partly mitigated (4*) when variance between individuals is controlled for by
adjusting for measured covariates corresponding to some (but not all) of the heterogeneity. (B–D) were
created by fitting smoothers through individual simulations (S3 Fig.).

doi:10.1371/journal.pmed.1001801.g006
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couples with a lower transmission risk, on average, than newly formed “naïve” SDCs (incident
couples). Thus, a portion of the estimated EHMacute may actually reflect sampling-based differ-
ences between couples that enter the study serodiscordant versus seroconcordant negative,
rather than biological differences between acute and chronic phase infectivity. The adjusted
Poisson regression analysis partly corrects for this bias, by adjusting for covariates, which ac-
counts for some of this heterogeneity (Fig. 6D), whereas the variable hazard survival analysis
does not correct for any covariates. In the original regression analysis, adjustment for covari-
ates reduced the estimated EHMacute from 50 to 31. Inclusion of additional risk covariates, had
they been measured, would have reduced this estimate further. By fitting our heterogeneous
couples transmission model above, we explicitly accounted for this bias while estimating the
extent of heterogeneity.

These four biases account for virtually all of the difference between the Poisson regression
and variable hazard survival estimates and the true simulated values being estimated (S5
Table); thus, other remaining sources of bias are necessarily minor. In particular, the exclusion
of couples in which the secondary partner was infected in an extra-couple partnership was not
a substantial source of bias (S6 Fig.), in part because such couples were excluded from both in-
cident and prevalent categories, and these effects approximately balanced each other.

Discussion
In addition to reducing morbidity, ART also reduces the risk that HIV-infected individuals in-
fect their sexual partners [1]. TasP has consequently become a primary focus of HIV control
strategies [40]. Still, many have highlighted that TasP prevents transmission only from individ-
uals who have been diagnosed and treated [19]. This has spawned an energetic debate concern-
ing the proportion of transmission likely to occur too early after infection to be preventable by
realistic TasP interventions [4]. In particular, the assumption that individuals are extremely in-
fectious during the several months immediately following infection has led to arguments that a
large proportion of all transmission occurs too early to be averted by TasP [4,19,39].

We have found that the evidence for elevated acute phase infectivity, a key component of
early transmission, is not nearly as strong as commonly thought. Acute phase infectivity has
been directly measured only once, from a retrospective couples cohort in Rakai [17]. We reana-
lyzed the reported results from this study, accounting for the sampling procedure and individu-
al-level heterogeneity in the risk of HIV transmission, which were overlooked in all previous
analyses. Our new estimate for the acute phase hazard is nine times less than the currently
most frequently used estimate [8,18]. Thus, physiologically elevated infectiousness early in in-
fection alone is unlikely to undermine TasP campaigns. Furthermore, intervention efforts tar-
geted at identifying acutely infected individuals [41] may be less cost-effective at preventing
forward transmission than previously thought.

In general, long intervals between observations may preclude precise estimation of shorter
duration events. The 10-mo Rakai observation interval contributes substantial uncertainty to
estimates of the duration (dacute) and relative hazard (RHacute) of the acute phase. A short, in-
tense acute phase and a long, milder acute phase will exhibit similar transmission patterns at a
10-mo level of resolution. To circumvent this uncertainty, we introduced EHMacute, the excess
chronic-phase-equivalent hazard-months attributable to elevated acute infectivity (EHMacute =
[RHacute − 1] × dacute). Unlike RHacute, EHMacute can be estimated from cohort studies, even
when the duration of the acute phase is unknown. The magnitude of EHMacute can be com-
pared to the baseline of 120 chronic phase hazard-months untreated infected individuals
would generate over their approximately 10 y of constant infectiousness if the acute and late
phases had infectivity equal to that of the chronic phase. We estimated an EHMacute of 8.4
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(95% CrI: −0.27 to 64), lower than the original estimate of 31 and far lower than the currently
most frequently used estimate of 73 [17,18]. We find that the upward revision from the first re-
gression-based estimate of EHMacute = 31 to the survival-analysis-based estimate of 73 was al-
most entirely attributable to the latter’s exclusion of covariates that the former used to captured
some, but not all, of the heterogeneity in transmission risk. Furthermore, we showed that both
previous estimates were biased upward by the study design itself and by additional unobserved
heterogeneity in couple transmission rates.

