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Abstract

Genome-wide association studies (GWAS) have identified single nucleotide polymorphisms

(SNPs) associated with trait diversity and disease susceptibility, yet their functional proper-

ties often remain unclear. It has been hypothesized that SNPs in microRNA binding sites

may disrupt gene regulation by microRNAs (miRNAs), short non-coding RNAs that bind to

mRNA and downregulate the target gene. While several studies have predicted the location

of SNPs in miRNA binding sites, to date there has been no comprehensive analysis of their

impact on miRNA regulation. Here we investigate the functional properties of genetic vari-

ants and their effects on miRNA regulation of gene expression in cancer. Our analysis is

motivated by the hypothesis that distinct alleles may cause differential binding (from miR-

NAs to mRNAs or from transcription factors to DNA) and change the expression of genes.

We previously identified pathways—systems of genes conferring specific cell functions—

that are dysregulated by miRNAs in cancer, by comparing miRNA–pathway associations

between healthy and tumor tissue. We draw on these results as a starting point to assess

whether SNPs on dysregulated pathways are responsible for miRNA dysregulation of indi-

vidual genes in tumors. Using an integrative regression analysis that incorporates miRNA

expression, mRNA expression, and SNP genotype data, we identify functional SNPs that

we term “regulatory QTLs (regQTLs)”: loci whose alleles impact the regulation of genes by

miRNAs. We apply the method to breast, liver, lung, and prostate cancer data from The

Cancer Genome Atlas, and provide a tool to explore the findings.

Author summary

Genomics studies have identified single nucleotide polymorphisms (SNPs) associated

with trait diversity and disease susceptibility, yet the mechanism of action of many genetic

variants remains unclear. MicroRNAs (miRNAs) are a class of small non-coding RNA

molecules that base-pair coding mRNAs to regulate gene transcription. We hypothesize

that SNP variants may affect the ability of miRNAs to bind their target genes, thus
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influencing gene regulation. To identify these “regulatory QTLs” (regQTLs), we integrate

miRNA expression, mRNA expression, and SNP data to identify miRNAs that are associ-

ated with pathway dysregulation in tumors, and assess whether SNPs on these pathways

are responsible for disrupted miRNA-gene regulation. This data-driven approach enables

the discovery of SNPs whose alleles impact gene regulation by miRNAs, with functional

consequences for tumor biology. We detail the method, apply it to data from The Cancer

Genome Atlas, and provide a tool to explore the findings.

Introduction

MicroRNAs (miRNAs) are small noncoding RNA molecules that modulate gene expression

post-transcriptionally by means of complementary base pairing with mRNA transcripts.

Through recognition of short target motifs (6-8 bases long) on the target mRNA, miRNAs

bind and down-regulate the expression of the targeted gene. Regions flanking the “seed

region” of the miRNA typically also bind the mRNA, creating a stronger annealing between

the two RNA molecules. This results in the transcript being prevented from being translated

into protein or degraded in the cell [1]. Because these molecular interactions are executed

through base pairing, they can be influenced by genetic variation; changes in genome sequence

may influence binding energy and the strength of annealing, or may even abrogate miRNA

target sites entirely [2].

Polymorphisms constitute approximately 1% of the human genome and contribute to

phenotypic diversity and susceptibility to disease. As such, large-scale resources to annotate

known single nucleotide polymorphisms (SNPs) have been constructed, including dbSNP [3]

and the International Hapmap Project [4], to describe patterns of genetic variation. Polymor-

phisms in miRNA and target site sequences have been implicated in aberrant miRNA-mRNA

interactions and have been associated with multiple cancers [5–7], suggesting a link between

genetic variation, miRNA regulation, and disease. Typically, discoveries of prognostic SNPs

come from genome-wide association studies (GWAS), which statistically link variants with

phenotypic traits. Recent GWAS studies have demonstrated that polymorphisms in miRNA

binding sites increase the risk of breast [8, 9], bladder [10], and colon [11, 12] cancers, among

others. In addition, several studies [2, 5] have suggested that polymorphisms within miRNA

regulatory networks affect clinical outcomes and treatment responses.

In recent years, SNPs and their functional effects on miRNA regulation of genes have

gained significant interest due to observed genetic variation within miRNA networks, and sev-

eral databases and computational tools have been developed dedicated toward the study of

polymorphic miRNA binding sites. These resources include PolymiRTS [13] (a database

which links polymorphisms with miRNAs and target sites, in addition to diseases and biologi-

cal pathways), Patrocles [14] (polymorphisms which are predicted to perturb miRNA-gene

regulation, including eQTLs and Copy Number Variations), and dbSMR [15] (SNPs around

miRNA target sites, genome-wide). These resources have improved the search for polymor-

phic binding sites and their potential functional effects in the cell. Analogous resources exist to

study variation within transcription factors (TFs) and TF binding sites [16].

GWAS arrays are not comprehensive, however, and often under-sample genomic variants

within known miRNA binding regions in the genome [17]. Additionally, while SNP variants

may be predicted to affect miRNA-gene regulation based on their genomic position, the mag-

nitude of the effect is often unclear. Hence, GWAS data alone is often insufficient to fully

explore the relationship between genetic variation and miRNA regulation. Recently,
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researchers have combined GWAS data with separate miRNA expression data in head and

neck squamous cell carcinoma to assess variants genome-wide affecting miRNA pathways in

cancer [18]. There, the authors first conducted a GWAS to identify HSNCC-associated SNP

loci, cross-referenced them against putative miRNA:mRNA binding sites, and confirmed that

those miRNAs exhibited differential expression in the TCGA HSNCC data. To date, however,

no attempts have been made to directly integrate SNP, miRNA, and gene expression data from

the same samples to identify SNPs that disrupt miRNA–gene associations, and the functional

effects of many polymorphisms and their molecular interactions remain unknown.

