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Abstract

Recent studies are starting to show that genetic control over stochastic variation is a key evolutionary solution of single
celled organisms in the face of unpredictable environments. This has been expanded to show that genetic variation can
alter stochastic variation in transcriptional processes within multi-cellular eukaryotes. However, little is known about how
genetic diversity can control stochastic variation within more non-cell autonomous phenotypes. Using an Arabidopsis
reciprocal RIL population, we showed that there is significant genetic diversity influencing stochastic variation in the plant
metabolome, defense chemistry, and growth. This genetic diversity included loci specific for the stochastic variation of each
phenotypic class that did not affect the other phenotypic classes or the average phenotype. This suggests that the
organism’s networks are established so that noise can exist in one phenotypic level like metabolism and not permeate up or
down to different phenotypic levels. Further, the genomic variation within the plastid and mitochondria also had significant
effects on the stochastic variation of all phenotypic classes. The genetic influence over stochastic variation within the
metabolome was highly metabolite specific, with neighboring metabolites in the same metabolic pathway frequently
showing different levels of noise. As expected from bet-hedging theory, there was more genetic diversity and a wider range
of stochastic variation for defense chemistry than found for primary metabolism. Thus, it is possible to begin dissecting the
stochastic variation of whole organismal phenotypes in multi-cellular organisms. Further, there are loci that modulate
stochastic variation at different phenotypic levels. Finding the identity of these genes will be key to developing complete
models linking genotype to phenotype.
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Introduction

The link between genotype and phenotype is often considered

to be deterministic such that a single genotype functions to yield a

specific phenotypic value. This deterministic relationship is a

central tenet of the desire to develop predictive models allowing an

organism’s phenotype to be forecasted upon knowing its specific

genotype. This deterministic hypothesis is supported by research

showing that cells limit stochastic noise/variance in genetic,

metabolic, and signaling networks through network topology, a

characteristic that is known as network robustness [1-6]. This

robustness is an inherent property of genetic networks. In

evolutionary theory, robustness is predominantly described as

canalization wherein genes function to minimize the variance

(maximize the robustness) of a phenotype [7–11]. A well-studied

example of genetic control over variance for diverse phenotypes is

the heat-shock protein 90 which plays a major role in canalizing

existing natural variation [12–14].

While a deterministic link between genotype and phenotype is

the most frequently studied aspect of evolution and genetics, there

is growing research showing the potential evolutionary benefit of a

stochastic link between genotype and phenotype. A stochastic link

between phenotype and genotype allows an individual genotype to

generate a range of phenotypes within a specific environment and

causes the portfolio effect wherein the fitness of a specific genotype

is determined by the range of phenotypes that it can obtain [15].

In some bacterial settings, stochastic switching of the genotype-to-

phenotype link is the evolutionary optimal response to rapid

unpredictable environmental fluctuations [16–20]. Similarly in

single-celled and multicellular eukaryotes, there is beginning to be

studies finding polygenic natural variation that determines

stochastic noise of gene expression [21–25]. This includes

Arabidopsis thaliana loci that are known to be under natural

selection suggesting that the stochastic aspects of these loci may

impart an evolutionary benefit [24,26,27]. One possible evolu-

tionary benefit of this phenomenon to higher-eukaryotes is that

stochastic noise in defense phenotypes can delay the evolution of

counter-resistance in biotic pests [28,29]. Thus, there is just

beginning to be an appreciation of genetic variation controlling

stochastic noise in eukaryotic gene expression, which may play a
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beneficial role in the evolution of these organisms [12–14,20]

[21–25].

Similar to transcriptional networks, metabolic networks are

thought to be highly structured to maximize deterministic

relationships and minimize stochastic variance that could

disconnect pathways and potentially generate toxic intermediates

[30]. Metabolic robustness is thought to arise from the fact that

metabolism is highly interconnected with numerous feedback

loops and parallel pathways involving enzymes encoded by both

the nuclear and organellar genomes in eukaryotes [31]. This

hypothesis was supported by a recent modelling approach where

only a few enzymes were predicted to influence stochastic

variation in the whole metabolic network [32]. In contrast, a

different modelling effort found that stochastic noise can arise in

local areas of a metabolic network without spreading throughout

the system. This suggests that stochastic variation in the

metabolome could be caused by numerous independent loci.