The effect of controlling for heterogeneity can be seen in the original regression analysis
[17]. Adjusting for coital rates reduced the estimated EHMacute from 50 to 36 (Table 1), and ad-
justing for age and GUD further reduced the estimate to 31. Correcting for other sources of
inter-couple heterogeneity (e.g., host and viral genotypes affecting susceptibility and infectious-
ness, tendency to use condoms, other co-infections) would have likely reduced the estimate
even further.

Our findings demonstrate the utility of simulation approaches for validating epidemiologi-
cal study design and analysis [42,43]. Bias may arise in unexpected ways from interactions be-
tween epidemiological, observation, and sampling processes. All of these processes can be
included in simulation models that can be fit directly to empirical data with modern statistical
approaches. Such models can also be used to simulate data for analysis to compare the perfor-
mance of alternative methods. Comparisons between estimates from simulated data, where the
underlying true parameters are known, provides a powerful tool with which to discover biases
and evaluate the robustness of estimators when not all assumptions are met, or in the presence
of sampling bias. For example, our initial aim was to examine the effect of heterogeneity on es-
timates of acute phase infectivity. Unexpectedly, replication of previous approaches on our ho-
mogenous simulations also yielded biased estimates, leading us to discover three other sources
of bias.

Our two independent estimates of EHMacute—one based on elevated acute phase viral load
and the other based on the Rakai data—were similar, with each inside the confidence bounds
of the other. Thus, contrary to the prevailing consensus [8,18,19], we cannot reject the null hy-
pothesis that elevated acute phase infectivity in humans is caused solely by the transient eleva-
tion in viral load (and not elevated per virion infectivity). However, we emphasize that the
variance in all estimates based on this small cohort reflects considerable uncertainty, which
should be propagated in all analyses of acute phase infectivity, particularly those calculating
AFearly. To that end, in addition to providing our estimates of EHMacute, RHacute, and dacute and
their credibility intervals above, we have provided our fitted posterior distribution of acute
phase infectivity and duration and individual heterogeneity in transmission to facilitate future
modeling work (S1 Data). We emphasize that models relying on these estimates of acute phase
infectivity and duration should also adequately account for their collinearity (i.e., the upper
confidence bounds of both RHacute and dacute are not, as a pair, within their joint credibility
contour; Fig. 1) and also consider individual heterogeneity.

The Acute Phase Debate
There is considerable disagreement regarding the impact of early transmission on the effective-
ness of TasP [4,13,15,16]. Powers et al. estimated that the fraction of HIV incidence attributable
to transmission from acutely infected individuals (AFacute) was 40% [19], while Williams et al.
argued that AFacute was more likely to be 2%–4% [44]. The discrepancy arises from the former’s
confidence and the latter’s skepticism in the variable hazard survival analysis’s estimates of
acute phase infectivity and duration from Rakai (Fig. 1B; [18]), which we show are upward-
biased by unmodeled heterogeneity and study design (Figs. 1C and 6).
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Powers et al. fit an HIV transmission model to antenatal clinic prevalence trends in Li-
longwe, Malawi, using a Bayesian procedure to update prior estimates of acute phase infectivity
from Rakai [19]. Their analysis provided posterior estimates of EHMacute = 141, nearly double
the estimate that formed the basis for their prior, and 16 times our best estimate. Their further
inflation of EHMacute stems from their fit to the Lilongwe epidemic, which (like many HIV epi-
demic trajectories) exhibits a steep initial rise in prevalence followed by deceleration to a lower
epidemic peak than would be expected based on the initial rise. However, the observed steep
epidemic growth in Lilongwe is largely driven by one antenatal clinic observation in 1987 with
substantial uncertainty. More importantly, this characteristic epidemic trajectory can be ex-
plained by mechanisms other than high acute phase infectivity. For example, heterogeneity
and assortativity in risk behavior can drive rapid early growth as HIV spreads through high-
risk subpopulations [15,45]. Declining risk behavior over the course of the epidemic can also
explain relatively rapid early growth [15,46]. Therefore, high estimates of EHMacute derived by
fitting to epidemic trajectories are unreliable.