To consider the functional effects of SNPs in miRNA networks, several criteria are required

as outlined in [19]. These criteria include independent association with the phenotype of inter-

est, gene expression within the tissue, allelic changes which result in differential binding

between miRNA and target gene(s), and resultant differential target gene expression. Concrete

guidelines were suggested for future investigations to combine genetic and functional evidence

for polymorphisms in miRNA target sites and human disease [7]. Follow-up functional experi-

ments were suggested, in order to strengthen evidence of differential regulation. However,

functional binding experiments are experimentally costly at scale, and are typically applied to

specific systems of interest. As an alternative, several in silico tools have been developed to pre-

dict SNP effects on miRNA-gene interactions [20, 21]. However, these tools often fail to pre-

dict interactions that have been been observed in experiment [22].

To date, the functional effects of polymorphisms are typically explored by integrating

GWAS and gene expression data find expression Quantitative Trait Loci (eQTLs): SNP

variants that result in altered gene expression. Many eQTLs have been identified, including

several associated with cancer. Recent integrative analyses using data from The Cancer

Genome Atlas (TCGA) identified eQTLs in Breast Cancer [23] and Glioblastoma Multi-

forme [24, 25]. In fact, combinations of GWAS data with eQTL studies have found alleles

that affect gene expression and complex traits genome-wide [26]. However, these analyses

do not necessarily reveal the functional effects of polymorphisms on molecular-molecular

interactions, particularly with respect to differential binding, as in miRNA-gene or TF-gene

interactions.

Data from the TCGA project permits us to investigate the function of genetic variants by

integrating SNP, gene expression, and miRNA expression from the same set of samples. Here,

we propose a method to integrate these data to reveal genetic variants that show evidence

of impacting miRNA-gene regulatory relationships. Motivated by the observation that integra-

tive omics analyses provide more insight than single-platform approaches [27, 28], we perform

an integrative omics analysis that searches for polymorphisms that modulate co-expression

between miRNAs and their putative gene targets, which we term “regulatory QTLs

(regQTLs)”: loci whose alleles impact the regulation of genes by miRNAs. Using mRNA

expression, miRNA expression, and genotype data taken from tumor tissues, our method

applies a regression model to assess whether disparate alleles present at a genomic variant

modulate the miRNA-gene co-regulatory relationship. By comparing miRNA expression and

gene expression across genotypes, we can identify regQTLs, or polymorphic sites which may

alter molecular interactions and may be implicated in tumorigenesis. Importantly, by using

miRNA and gene expression data, we avoid the inaccuracies associated with miRNA binding

prediction algorithms, and are able to directly estimate the magnitude of the impact that the

SNP has on the regulatory relationship.

Below, we present the method and apply it to TCGA data in Breast, Liver, Lung, and Pros-

tate cancers. We report findings of gene variants that modulate miRNA regulation of gene

expression in each of the cancer types studied. Interestingly, some of the flagged miRNAs and

genes have been previously implicated in tumorigenic processes in the literature, and SNPs
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demonstrate functional changes to gene regulation. These results may have implications for

future research in genomic regulation in tumors.

Results

We identify regQTLs, genomic variants that influence miRNA regulation of gene expression,

by integrating genomic and expression data from TCGA data. Specifically, we test whether dif-

ferent alleles at a SNP locus within a given gene alter how a miRNA modulates the expression

of that gene across TCGA tumor samples. regQTLs may then provide context to gene regula-

tion in cancer, due to genetic diversity or genetic alterations.

Previously [29], we had identified sets of genes, or pathways, whose overall activity

appeared to be dysregulated by miRNAs in tumors in comparison to healthy tissue in four

separate cancer types (breast, lung, liver, prostate). Our method first obtained an expression-

based summary of pathway activity using Isomap [30], and then searched for differential

miRNA correlations with the pathway summary across phenotypes, to find miRNA-pathway

relationships at the systems level that were disrupted in cancer. Using data from The Cancer

Genome Atlas (TCGA), we tested *105 unique miRNA-pathway relationships, many of

which were significantly dyregulated.

Here we focus on those dysregulated miRNA-pathway pairs, and explore whether SNPs on

the pathways are responsible for miRNA dysregulation of individual genes within that path-

way. In other words, for each miRNA-pathway pair, we explore the co-expression patterns

between the miRNA and the genes on the pathway, modulated by each of the polymorphisms

located on the gene. By restricting our focus to genes in dysregulated miRNA-pathway pairs,

we can ensure that the polymorphisms under consideration reside within perturbed systems

in cancer. In addition, this restriction effectively reduces the dimensionality of our genome-

wide analysis. We apply our methodology to TCGA data to explore all miRNA-mRNA-SNP

combinations from miRNA-gene pairs where the gene was part of a dysregulated miRNA-

pathway system, amounting to *106 models per cancer type (breast, lung, liver, prostate). For

each cancer, we report regQTLs which appear to modulate the co-regulatory miRNA-gene

relationship in tumors and may therefore contribute to tumorigenesis. Fig 1 illustrates the

intuition underlying the method.