[33] However, a lack of empirical evidence on the level or

presence of genetically-controlled stochastic variation within

metabolism prevents a direct comparison of these two models

[24].

To empirically measure the potential for genetic variation to

control stochastic variation within the metabolomic network, we

measured metabolome variation in a recombinant inbred line

(RIL) population of Arabidopsis thaliana. Arabidopsis is a key

organism in the study of complex traits including the genetic

programming of stochastic variation through the use of systems

biology and quantitative genomics approaches [24,34–41]. Addi-

tionally, Arabidopsis has been a model system to study the

quantitative basis of metabolomic variation in a number of

structured and unstructured populations [42–44]. Combined with

extensive whole genome sequence of natural accessions, this

provides the ability to rapidly develop and test hypotheses, as well

as find causal genes underlying specific loci of interest [45–49].

Finally, there are a large number of existing homozygous

populations to enable this analysis [50]. This makes Arabidopsis

an ideal system to search for the genetic and molecular basis of

complex phenotypes, such as stochastic noise, in higher organisms.

Using a replicated, randomized sampling design, we measured

metabolome variation in the Kas x Tsu RIL population and

compared the quantitative genetics for average metabolite

accumulation versus the stochastic variation [24,51]. The inde-

pendently replicated analysis of CV allows us to separate stochastic

variance from non-additive variance affecting the mean. This is in

contrast to recent efforts to map variance QTLs using un-

replicated data which conflates the two [52–55]. To test if defense

or growth traits may differentially affect the link between CV and

mean, we also measured the variation in growth and defense

chemistry [51]. As found in a previous analysis of the Arabidopsis

transcriptome, stochastic variation showed a higher heritability

than that for variation in the average phenotype. As found for the

transcriptome, there were differences in the genetics controlling

the stochastic variation and average phenotypes. In support of

ecological/bet-hedging theory, defense chemistry showed more

QTLs of larger effect for stochastic variance than those found for

growth or primary metabolism. Importantly, the genetic variation

within the organelle had a widespread effect on the stochastic

variation in primary metabolism with discrete impacts that differed

from the organelle effect on the average metabolome. Thus,

natural variation has widespread effects on the stochastic variation

of growth and metabolism involving both the nuclear and

organellar genomes. Future work will identify if the genetic basis

of the average and stochastic variation are caused by similar or

dissimilar mechanisms.

Results

Heritable stochastic noise in plant growth and
metabolite phenotypes

To test if genetic variation affects stochastic noise in the

metabolome and growth of the higher plant Arabidopsis thaliana,

we used a previous analysis of quantitative variation of the average

metabolism and growth within the Kas x Tsu RIL population

[51,56]. A total of 559 metabolomic, 19 chemical defense and 5

growth traits were measured in this population with replicated

independent experiments providing replication on both the

average and standard deviation of each phenotype. Using this

data, we obtained the coefficient of variance (CV) for each

phenotype in each experiment for each RIL. This was done by

dividing the standard deviation of the phenotype within an

experiment by its mean within that same experiment. CV is an

appropriate comparative measure of genotypic stochastic noise as

it is a dimensionless measure of variation allowing us to perform

the ensuing analysis [16,21]. All per line CV measures were

compared to the previously published analysis of the average

phenotypes for the same traits [51,56].

As previously found using the Arabidopsis transcriptome, the

heritability for the metabolite CV was higher than that for the

average metabolite accumulation (Fig. 1A and S1 Table) [24]. In

addition to the metabolome, both growth and defense chemistry

also showed increased heritability for per line CV in comparison to

the average (S1 Fig.). Comparing the heritability of per line CV

and average across all the metabolites showed that there was no

correlation between these two values (Fig. 1B). Similarly, there is

no correlation between mean and CV for the metabolites across all

the RILs (S2 Fig.). Thus, per line CV is not being driven simply by

variation in the level of the average phenotype within this dataset

but is instead an independent output of the genetic variation in

comparison to the average metabolite accumulation. Similar to the

transcriptome, the range of metabolite CV across the RILs was

less than that found for the average metabolite accumulation

(Fig. 1D).