Phylogenetic clustering of incident infections has also been used to infer the proportion of
transmission attributable to early infection [47–49]. However, these studies make varying as-
sumptions regarding the time window after infection considered “early,” which precludes di-
rect comparison of the AFearly estimates. Furthermore, recent work has uncovered several
questionable assumptions in phylogenetic and phylodynamic inference of transmission events
[50–52] and has suggested that conclusions reached from these approaches should be inter-
preted cautiously. For example, phylogenetic tree topologies may not correspond to transmis-
sion networks, sampled individuals are not unbiased random samples of infected individuals,
several viral genotypes may be transmitted during infection, and certain genotypes may be
preferentially transmitted.

In addition, AFearly estimates may be strongly influenced by the intervention history in the
focal population. Large AFearly values are often interpreted as an obstacle to future TasP suc-
cess, but they could instead indicate ongoing TasP success. Successful TasP will decrease trans-
mission following the initiation of treatment, thereby increasing the relative transmission rate
of the pretreatment period (i.e., AFearly). As increasingly ambitious TasP strategies are imple-
mented, AFearly should thus increase even while incidence decreases. For instance, a recent
phylodynamic analysis of Detroit’s population of men who have sex with men concluded that
half of all transmission occurs within the first year of infection [49], and that individuals are 20
times as infectious in the first year post-infection (corresponding to EHMacute = 228) [53].
However, this relative infectivity of the acute phase compares transmission from untreated,
acutely infected individuals to that from treated, chronically infected individuals, and therefore
overestimates relative acute phase infectivity. Future studies should interpret estimated AFearly
in the context of ART coverage, noting that successful TasP interventions should increase
AFearly.

Finally, we again note arguments that because larger estimates of AFearly imply smaller re-
productive numbers, TasP effectiveness may be less sensitive to AFearly in the long term than
commonly assumed [4,13,15]. An observed epidemic trajectory can be explained by, at one ex-
treme, infected individuals transmitting to relatively few people relatively quickly (low R0 but
high AFearly) or, at the other extreme, by infected individuals transmitting to relatively many
people over a longer duration (high R0 but low AFearly). Infectious diseases with smaller R0 are
more sensitive to interventions [14]. Thus, in the former scenario, TasP would be proportional-
ly less effective because AFearly is high, but reducing transmission would be easier (because R0

is low). In the latter scenario, TasP would avert a greater proportion of transmission, but
population-level transmission would be more difficult to reduce (because R0 is high) [4,13].
Thus, the net effect of AFearly on the projected effectiveness of TasP interventions may be small
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[15], though this is still under debate [16]. Our results help to mediate the controversy over the
impact of AFearly on intervention effectiveness. If AFearly is smaller than previously assumed,
then any potential interference with TasP is also smaller and efforts to target early transmission
may be less cost-effective, compared to more broad-scale interventions.

Assumptions and Limitations
Biases arise when assumptions influence results but do not hold in the real world. The two
prior studies that estimated HIV acute phase infectivity from the Rakai cohort data unknow-
ingly suffered from four distinct sources of bias, each stemming from a specific problematic as-
sumption. In our analysis, we used a detailed simulation model to explicitly correct these
assumptions (S5 Table). While our model necessarily makes other assumptions, we have dem-
onstrated that differences between our results and earlier analyses rest entirely on the four cor-
rected assumptions. When making additional assumptions, we used the best available data,
including age-at-seroconversion-dependent Weibull survival times [34]. Censorship rates due
to loss to follow-up and couple dissolution [17,35,36] were informed by a recent study of the
Rakai couples cohort [35] that largely overlapped with the original retrospective cohort study.
While the exact number of incident SDCs excluded remains unknown, uncertainty in this
quantity is reflected in our new estimates of EHMacute.

As with the preceding studies of acute phase infectivity [17,18], our goal was to accurately
estimate the excess physiological infectivity due to the acute phase, which we measure by
EHMacute. SDC cohort data that track susceptible individuals with both acutely infected and
chronically infected partners is uniquely suited for this analysis. However, factors other than el-
evated physiological infectivity can also cause transmission in stable couples to occur more
quickly from newly infected partners. In particular, various types of heterogeneity in infec-
tiousness and susceptibility can lead to increased early transmission in couples cohorts and, if
left unmodeled, can spuriously inflate estimates of physiologically elevated acute phase infec-
tivity. While controlling for these confounding factors is critical, they should not all be dis-
missed as analytic nuisances. Some, but not all, forms of risk heterogeneity that bias couples
cohort data can also transiently increase infectivity following infection in the broader popula-
tion, and should be considered in addition to physiological infectivity when estimating AFacute
and designing interventions.