Detecting regQTLs

The steps of the method for detecting regQTLs are summarized in Table 1. Briefly, we consider

all miRNA-gene pairs from dysregulated pathways that exhibited a differential association

p< 0.01 in our prior analysis [29]. We systematically probe all unique miRNA-mRNA-SNP

trios across all tumor samples in a cancer cohort. For each unique trio, we compute a multiple

linear regression to model the expression of a gene as a response as a function of the miRNA

expression, the SNP allele, and the interaction between them. We also adjust for population

substructure. SNPs with strong interaction effects are inferred to be potential regQTLs. Full

details of the analysis may be found in the Materials and Methods section.

regQTLs identified from TCGA data

We begin by presenting qq-plots of the regQTL p-values across all miRNA-mRNA-SNP trios

in TCGA breast, liver, lung, and prostate cancer samples (Fig 2). It can be seen here that several

trios in each study achieve extremely small p-values of p� 10−9, indicating regQTLs that

achieve genome–wide significance (even using the conservative Bonferroni correction).

It may also be observed that the distribution of regQTL p-values exhibit systematic devia-

tions from the expected uniform distribution of p-values under the null, with many more

Single nucleotide polymorphisms modulate microRNA regulation of genes in cancer
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Fig 1. Illustration of the procedure to identify regQTLs. regQTLs: SNPs that modify the miRNA-mRNA relationship in

dysregulated pathways. The method integrates gene expression, miRNA expression, and SNP data. (a) To aid mechanistic

interpretability and reduce the search space, we first identify miRNA–pathway pairs that exhibit significant evidence of differential

regulation following [29]. (b) Within each miRNA–identified pathway pair, we construct all miRNA-mRNA-SNP trios for each gene

in the pathway (top), and systematically test whether the SNP modifies the expression relationship between the miRNA and the

mRNA (bottom). Table 1 details the method.

https://doi.org/10.1371/journal.pgen.1007837.g001

Table 1. Procedure for assessing genomic variants modulating miRNA-gene interactions.

Method for finding regQTLs

1. Select dysregulated miRNA-pathway pairs (p< 0.01) following the method from [29] (Fig 1a).

2. For each miRNA-pathway pair, find all genes on the pathway and all assayed SNPs on each gene to construct all

unique miRNA-mRNA-SNP trios (Fig 1b, top).

3. For each trio in Step 2, fit Eq 1 and apply ANOVA to assess statistical significance of the interaction terms (Fig 1b,

bottom).

4. FDR-adjust the resulting ANOVA p-values.

5. Report highly significant miRNA-mRNA-SNP trios as potential regQTLs.

https://doi.org/10.1371/journal.pgen.1007837.t001
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significant observations than expected by chance for independent tests (as demonstrated by

the trend away from the red diagonal lines). Such systematic deviations suggest that the trios

are not strictly independent of one another; in classical GWAS, this is often attributable to

population substructure driving the results. Here, however, some dependency amongst the

tests is expected. Because we consider all known SNPs on each gene, many of the SNPs will be

in linkage disequilibrium (LD) owing to their genomic proximity and will be correlated. Vari-

ants in LD have been observed in blocks ranging from tens of Kbp to greater than 100 Kbp

[31], which may be larger than the size of a gene. In addition, because we consider genes within

pathways, the expression of the genes may be correlated due to similar co-regulatory mecha-

nisms or cooperative effects within a network. Because we expect the tests to exhibit some

Fig 2. Quantile-quantile plots of regQTL interaction p-values. Quantile quantile plots of the observed p-values for the gene-

miRNA-SNP ANOVA interaction tests versus their expected p-value distributions (the uniform distribution), tested in each cancer

type. There were approximately 1.29 × 107 unique interactions tested in breast, 3.65 × 106 in liver, 8.03 × 106 in lung, and 4.32 × 106

in prostate cancer. A horizontal blue line indicates the threshold for genome–wide significance under the conservative Bonferroni

adjustment. See also S1 Text.

https://doi.org/10.1371/journal.pgen.1007837.g002
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dependence, we perform multiple hypothesis adjustment using FDR [32, 33], rather than

using the Bonferroni adjustment, which assumes independent tests and can be excessively con-

servative otherwise.

We note that population substructure may also be a factor in data drawn from diverse

genetic populations. We tested for substructure by applying PCA to genotype data [34], and

found that the first two principal components largely explained stratification by ethnicity/

ancestry, as shown in S1, S2, S3 and S4 Figs. All results have been adjusted for population sub-

structure by including the first two PCs in the models.

Breast cancer. In breast cancer, *1.28 × 107 unique gene-miRNA-SNP trios, drawn from

25,850 miRNA × pathway pairs, were analyzed and shown in Fig 3. Several chromosomes con-

tain clusters of significant observations, as demonstrated by upward spikes within specific

genomic regions. These clusters are composed of SNPs at different loci in close proximity with

one another whose alleles are in LD. SNPs in LD are influenced by rates of recombination and

mutation and reflect evolutionary history. Because of their genomic proximity, SNPs in linkage

often lie within the same gene, such that multiple variants in a gene may wield similar biologi-

cal effects on miRNA regulation, as demonstrated in Fig 3a.