Author Summary

Systems biology is largely based on the principal that the
link between genotype and phenotype is deterministic,
and, if we know enough, can be predicted with high
accuracy. In contrast, recent work studying transcription
within single celled organisms has shown that the
genotype to phenotype link is stochastic, i.e. a single
genotype actually makes a range of phenotypes even in a
single environment. Further, natural variation within genes
can lead to each allele displaying a different phenotypic
distribution. To test if multi-cellular organisms also display
natural genetic variation in the stochastic link between
genotype and phenotype, we measured the metabolome,
growth and defense metabolism within an Arabidopsis RIL
population and mapped quantitative trait loci. We show
that genetic variation in the nuclear and organeller
genomes influence the stochastic variation in all measured
traits. Further, each trait class has distinct genetics
underlying the stochastic variance, showing that there
are different mechanisms controlling the stochastic geno-
type to phenotype link for each trait. Further work is
necessary to identify the mechanisms underpinning the
stochastic nature of the genotype to phenotype link.

Genomic Control over Metabolic Noise
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Heritable stochastic noise in plant growth and
metabolite phenotypes caused by cytoplasmic genetic
variation

The Kas x Tsu population is a reciprocal population that allows

us to measure the relative contribution of the nuclear and

organellar genomes to any resulting phenotypes by using the

maternally inherited organellar genomes as a single marker [57].

Because these RILs are in their F10 generation due to bulking in

our lab and all seed mothers for the RILs for this experiment were

grown together and harvested at the same time, we are largely

focusing on maternal effects due to the genetic variation in the

organelles. Thus, we used a linear model to estimate the

contribution of the organellar genome variation to heritability of

per line CV across the metabolome. This showed that the

organellar genomes contributed 5.4%60.2% heritability with a

max of 31% heritability for metabolites (Fig. 1A and S1 Table).

This organellar genome heritability for per line metabolite CV was

significantly higher than that found for average metabolite

accumulation (Fig. 1A) [51]. Again, there was no correlation

between the heritability of per line CV and average driven by the

organellar genome across the metabolites (Fig. 1C). This suggests

that as with the nuclear genome, the effect of the organellar

Fig. 1. Comparison of CV and Average metabolome genetics in Kas x Tsu. A. Comparison of estimated metabolite heritability’s using each
metabolites CV (black) and average (grey) phenotype across Kas x Tsu RIL populations. A frequency plot shows the estimated heritability’s ascribed to
the nuclear (solid lines) and organellar (dotted) genomes across all the metabolites. B. Scatter plot of genotypic heritability for 559 metabolites where
both average and CV heritability could be estimated in the Kas x Tsu RIL population. C. Scatter plot of maternal heritability for 559 metabolites where
both average and CV heritability could be estimated in the Kas x Tsu RIL population. D. Distribution of genetic variation controlling the CV (black) and
average (grey) metabolic phenotypes within the population are shown as the genetic coefficient of variance.
doi:10.1371/journal.pgen.1004779.g001
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genomic variation on CV is separate from that of the effect on

average metabolite accumulation (Fig. 1C). In contrast to the

metabolome, the cytoplasm had similar heritable effects on the CV

of growth and defense chemistry as that found for the average (S1

Fig.). Thus, the genetic variation in the organelles of Arabidopsis

can heritably influence per line CV of plant metabolism, growth,

and defense chemistry.

Genetic variation in CV and average alter different
metabolite functionalities

Using per line CV and average metabolite accumulation across

all the RILs, we can obtain the genetic coefficient of variation

across the population (Population CV), which describes the range

of variation for that trait across the RILs. Correlating range of

variation across the population for CV and average using all the

metabolites showed that there was a continuous range of variation

in the relationship between population variation in mean and CV.