In particular, we distinguish between persistent heterogeneity and time-varying heterogene-
ity. Persistent heterogeneity arises from systematic variation between individuals in susceptibil-
ity or infectiousness that remains relatively stable over the course of individuals’ sexually active
lifetimes. This includes persistent biological states (e.g., circumcision, host or virus genotypes,
chronic co-infections) or persistent behavioral differences between individuals (e.g., condom
usage). Highly susceptible individuals (or partners of highly effective transmitters) will be in-
fected relatively quickly after their first exposure. In these cases, early transmission is not a con-
sequence of high acute phase infectivity but instead of persistently high risk. Outside of the
stable couple context, this mechanism will not create the same bias toward early transmission,
because relationship initiation and fast transmission can happen during either the acute or the
(longer) chronic phase.

The effects of time-varying heterogeneity are more complex. In some cases, time-varying
heterogeneity in infectiousness can contribute to AFearly at the population level as strongly as
in stable couples cohorts. This will occur when increased infectiousness is correlated with re-
cency of infection. For example, newly infected individuals often have other sexually transmit-
ted infections (STIs) that elevate HIV infectiousness (either because the STI increased their risk
of acquiring HIV or because they acquired the STI and HIV through the same risk behaviors),
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and consequently are more infectious early after HIV infection prior to STI treatment [54].
This could, for instance, account for the observation in the Rakai cohort that, because incident
couples exhibited a higher prevalence of GUD compared to prevalent couples, adjusting for
self-reported GUD reduced estimated EHMacute. Unlike persistent heterogeneity, this mecha-
nism would increase infectivity during the early phase not only within stable partnerships but
also for the broader population. Temporal variation in safe sex practices or coital rate could
cause similar effects. Time-varying heterogeneity was not incorporated because data were lack-
ing regarding its magnitude and volatility and because, as discussed above, we expected it to
contribute to early transmission in couples cohorts in a manner similar to that of persistent
heterogeneity. Nonetheless, we did simulate persistent heterogeneity to explore how unmo-
deled heterogeneity biases EHMacute. Finally, some forms of risk heterogeneity will affect
AFearly at the population level but cannot be observed in stable couples cohorts, because they
do not affect transmission to a stable partner. Examples include partner acquisition rates and
tendency to maintain concurrent relationships (i.e., episodic risk behavior [11,12]).

While we separate physiologically elevated acute phase infectivity from various types of het-
erogeneity, we emphasize that estimates of AFearly must consider not only EHMacute and sexual
network assumptions, but also sources of heterogeneity that could potentially amplify early
transmission at the population level, including some that have been observed in the couples co-
hort that we have separated from EHMacute. Thus, while studies assuming larger values of
EHMacute have generally produced larger estimates of AFearly (Fig. 7; S6 Table), we suggest

Fig 7. Proportion of transmission due to acute infectivity. Published estimates of the proportion of incidence attributable to early transmission (AFearly)
versus the assumed excess hazard-months attributable to physiologically elevated acute phase infectivity (EHMacute). Shapes indicate whether EHMacute

was estimated from epidemic growth rates, viral load trajectories and viral load–infectivity relationships, the Rakai retrospective cohort, phylogenetics, or a
combination thereof. Points reflecting studies that published more than one result are identified with letters; explanations of differences between estimates
are available in S6 Table. Points and error bars below the x-axis indicate our estimated EHMacute from the Rakai retrospective cohort data and based on viral
load trajectories; we do not specify a sexual network model and therefore do not estimate AFearly in this study.

doi:10.1371/journal.pmed.1001801.g007
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caution when considering the intuitive conclusion that studies relying on upward-biased esti-
mates of EHMacute have also overestimated AFearly. Because our analysis focused on estimating
the relative infectivity and duration of the acute phase from SDCs, our model did not specify
population-level sexual mixing patterns and thus was unable to produce an estimate of AFearly.
We believe new estimates of AFearly are needed that carefully consider our updated EHMacute

estimate, along with both persistent and time-varying heterogeneity, sexual network assump-
tions, and explicit consideration of differences in ART coverage between acutely and chronical-
ly infected individuals.