This is evident when we observe regQTLs, all trios that were flagged as significant after

FDR-adjustment (FDR< 0.1), of which relatively few achieve significance (2631). Among the

flagged regQTLs, some miRNA-gene pairs are represented frequently, with multiple SNPs in

Fig 3. Breast cancer regQTLs. (a) Manhattan plot of regQTL −log10 FDR values in TCGA BRCA data. All gene-miRNA-SNP

interactionp-values mapped to the location of the SNP in the genome. Observations are colored by chromosome. p-values are

adjusted for the False Discovery Rate. A selection of strongly differentially regulated genes have been highlighted; others may be

found using the mirSNP Shiny app or in the full data tables online. (b, c, d) Examples of breast cancer gene-miRNA-SNP trios with

significant regulatory differences across genotypes (bottom). All trio interactions pFDR< 0.005. More trios are indicated in S1 Text.

https://doi.org/10.1371/journal.pgen.1007837.g003
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the gene appearing to modulate the miRNA-gene relationship. Interestingly, of the miRNA–

mRNA pairs identified within the significant trios, approximately 58% are predicted to have

miRNA–mRNA target relationships according to TargetScan [35], with 68 actual validated

miRNA–mRNA pairs according to mirTarBase [36]. S4 Table lists the miRNA-gene pairs with

the largest number of significant regQTLs achieving significance with FDR< 0.1. (Note that

S4 Table is not an exhaustive list but rather displays the highest number of modulating SNPs

within miRNA-gene interactions at a given FDR).

It is notable that in several pairs in S4 Table, the miRNA is not predicted to target the gene

based on sequence matching from [37]. This may be due to several factors. First, not all

miRNA-gene interactions are known, and some interactions have been observed in experi-

ment that have not been predicted through sequence matching [22]. Because these miRNA-

gene pairs are modulated by many gene variants, these may represent novel biological interac-

tions between miRNAs and genes that have yet to be documented and that are sensitive to bio-

logical variation. Another possibility is that these miRNAs and genes may not interact directly,

but may be indirectly connected through second-order effects—for instance, one can envision

a miRNA target interacting with the gene listed in the pair in S4 Table. This may lead to an

apparent association with the miRNA, although it is mediated through another gene.

Selected examples of significant trios are shown in Fig 3b, 3c and 3d. For instance, in Fig

3b, samples with the homozygous minor (AA) genotype exhibit a strong negative depen-

dence between hsa-mir-190b and TUSC3, whereas the heterozygous (AC) and homozygous

major (CC) genotypes exhibit weaker and no dependencies. One explanation may be that

samples having both A alleles confer strong binding between hsa-mir-190b and TUSC3,

whereas the introduction of the C allele confers weaker (AC) or no binding (CC) at all. hsa-

mir-190b is predicted to target TUSC3 by sequence matching, and both the miRNA and

gene are implicated in cancer in the literature. TUSC3 is a tumor suppressor whose loss or

decreased expression is associated with the proliferation of several cancer types [38–40] and

is markedly under-expressed in breast cancer cells [41]. hsa-mir-190b has recently been

found to be the most upregulated miRNA in ERα breast cancers relative to ERα negative

breast cancers [42], and is part of the regulatory network that activates TP53 [43]. Likewise,

in Fig 3c, hsa-mir-221 is predicted to target FGF14 and exhibits regulatory differences across

genotypes. In this case, the homozygous minor (AA) appears to confer a loss of regulation,

whereas the introduction of the G allele in the heterozygous (AG) and homozygous major

(GG) genotypes, confers negative regulation and perhaps strong binding. hsa-mir-221/222

has previously been associated with a basal-like phenotype and the epithelial to mesenchymal

transition in breast cancer [44]. Although FGF14 in particular is not implicated in cancer,

aberrant signaling of other Fibroblast Growth Factors are widely found in the pathogenesis

of cancer [45].

In Fig 3d, the anomalous genotype, homozygous major (GG), is associated with a strong

positive dependence between hsa-mir-382 and ELMO1, in contrast to the other panels. hsa-

mir-382 is predicted to target ELMO1 according to TargetScan [35]. Altered binding of

miRNA–mRNA pairs due to genetic variation or mutations may promote sequestration of the

mRNA, and therefore generate positive dependence between miRNA and mRNA expression.

Alternatively, we may flag second-order effects for positive dependence between miRNA-

mRNA pairs by genotype. ELMO1 is associated with metastasis in several cancers, and is part

of the chomokine regulated pathway, including Rac1 and Rac2, that regulates the actin cyto-

skeleton in metastatic breast cancer [46]. hsa-mir-382 has been found to promote breast cancer

invasion and metastasis by activating the Ras/ERK pathway in breast cancer cells [47]. The

examples shown in Fig 3 are illustrative of the types of regulatory interactions affected by geno-

mic variation we observe within breast cancer.

Single nucleotide polymorphisms modulate microRNA regulation of genes in cancer
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Breast cancer in particular appears to exhibit rather large heterogeneity in comparison to

other cancer types (Fig 2). Because breast cancer patients may be susceptible to different out-

comes and clinical approaches based on receptor status, we include subset analyses for breast

tumors with ER+, PR+, and triple negative breast cancer in the Supporting information. In

brief, each receptor subtype exhibits more significant interactions than expected by chance, as

does breast cancer in aggregate. In addition, regQTL trios differ in interaction significance by

subtype, which may have relevance for clinical treatment.

Liver cancer. A total of 3.65 × 106 gene-miRNA-SNP unique trios, drawn from 7371

miRNA × pathway pairs, were mapped to their loci in the genome in Fig 4 for liver cancer.