To test if there might be some biological insight within these

distributions, we focused on the metabolites whose population

variation that were in the top 5% or bottom 5% of the metabolites

for either mean or CV. This allowed us to define three groupings

(Fig. 2). One grouping was characterized by metabolites where the

population CV is in the top 5% of all metabolites but the variation

of average for these same metabolites is within the bottom 5%

(Top left of Fig. 2). This included lipids, such as Steric and

Palmitic acid, as well as energy sources into lipid metabolism, like

glycerol and Glucose-1-P. Contrastingly, a set metabolites that

consist predominantly of amino acids and sugars, were in the

bottom 5% of all metabolites for population variation in both CV

and average (Bottom left of Fig. 2). This would suggest that these

metabolites are constrained or robust within this population.

There was also a set of metabolites whose average accumulation

was within the top 5% of all metabolites yet their CV was not an

outlier (Right of Fig. 2). This included stress inducible metabolites

like Putrescine, Isonicotinc acid, Salicylic acid, Shikimic acid and

Methionine (Fig. 2). These metabolites should be the more

sensitive to micro-environmental variation in stress than the other

compounds. The fact that these stress sensitive metabolites only

have intermediate variation in CV within this population further

suggests that we are measuring genetic diversity in CV rather than

any micro-environmental effect.

Mapping QTL for metabolite CV
We obtained the average and per line CV for each metabolite

for each RIL from the linear model used to estimate heritability.

We used these values to map QTLs for both phenotypes across all

559 metabolites for all 271 RILs with fully replicated data. This

analysis identified on average 3 QTL for 434 metabolites using the

average accumulation and 1.75 QTL for 414 different metabolites

using the per line CV (Fig. 3 and S3 Table) [51,56]. There was no

observable correlation in the number of CV or average QTLs

across the metabolites nor in the effect of overlapping QTLs (S3

Fig.). This decrease in QTL identification for per line CV is similar

to previous analysis using transcriptomic variation in a different

Arabidopsis population [24]. The mean effect of each identified

metabolite average QTL was 22% in comparison to 17% for

metabolite CV QTL, which also agrees with what was previously

found using the transcriptome (Figs. 3 and 4) [24]. The fact that

per line CV has higher heritability with fewer detectable QTL of

lower effect size than the average phenotype suggests that per line

CV likely has a more polygenic genetic basis than that controlling

the average metabolite accumulation [58,59].

A comparison of the QTL maps across all the metabolites

showed that the patterns of loci were not identical (Fig. 4). This

suggested that there might be different loci controlling the average

and CV of metabolite accumulation in these RILs. Overlapping

the QTL hotspots identified using the average and CV metabolic

phenotypes across all metabolites showed that this was in fact the

case (Fig. 5). There were QTL hotspots specific for either the

average or per line CV of metabolite accumulation. There were

five hotspots statistically unique to per line CV. For example, the

QTL on Chromosome II (M.CV.II.15) was entirely linked to per

line CV in metabolite accumulation with no detectable effect on

average metabolite accumulation (Fig. 5). Similarly, there were

seven hotspots statistically significantly enriched only in average

metabolite accumulation (Fig. 5). The three loci on chromosome I

for average metabolite accumulation had the most specific effects

on average (M.AV.I.50, 263 and 283; Fig. 5). There were also

four loci that were hotspots for both average and per line CV of

metabolite accumulation (M.III.51, M.III.64, M.IV.3 and

M.IV.72). Thus, the genetics of per line CV and per line average

metabolite accumulation can identify sets of genetic loci that

include loci specific for one or the other trait. This suggests that

stochastic variance of plant metabolism is a heritable genetic trait

distinct from that of per line average.