Conclusion
By analyzing a seminal HIV couples cohort study using stochastic models and approximate
Bayesian computation, we have reestimated the relative infectivity of the acute phase and
found that the most highly cited estimates are substantially biased upward by unmodeled het-
erogeneity and by the study exclusion criteria. Thus, the proportion of transmission occurring
immediately after infection should be reevaluated, and may have more to do with risk hetero-
geneity and HIV intervention measures than with physiological differences between the acute
and chronic stages of infection. These revised estimates should be considered when designing
population-scale interventions and communicating individual-level risk in clinical or commu-
nity settings. It is becoming increasingly clear that infected individuals should initiate ART as
early as possible both to achieve the greatest reductions in transmission and for its direct clini-
cal benefits [55]. Our findings cautiously suggest that the population-level benefits might be
larger than predicted by earlier estimates.

Supporting Information
S1 Data. New best estimates of acute phase infectivity. This ZIP file contains an RDATA file
intended to facilitate future modeling work by providing our ABC-SMC posterior distribution
for parameter estimates for acute phase infectivity and duration, and individual heterogeneity
in transmission.
(ZIP)

S1 Fig. Fit of model to the Rakai retrospective cohort. Left column shows the proportion of
secondary partners seroconverting in incident couples for each of the four intervals of observa-
tion from our posterior (black) and from the Rakai data (red). Right column shows the same
for the prevalent couples.
(TIF)

S2 Fig. True EHMacute for various simulation and analysis scenarios. This figure is analo-
gous to the results in Fig. 3 but shows the actual point estimates and 95% confidence (Poisson
regression model) or crediblility (variable hazard survival model) intervals for model fits to
simulations. Lines in Fig. 6 show the loess fits to these trends, with the same lines shown here
(line types and colors match Fig. 6). The top row shows estimates acquired using the unadjust-
ed Poisson regression (Fig. 6B) [17]. The middle row shows estimates from a Poisson regres-
sion in which 50% of heterogeneity is controlled for (Fig. 6D; here we show 50% for different
σhazard values instead of 25%, 50%, and 80% for just σhazard = 3). The bottom row shows esti-
mates acquired by fitting the variable hazard survival model [18] to the data (Fig. 6C). The left-
most column shows analyses from retrospective cohorts without heterogeneity, with all
incident SDCs included regardless of follow-up, and with no elevated late phase infectivity.
Columns 2–6 show analyses of simulations that include elevated late phase infectivity. Col-
umns 3–6 show analyses that exclude incident SDCs observed only once and then lost to
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follow-up (Fig. 4). Columns 4–6 display analyses of simulations with increasing amounts of
heterogeneity (as measured by the standard deviation of the log-hazard, σhazard).
(TIF)

S3 Fig. Biases caused by the assumption that events occur at interval midpoints. The left
panel shows the average person-months at risk in secondary partners in prevalent SDCs stratified
by their infection status at the end of the interval (orange = infected, red = uninfected) as well as
the average amongst all couples (black). The dashed lines show the midpoint interval assump-
tions; there was an assumed 10 mo of person-months of risk for partners who remained unin-
fected throughout the interval and an assumed 5 mo for those who became infected. The arrow
shows the estimated hazard of transmission within SDCs in Rakai. While the midpoint assump-
tion holds well in prevalent couples, the right panel shows that the assumptions do not hold as
well for incident couples, in which it’s assumed that the first partner was infected at 5 mo and the
second partner is then exposed to this infectious partner for 2.5 mo if they get infected and 5 mo
if they do not. In fact, the person-time exposed is a function of the hazard itself, and the average
is always less than 5 mo and sometimes less than 2.5 mo. This occurs because, for increasing haz-
ards, secondary partner infections occur soon after index partner infections, and the only second-
ary partners who avoid being infected are those whose index partner was infected very late in the
10-mo interval, such that they experienced very little person-time of exposure.
(TIF)