Although fewer trios achieve significance in comparison to breast cancer (108 regQTLs with

FDR< 0.1), we again observe the associated SNPs to be clustered due to linkage (Fig 4a). Fur-

thermore, approximately 40% of the miRNA–mRNA pairs in significant trios have predicted

miRNA–mRNA relationships from TargetScan [35] with only three validated miRNA–mRNA

pairs from mirTarBase [36]. We illustrate a noteworthy genotype-dependent interaction in Fig

4b. Not only is GSTM1 differentially regulated by hsa-mir-99a at rs2071487 depending on

genotype, but also GSTM1 exhibits initial genotype-dependent gene expression differences

typical of a strong eQTL. In this case, alleles appear to have the power to determine both

expression and modulation of gene regulation. GSTM1 is part of the GST-superfamily that

detoxifies electrophilic compounds by conjugation with glutathione, and is involved in pro-

cessing carcinogens, drugs, and toxins. GSMT1 is highly polymorphic, affecting toxicity and

drug efficacy across individuals, and in particular, null mutations are associated with an

Fig 4. Liver cancer regQTLs. (a) Manhattan plot of regQTL −log10 FDR values in TCGA LIHC data. (b, c) Examples of liver cancer

gene-miRNA-SNP trios with significant regulatory differences across genotypes. All trio interactions pFDR< 0.005. More trios are

indicated in S1 Text.

https://doi.org/10.1371/journal.pgen.1007837.g004
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increase in susceptibility to lung, bladder, and colon cancers [48]. hsa-mir-99a inhibits hepato-

cellular carcinoma growth [49] and its dysregulation is an early marker of tumor progression

[50]. While hsa-mir-99a is not predicted to target GSTM1, it is predicted to target GSTM3 and

GSTM5, other GST-superfamily μ enzymes.

S5 Table presents the miRNA-gene pairs that have the greatest number of regQTLs. The

top gene, POLR3B, contains 6 SNPs that each modulate its regulation by hsa-mir-182, depend-

ing on genotype. We illustrate one such example in Fig 4c, in which the anomalous genotype

(GG) for rs11112983 downregulates expression of POLR3B by hsa-mir-182, in comparison to

the others. POLR3B is subunit B (the second largest) of RNA polymerase III, which is the poly-

merase that synthesizes transfer and small ribosomal RNAs. Increased RNA polymerase III

output is widely implicated in cancer [51]. Recently, a novel truncated version of POLR3B
called INMAP has been observed to repress AP-1 and TP53 activity and is upregulated in sev-

eral cancer cell lines [52]. hsa-mir-182 is significantly upregulated in hepatocellular carcinoma

and has been found to promote proliferation and invasion by downregulating tumor suppres-

sor EFNA5 [53] and promote metastasis by downregulating metastasis suppressor 1 [54].

While hsa-mir-182 itself isn’t predicted to target POLR3B, it is predicted to target other sub-

units on RNA polymerase III, and therefore may exert second-order regulatory effects with

POLR3B.

Lung cancer. A total of 8.03 × 106 unique gene-miRNA-SNP trios, drawn from from

14433 miRNA × pathway pairs in lung cance were mapped to their loci in the genome in Fig 5.

Of the miRNA–mRNA pairs identified in the 338 significant trios, approximately 64% are

Fig 5. Lung cancer regQTLs. (a) Manhattan plot of regQTL −log10 FDR values in TCGA LUSC data. (b, c, d) Examples of lung

cancer gene-miRNA-SNP trio with a significant regulatory difference across genotypes. All trio interactions pFDR< 0.015. More trios

are indicated in S1 Text.

https://doi.org/10.1371/journal.pgen.1007837.g005
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predicted to have miRNA–mRNA target relationships according to TargetScan [35], with 10

experimentally validated miRNA–mRNA pairs from mirTarBase [36]. Among the clusters of

correlated observations that spike in Fig 5a, several miRNA-gene pairs are represented fre-

quently and tabulated in S6 Table. COL11A1, MAOA, and CTNNA2 on Chromosomes 1, X,

and 2, respectively, collectively make up the bulk of the genes containing SNPs modulating

their observations in LD with each other.

In Fig 5b, rs2974165 modulates the association between CTNNA2 and hsa-mir-134, with

strong negative regulation for the homozygous minor (TT) genotype. CTNNA2 and CTNNA3
encode for cell-cell adhesions, and are thought to be tumor suppressors which are frequently

mutated and implicated in head and neck squamous cell carcinoma [55]. Additionally,

CTNNA2 has been thought to have an important role in cell migration and metastasis [56].

hsa-mir-134 is not predicted to target CTNNA2, but rather CTNNA3 in TargetScan [35]. hsa-

mir-134 is a tumor suppressor miRNA that is downregulated in many cancers, including head

and neck cancer [57]. Furthermore, hsa-mir-134 regulates proliferation, invasion, and metasa-

sis in lung tissue, and is underexpressed in non-small cell lung cancer [58].

Yet another example of anomalous regulation we detect is shown in Fig 5c. Here the homo-

zygous major genotype (GG) exhibits a strong positive correlation between hsa-mir-30c-2 and

GALNT2, in contrast to the other genotypes, which exhibit no appreciable correlation. hsa-

mir-30c-2 is predicted to target GALNT2 in TargetScan [35], indicating that we may be detect-

ing allele-specific differences on miRNA regulation of genes, or endogenous sequestration of

the mRNA due to altered binding. GALNT2 is an O-glycosylating enzyme that regulates the

EGFR receptor. GALNT2 has been demonstrated to suppress malignancy in several cancers,

and its dysregulation has been implicated in tumor progression [59, 60]. Likewise, hsa-mir-

30c-2 has been found to be a regulator of signal transduction and cell cycle progression in

ovarian [61] and breast cancer [62] cells.

Another example of anomalous regulation we detect is shown in Fig 5d. Similar to Fig 5c,

the homozygous major genotype (CC) exhibits a strong positive correlation between hsa-mir-

199a-1 and CD44 for rs343635, unlike the other genotypes which exhibit no appreciable corre-

lation. CD44 is a lymphocyte hyaluronan receptor that has been implicated as a marker in can-

cer stem cells, and contributes to their metastasis in the tumor microenvironment [63, 64].

hsa-mir-199a-1 and its parent miRNA hsa-mir-199a is downregulated in hypoxia environ-

ments and has been reported to have tumor suppressor properties in several cancer types

[65–67].

We note that in S6 Table, CTNNA2 appears frequently with several miRNAs, often with

the same SNPs. Because the anomalous SNPs in CTNNA2 have relatively low representation

among the cohort, it is difficult to attribute confidence to their regulatory effect. That is, geno-

type frequencies for the homozygous minor alleles (MAF: 28%–41%) may be undersampled

for these SNPs (range: 9.9%–16.1%). Another note is that CTNNA2 has low gene expression in

lung tumor samples (< 0.1 TPM for* 92% of the samples). This may subject it to biological

fluctuations, due to noise and excluded samples, which may influence results.

Prostate cancer. A total of 4.3 × 106 unique gene-miRNA-SNP trios, drawn from 8673

miRNA × pathway pairs in prostate cancer were mapped to their loci in the genome in Fig

6. The scale in Fig 6a is lower than the Manhattan plots in the other cancer types, with the

most significant interaction p� 0.00825. Nevertheless, we do observe pairs containing

many SNPs modulating their interactions in S7 Table. In addition, many of these miRNA-

gene pairs are predicted to interact biologically based on sequence matching, and 66% of

the miRNA–mRNA pairs in the 209 significant trios are predicted to have miRNA–mRNA

target relationships according to TargetScan [35], of which 8 are experimentally validated

[36].
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A few examples of trios we find in prostate cancer are shown in Fig 6. In Fig 6b, hsa-mir-

30a is predicted to target FBXW7, and shows a sharp negative regulatory dependence for the

CC genotype, whereas the other genotypes exhibit no appreciable miRNA-gene regulation.

hsa-mir-30a and FBXW7 are among the most frequently flagged pairs we find in prostate can-

cer. hsa-mir-30a is a tumor suppressor that inhibits EMT genes that is typically down-regu-

lated by oncogenic signals in prostate cancer like EGF, particularly in metastasis [68]. FBXW7,

an F-box protein, mediates ubiquitination and proteasomal degradation of target proteins. Its

down-expression, loss, and frequent mutation is shown in multiple cancer types, including

ovarian, breast, melanoma, colon, and others. In Fig 6c, the CC genotype exhibits strong nega-

tive regulation between hsa-mir-1307 and ROBO1, whereas the other genotypes exhibit weaker

dependencies. hsa-mir-1307 is predicted to target ROBO1, and promotes proliferation in pros-

tate cancer by targeting FOXO3A [69]. ROBO1 itself is part of the immonoglobulin gene super-

family and is an axon guidance receptor gene previously implicated in dyslexia.

Tool for interactive exploration of complete results

We have presented only a few examples of gene-miRNA-SNP trios tested in the cancer types

shown above. In order to enable researchers to explore other trios, we have produced an open

source R Shiny application, called mirApp, that is freely available and can be used to investi-

gate other trios in the analyzed datasets. The user is asked to choose the cancer type (breast,

liver, lung, or prostate) and input a specific miRNA of interest. The Shiny app then produces a

Fig 6. Prostate cancer regQTLs. (a) Manhattan plot of regQTL −log10 FDR values in TCGA PRAD data. (b, c) Examples of prostate

cancer gene-miRNA-SNP trios with significant regulatory differences across genotypes. All trio interactions pFDR< 0.05. More trios

are indicated in S1 Text.

https://doi.org/10.1371/journal.pgen.1007837.g006
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miRNA-specific Manhattan plot of all significant regQTLs within the cancer type (pFDR< 0.1).

This Manhattan plot is interactive, such that when the user clicks on an individual regQTL

point, the app produces its trio interaction plot, similar to Fig 3b. mirApp can be downloaded

freely from https://github.com/gawilk/mirApp.

Discussion

We have described a novel integrative method that combines genomic and expression data to

elucidate the effects that genomic variants exert on miRNA regulation of genes in cancer. This

integrative analysis combines miRNA expression, mRNA expression, and genotype data from

tumor tissue to find polymorphisms that modulate co-expression patterns between miRNAs

and their putative gene targets, which we term regQTLs. This analysis continues our previous

work that identified miRNAs and entire pathways whose co-regulation was found to be dis-

rupted in tumors. Here, we hone in on previously identified dysregulated pathways, and deter-

mine whether polymorphisms present within pathway genes may contribute to individual

gene dysregulation.

This work is in the spirit of other integrative omics analyses to yield insights into gene

expression regulatory mechanisms. Its main novelty is to take into account genomic variation

and apply it on a genome-wide scale. Other integrative analyses of omics platforms have been

applied to yield discoveries on gene expression regulation mechanisms. Pipelines such as

CrossHub [70] take into account miRNA and TF relationships as well as methylation evidence,

through TCGA and ENCODE ChIP-Seq binding evidence, to describe regulation of gene

expression. RACER [71] uses regression analysis to predict gene expression as a function of

genetic and epigenetic factors including copy number variation, miRNAs, DNA methylation,

and TF evidence combined from TCGA and ENCODE to study Acute Myeloid Leukemia.