S4 Fig. Validation using data generated by the variable hazard survival model. Estimated
versus true simulated EHMacute when fitting the Hollingsworth et al. [18] variable hazard survival
model to either data simulated by this model (dashed lines) or data simulated by the full couples
transmission model used in the main text (solid lines). For the data-generating model based on
the variable hazard survival model, we simulated incident, prevalent, and late SDCs as three cate-
gorically different groups (i.e., there could be no misclassification between groups); did not allow
for loss to follow-up; and allowed the timing of an event (infection or death) within a 10-mo in-
terval to be distributed with equal probability throughout that interval. Our own data-generating
model relied on a simulated couples population, with a retrospective cohort identified afterwards.
As expected, fitting the variable hazard survival model to data generated by the same model pro-
duced accurate results (i.e., compare with S3 Fig., third row, second column). When fitting to
data from our more realistic couples model in the scenario where no seroincident couples were
excluded and transmission was homogenous, estimates of EHMacute from the variable hazard
survival model were biased downward (i) because late SDCs were sometimes misclassified as
prevalent SDCs when couples were loss to follow-up shortly before a partner died; this happened
more frequently for greater excess hazard-months attributable to the late and AIDS phases
(EHMlate). This resulted in upward-biased estimates of the chronic phase hazard (i.e., chronic
transmission is partly contaminated by late transmission) and, subsequently, biased the acute to
chronic phase relative hazard (RHacute) and EHMacute downward.
(TIF)

S5 Fig. Proportion of incident couples excluded. (A) Proportion of incident SDCs excluded
byWawer et al. [17] exclusion criteria versus EHMacute from our posterior ABC-SMC fitted pa-
rameters. The median proportion excluded was 43% (95% CI: 27%–60%). (B) Posterior distri-
bution of the number of couples excluded calculated as 23/(1 − proportion excluded) − 23,
where 23 is the number included in the study. The median number excluded was 17 (95% CI:
8–35). We specified that incident SDCs had a 47% probability of being lost to follow-up in the
subsequent interval (red line). Variation in the number of couples excluded emerges both from
stochastic variation in the combined loss-to-follow-up and couple dissolution process and
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from the number of couples who were censored and excluded because the first visit at which
they were observed serodiscordant occurred during the last cohort visit of the study.
(TIF)

S6 Fig. Effect of excluding couples in which the second partner was infected by extra-couple
transmission. Solid lines replicate Fig. 6B and 6C, except that dashed lines in Fig. 6 are shown
here as dark gray lines, and dotted lines in Fig. 6 are shown here as light gray lines. In this figure,
dashed lines show analyses of simulated cohorts that, in contrast to the main analyses, included
couples in which the second partner was infected by extra-couple transmission, with the couples
censored starting from the interval during which the extra-couple infection occurred. The exclu-
sion of these couples did not cause a systematic bias. This was because EHMacute compares haz-
ard between incident and prevalent couples. Since the person-time excluded in incident couples
was balanced by that excluded in prevalent couples, the two effects approximately balanced
each other.
(TIF)

S7 Fig. Infectivity versus viral load from multiple studies. Fig. 2A shows Lingappa et al.’s fit-
ted log-linear model of HIV transmission hazard by viral load [7]. Here, we show all available
infectivity by viral load data to show that this trend is characteristic and, in fact, conservative.
Attia et al.’s meta-analysis of all relevant data up to that point [6] suggests a more saturating
curve, with increases in infectivity appearing to hit an asymptote at 104.5 copies/ml. If this rela-
tionship saturates, then the acute phase infectivity would be expected to be even closer to that
of the chronic phase based on viral load curves alone, and our estimated EHMacute from viral
load trajectories in the main text is conservatively high.
(TIF)

S8 Fig. Survival-inflated copula model of couple relationship histories for Uganda.
(A) Pairwise density plots of the five variables that comprise each couple’s relationship history
from the Ugandan Demographic and Health Survey: age at male and female sexual debut (ams
and afs), male and female duration of sexual activity prior to couple formation (mdur and
fdur), and date of couple formation (tmar). All values are shown in months or months since
1900. (B) Our multivariate copula distribution model fit to these data, from which we simulat-
ed couples representative of the multivariate correlated relationship between these variables in
Uganda. Note that we simulated the first four variables conditional on the last (tmar), where
couples cohorts (defined by date of couple formation) of equal size were used for the
period simulated.
(TIF)