Another study [72] combined similar input variables in a linear fashion to model mRNA

expression changes in glioblastoma tumor samples, and was able to identify activities that were

predictive of subtypes and survival. These studies have identified some relationships between

expression regulators and genes and focused on mostly single cancer types. Jacobsen and col-

leagues [73] used a statistical approach to model the recurrence of miRNA-mRNA expression

in tumor samples across multiple cancer types, induced by changes in DNA copy number and

promoter methylation. However, none of these studies have taken into account genomic varia-

tion to address their effect on gene regulation.

In contrast, our method incorporates genomic variation to identify regQTLs. Our method

is fully data driven, integrating sample specific expression and genomic data to find allele-spe-

cific regulatory effects. By applying multiple linear regression models using all three omics fea-

tures, we can assess which SNPs differentially affect miRNA regulation of genes. The use of

linear models and ANOVA allow for relatively easy assessment of statistical interactions.

Because we focus on genes within pathways found to be co-regulated with miRNAs which are

disrupted in cancer, our approach may help find genomic variants that contribute to tumori-

genesis. We emphasize that the application to dysregulated pathways permits the identification

of regQTLs with potentially local and system effects, and significantly reduces the search space

of mechanisms under consideration in the genome.

We apply this analysis to breast, liver, lung, and prostate cancers, and within each cancer

type, test millions of possible models (genes regulated by miRNAs modulated by SNPs, or

“trios”). We find polymorphisms systematically affecting miRNA-gene regulation, with many

more statistically significant effects than expected by chance. This supports the notion that

cancer contains significant perturbations to the entire genome. Among the flagged trios with

high significance, many miRNAs and genes are often implicated in tumorigenic processes in
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the literature. These include tumor suppressor genes, genes in the the p53 network, genes

within signaling pathways, and miRNAs whose aberrant expression or aberrant targeting has

been documented in multiple cancer types. In addition, we find several genes each containing

many individual variants differentially modulating miRNA regulation. These genes, and the

genomic regions surrounding them, may indicate hotspots of tumorigenic interest for future

research.

Due to the extensive nature of the study, an R Shiny app has been developed to fully explore

all regQTLs and visualize their effects. Users can utilize the app interactively to observe

regQTL significance genome-wide by cancer type, and plot individual miRNA-gene interac-

tions modulated by them. This utility allows for complete exploration of our integrative analy-

sis of TCGA data.

We note that the our results are somewhat limited by the input data. Currently, TCGA is

the largest known resource of cancer omics data, with samples assayed across both expression

and genotype data. However, individuals of European ancestry are highly overrepresented.

Having comparable datasets in diverse populations would strengthen the results of this study.

In addition, our method only considers genes and SNPs which lie on annotated pathways;

genes and SNPs that are currently unannotated on biological pathways, and therefore uncon-

sidered in our model, may be of tumorigenic importance. Furthermore, we utilized tag SNPs

in our study, which are chosen as markers of genomic structure rather than because of their

functional importance. Tag SNPs may not have obvious mechanistic roles, but are easily

assayed and can serve as proxies for other nearby genomic variants in linkage disequilibrium.

Thus, tag SNPs may permit the discovery of novel functional SNPs. Finally, our search for

regQTLs is highly flexible; we do not restrict miRNA-gene relationships to those already cor-

roborated with biophysical evidence, and, in addition, do not restrict genomic variants to

those within putative miRNA binding regions. These criteria have been set to allow for novel

discoveries, since computational miRNA-gene binding rules have been observed to deviate

from experiment. However, we may also detect sequestration effects of mRNA transcripts due

to altered binding, or second-order effects of miRNA regulation modulated by genotype (or

possibly spurious relationships). Functional experiments, including reverse protein phase

array (RPPA) data, may help elucidate the biological mechanism (if any) of these relationships.

Nevertheless, we do find significant relationships in which the genes and miRNAs are impli-

cated in cancers in the literature.

Our model is relatively simple and can be efficiently applied to any combined miRNA/

mRNA/SNP dataset of interest to reveal the effects of a single regulatory SNP. We envision

that future work could apply and extend our approach in several ways. For instance, it is con-

ceivable that multiple SNPs in combination will influence miRNA regulation of a gene, and

that genomic variation may affect other layers of gene regulation (e.g., but influencing tran-

scription factor binding). Future extensions of this method could include integrating TF bind-

ing sites or epigenetic factors in the analysis regQTLs. Given specific regQTLs identified in

this study, other avenues could include validating their differential regulation by experimental

means, or estimating their strength in silico. Perhaps the most exciting future application

would be to inform personalized medicine in the context of miRNA therapeutics [74–76]; for

instance, the results shown in Fig 3b suggest that targeting hsa-mir-190b could influence the

expression of the tumor suppressor TUSC3, but only amongst homozygous AA individuals at

regQTL rs13253051.

Finally, we note that our method for identifying regQTLs can be easily applied to other dis-

eases and experimental modalities (such as TFs) to determine the functional impact of specific

loci. A genome-wide analysis of functional regulatory effects can help identify polymorphisms

and mutations that contribute to disease.
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Materials and methods

Analytical approach

We seek to identify SNPs whose alleles alter the relationship between the expression of a

miRNA and gene. To this end, for a SNP with genotypes {AA, Aa, aa}, we fit the model

Y ¼ b0 þ b1PC1þ b2PC2 þ b3XmiR þ b41ðSNP=AaÞ þ b51ðSNP=aaÞþ

b61ðSNP=AaÞXmiR þ b71ðSNP=aaÞXmiR þ ε ;
ð1Þ

where Y represents the expression level of the gene of interest, PC1 and PC2 represent the

first two principal components of the SNP genotypes to correct for population stratification,

respectively, XmiR is the expression level of the miRNA, and 1ð�Þ is an indicator function for

the SNP genotype. In this model, the coefficients β1 and β2 quantify the effect of population

structure on the observed gene expression; β3 quantifies the relationship between the

miRNA and gene expression for the reference genotype AA; the coefficients β4, β5 quantify

how the allele affects overall expression of the gene (i.e., as an eQTL); and the interaction

coefficients β6, β7 quantify how the variant alleles at the SNP of interest modulate the

miRNA-mRNA relationship. SNPs with strong interaction effects are inferred to be potential

regQTLs.