S9 Fig. Approximate Bayesian computation fits to acute phase and hazard parameters.
Figure shows the prior distribution, intermediate distributions, and final posterior distribution
generated by an ABC-SMC fit of our couples transmission model to the Rakai retrospective co-
hort data. Parameters shown include (A) the acute to chronic phase relative hazard, RHacute;
(B) the duration of the acute phase, dacute; (C) the mean monthly within-couple transmission

rate, l
:

hazard(we give the median [l
�
hazard] in the main text, since the mean is in the upper tail of

the log-normal distribution); and (D) the standard deviation of the risk distribution governing
the amount of individual heterogeneity, σhazard. In (A–C), x-axes are shown on the log scale.
The convergence of sequential intermediate distributions from each sequential Monte Carlo
step suggests that the fifth iteration is an adequate representation of the posterior.
(TIF)
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S1 Table. Prior distributions used for ABC-SMC fitting procedure. Parameters are shown
on the transformation over which they were sampled (i.e., logarithm or not). All priors were
uninformative uniform distributions except for the ratios between male and female transmis-
sion coefficients for each transmission route (ρb, ρe, ρ�), which were log-normal distributions
based on posterior estimates of these parameters from our fit of this couples transmission
model to Demographic and Health Survey data in Uganda.
(DOCX)

S2 Table. Summary statistics and threshold criteria for ABC-SMC. For each of t = 1,...,5 se-
quential Monte Carlo iterations, we applied the following criteria to determine whether a pa-

rameter particle θ�� was included in the intermediate distribution {yðiÞt }. See Section VII of S1
Text for a detailed explanation of each summary statistic.
(DOCX)

S3 Table. Parameter ranges simulated.We generated couples cohort simulations over the en-
tire range of parameters specified in this table. The chronic phase was defined as the period of
time after the acute phase and before the late phase, and varied in duration depending on an in-
dividual’s survival time (i.e., fast progressors had shorter chronic phases).
(DOCX)

S4 Table. Data from Table 1 in Wawer et al. [17]. Rows in gray indicate observation intervals
that were excluded from the Wawer et al. Poisson regression analysis because they were not be-
lieved to be reflective of the phase of interest (i.e., acute and late for incident and late couples,
respectively). Data from all intervals were, in contrast, used by Hollingsworth et al.’s fit of a
variable hazard survival model [18].
(DOCX)

S5 Table. Assumptions made by previous analyses of the Rakai retrospective cohort that
are relaxed in our reanalysis.
(DOCX)

S6 Table. Summary of dacute, RHacute, and resulting EHMacute values used in studies aiming
to estimate AFacute. Fig. 7 in the main text plots AFacute versus EHMacute for these studies;
superscripted numbers and letters refer to the legend in Fig. 7. We do not provide confidence
intervals on estimates because most studies that estimated precision used sensitivity analyses
with qualitatively different justifications.
(DOCX)

S1 Text. Online supplementary appendix.
(DOCX)
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Editors' Summary

Background.

About 35 million people are currently infected with HIV, the virus that causes AIDS, and
more than 2 million people become newly infected with the virus every year, usually
through having unprotected sex with an infected partner. Most people do not become ill
immediately after infection, although some people develop a short flu-like illness. Howev-
er, during this acute phase of infection, the amount of virus in the blood—the viral load—
rises rapidly and peaks, before decreasing to a relatively stable lower level during the
chronic phase of HIV infection. Chronic HIV infection, which may last for more than ten
years, also has no major symptoms, but HIV slowly destroys immune system cells
throughout this phase. Eventually, the immune system can no longer fight off infections
by other disease-causing organisms, and HIV-positive people then develop one or more
AIDS-defining conditions, including unusual infections and specific types of cancer; the
HIV load also rises again during late phase infection.

WhyWas This Study Done?

Antiretroviral therapy (ART) can control, but not cure, HIV infection. By decreasing the
viral load, ART not only improves the health of HIV-positive individuals, but also reduces
their infectiousness. Consequently, experts believe that scaling up ART could substantially
reduce the rate of new HIV infections. But the successful implementation of “treatment as
prevention” faces several challenges. Notably, HIV testing and treatment programs need
to be widely available, and people who are HIV-positive need to adhere to ART. Another
major challenge that faces treatment as prevention is that HIV transmission that occurs
during the acute phase of infection is likely to evade the intervention, and it is widely ac-
cepted that HIV-positive individuals are highly infectious during this phase of infection.
However, acute phase infectivity has been directly measured only once: in a retrospectively
identified group of serodiscordant heterosexual couples (couples in which only one part-
ner was HIV-positive) in Rakai, Uganda. The authors of the current study found that exist-
ing estimates of acute phase infectivity failed to take account of important aspects of the
Rakai study design or of heterogeneity (variability) in infectiousness or susceptibility
among the study participants. Here, the researchers use mathematical modeling to com-
pare simulated cohorts with the Rakai data to provide new estimates of the duration and
relative infectivity of the acute phase that take into account study design
and heterogeneity.

What Did the Researchers Do and Find?

The researchers first used viral load trajectories and viral load–infectivity relationships to
estimate infectivity trajectories over the course of infection. Using this approach, they esti-
mated that the total additional risk attributable to the acute phase expressed as EHMacute

(excess hazard-months attributable to the acute phase of infection above the hazard gener-
ated by constant untreated chronic phase infectivity) was 5.6, which is considerably lower
than previous estimates (which range from 31 to 141). Next, by fitting a mathematical
model designed to simulate HIV infection and transmission within couples to the Rakai
data, they estimated that the relative hazard of transmission during the acute phase versus
the chronic phase (RHacute) was 5.3, that the acute phase duration (dacute) was 1.7 months,
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and that EHMacute was 8.4. Finally, by replicating two highly cited analyses of the Rakai
data on simulated data, the researchers show that the previous overestimates of acute phase
infectivity likely stemmed from a failure to account for risk heterogeneity among study par-
ticipants (some participants were more likely to transmit HIV or contract HIV than others
because of underlying biological or behavioral differences in their infectiousness or suscep-
tibility, respectively) and from bias arising from the retrospective cohort design of the
Rakai study (serodiscordant couples who were lost to follow-up were excluded).

What Do These Findings Mean?

In common with previous estimates of acute phase infectivity, the accuracy of these find-
ings depends on the many assumptions made by the researchers in developing their math-
ematical models and on the quality of the data fed into these models. Nevertheless, these
findings suggest that previous estimates of the infectivity of acute phase HIV infection are
substantial overestimates. Thus, the researchers suggest, elevated infectiousness early in in-
fection alone is unlikely to undermine treatment as prevention campaigns, and the
population-level benefits of treatment as prevention may be larger than predicted from
earlier estimates. These revised estimates—and the impact of heterogeneity of HIV infec-
tiousness and susceptibility to infection on HIV transmission within populations revealed
by this analysis—should now be considered when designing population-scale interven-
tions and when communicating individual-level risk of HIV transmission and infection in
clinical and community settings.

Additional Information.

Please access these websites via the online version of this summary at http://dx.doi.org/10.
1371/journal.pmed.1001801.

• This study is further discussed in a PLOS Medicine Perspective by Laith J. Abu-Raddad

• Information is available from the US National Institute of Allergy and Infectious Dis-
eases on HIV infection and AIDS

• NAM/aidsmap provides basic information about HIV/AIDS, information about
transmission and prevention, summaries of recent research findings on HIV care and
treatment, and personal stories about living with AIDS/HIV

• Information is available from Avert, an international AIDS charity, on many aspects of
HIV/AIDS, including detailed information on the stages of HIV infection and on
treatment as prevention, and personal stories about living with HIV/AIDS

• TheWorld Health Organization provides information on all aspects of HIV/AIDS (in
several languages), including its guidelines on the use of ART for treating and
preventing HIV infection

• The UNAIDSWorld AIDS Day Report 2014 provides up-to-date information about the
AIDS epidemic and efforts to halt it

• The PLOS Medicine Collection “Investigating the Impact of Treatment on New HIV
Infections” provides more information about HIV treatment as prevention
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