SNPs are treated as categorical variables in our model to capture any dominant, recessive,

or additive effects that individual alleles may confer on miRNA-gene interactions. Because

any single copy of an allele may create, strengthen, weaken, or abrogate miRNA-gene binding,

we seek to capture all possible SNP effects and their cross-comparisons. For instance, an allele

that creates strong miRNA-gene binding may only need to be present in one copy to show an

effect, such that the salient difference is observed between having no copy of the variant allele

and having one or two copies (with no difference between one and two). Alternatively, an allele

that abrogates miRNA-gene binding may be seen to have a strong effect for those with homo-

zygous copies, but a much weaker effect for heterozygous individuals. As such, we explore all

allelic effects on miRNA-gene binding.

To assess the statistical significance of the interaction effect, we apply ANOVA Type III

sums of squares (Yates’s weighted squares of means) to compare the full model to that without

the interaction terms. A significant F statistic for the interactions suggests that at least one

of the variant SNP alleles substantially alters the relationship between the miRNA and the

mRNA, on top of any eQTL-like effects. p-values for all interactions are then FDR-adjusted

[32] for the large number of miRNA-mRNA-SNP trios probed in the dataset. (We choose this

Benjamini-Hochberg FDR adjustment because we expect that models with common miRNAs

or genes are not strictly independent, and this procedure has been show to provide control of

the FDR under dependency [33]).

Application to TCGA data

As a proof of concept, we applied this method systematically to tumor samples with combined

miRNA expression, gene expression, and SNP genotype data from TCGA. Code to carry out

the analysis (to reproduce our results or apply them to other SNP/miRNA/mRNA datasets),

and full data tables, can be obtained from https://github.com/gawilk/miRNA-SNP.

Data. TCGA data were downloaded for BRCA (breast), LIHC (liver), LUSC (lung), and

PRAD (prostate) cancers from https://portal.gdc.cancer.gov. Tumor samples (TCGA sample

type “01”) measured across mRNA IlluminaHiSeq_RNASeqV2 (Level 3), miRNA IlluminaHi-

Seq_miRNASeq (Level 3), and Affymetrix SNP6.0 platforms were used for the analysis,
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amounting to 699 total tumor samples in breast, 345 in liver, 341 in lung, and 481 in prostate

cancer.

Data preprocessing and filtration. Briefly, mRNA data were converted to TPM and log2

transformed, and miRNA data were log2 transformed (both with small offsets for the log trans-

formation). In addition, genes and miRNAs were removed from consideration that had very

low expression across most samples in the set (defined as genes with median expression < 10−9

before TPM conversion and miRNAs having expression� 1 for more than half of the samples

in the set before log transformation). In total, we considered 5869 pathway-associated genes

from KEGG.

SNPs were filtered out that had a low Birdseed confidence threshold (0.05) for genotype

calls in the TCGA pipeline. We used two additional filtration criteria to remove SNPs: a) those

having minor allele frequencies (MAF) less than 1% and b) those having genotype frequencies

less than 5% across all samples in a cancer dataset. These criteria were imposed to ensure that

limited sampling of rare alleles and genotypes would not skew the regression results. In total,

we considered 72901 unique SNPs in breast cancer, 70142 SNPs in liver cancer, 73037 SNPs in

lung cancer, and 66967 SNPs in prostate cancer. Summary statistics for the genomic context of

the SNPs may be seen in the Supporting information section. In each cancer type, the first two

principal components largely explained stratification by ethnicity/ancestry; each remaining

component explained < 1% of the variance. Thus, we used the first two principal components

to account for population substructure in the regressions.

In our miRNA-pathway analysis [29], each cancer type exhibited a very unique regula-

tory pathology, with little to no miRNA-pathway overlap among cancers. Because miRNA-

mRNA-SNP trios were selected from dysregulated miRNA-pathway pairs, we found no

commonality of the trios among cancer types. Before applying the regression models,

individual samples within a miRNA-mRNA-SNP trio having no appreciable miRNA expres-

sion were removed from consideration, since they are not biologically of interest. Addition-

ally, samples having a large Cook’s Distance (D > 1) were removed from the regressions

and the regressions were recomputed to limit the influence of outliers on the resulting

models.
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S1 Table. Summary statistics for SNPs. Numbers denote unique SNPs within each genomic
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ciated SNPs on the gene found to significantly modulate (at pFDR< 0.1) the miRNA-gene

interaction, out of the total number of known SNPs on the gene. MAFavg indicates the average

minor allele frequency of the SNPs located on the gene. pMIN indicates the most significant

interaction p-value after FDR-correction. “chr” indicates the chromosome where the SNP is

located. “predicted” indicates whether the miRNA is predicted to target the gene based off

sequence matching from microRNA.org. “pathways” indicates the number of KEGG pathways

the gene is part of.
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S6 Fig. Venn diagram of overlapping samples with ER+, PR+, and triple negative breast

cancer.
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