Neighborhood effects of CV QTLs within the
metabolome

Several recent modelling studies had used predictive models of

the metabolic grid and suggested that it was possible for stochastic

noise within the metabolome to be constrained to specific regions

of the grid [32,33]. To test if our empirical data shows if the CV

QTLs have localized effects on metabolite CV as predicted from

the models, we plotted the significant additive effects of each locus

within a diagram of the metabolic grid (S4 Fig.). These plots

showed that the effects of some QTL on metabolite CV were

typically localized to a relatively small region. At the extreme were

loci that affected only specific nodes within the detectable primary

metabolic grid, such as M.CV.V.97 and M.CV.II.16 (S4 Fig.). In

contrast to the predictions, there were a number of loci that had

wide ranging effects scattered throughout the metabolic grid, such

as M.CV.III.51,M. III.64 and M.CV.IV.72 (S4 Fig.). These effects

were both positive and negative within the same metabolome. For

example, M.CV.III.51 showed increased variance in succinate and

xylose while decreased variance in spermidine, glycerate, glu-1-P

and other metabolites (S4 Fig.). Thus, in contrast to the modelling

studies, it is possible for genetic loci to have wide ranging and

opposing effects upon metabolome stochastic variance.

Mapping QTL for growth and defense chemistry CV
To compare how per line CV loci differ across phenotypic

classes, we next used per line CV and average for each RIL for

growth and defense chemistry to map QTLs for these phenotypes.

As for metabolites, this showed that the average phenotype found

more QTLs for all traits than that found for per line CV (4, 7 and

7 versus 2, 1 and 1 for aliphatic glucosinolates, indolic

glucosinolates and growth respectively) (Fig. 3 and Tables S4

and S5). In contrast to the rest of the metabolome and

transcriptome, the effect size of defense chemistry per line CV

QTLs was larger than that for the QTLs affecting the average.

The CV QTLs have a mean effect of 57 and 42% for aliphatic and

indolic glucosinolates, in contrast to the average QTLs having a 40

and 20% effect respectively (Fig. 6 and S3 Table)[51,56].

Similarly, effect of the per line CV QTLs for growth was also

higher than that for average growth, 21% effect versus 10% (S3

Table)[51,56]. In all growth and defense phenotypes, the

distribution of effect sizes for the phenotypic per line CV was

statistically higher than for the phenotypic average (t-test, P,0.01).

Genomic Control over Metabolic Noise
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It should be noted that all growth, defense, and metabolite

phenotypes were measured on the same plants indicating that

these differences are not likely due to different environments or

conditions [51,56]. This increased effect size of QTLs for per line

CV of growth and defense chemistry in comparison to that found

for the metabolome suggests that the underlying genetics

controlling the per line CV of growth and defense chemistry is

structured differently between the traits.

A comparison of QTL maps for the defense traits showed that

the previously identified and validated GSL.AOP and GSL.Elong

loci control both mean and per line CV for the aliphatic

glucosinolate (S5 Fig.) [24]. The stochastic variation and mean

accumulation of the aliphatic glucosinolates is controlled by the

presence or absence of specific enzyme encoding genes in these

loci that lead to pleiotropic effects on the glucosinolate regulatory

network [24,60–63]. The GSL.AOP and Elong loci were also linked

to suggestive hotspots (P,0.1) in the average metabolome with no

signature in the metabolome per line CV (Fig. 5). For aliphatic

glucosinolates, there is also a per line CV hotspot near the

previously validated MYB28 locus, a transcription factor, that also

controls the glucosinolate regulatory network to affect stochastic

variation of the pathway (S5 Fig.)[24,64–67]. In contrast to the CV

analysis of the metabolome, there were no significant hotspots that

were unique to defense chemistry per line CV (S5 Fig.).

Mapping per line CV of growth in comparison to average

growth identified a number of average QTLs and only two CV

Fig. 2. Genetic variation in Kas x Tsu for CV and average targets specific metabolites. Using both per RIL CV and average for the 559
metabolites where CV could be measured, we estimated the genetic coefficient of variation across the population. This allows us to visualize which
metabolites show a high level of genetic variation affecting per RIL CV (y axis) and average (x-axis) for each metabolite. The known metabolites
labeled and encircled at the bottom left of the graph are in the bottom 10th percentile of the genetic coefficient of variance for both the mean and
CV. The known metabolites encircled at the top left of the graph are in the top 10th percentile of for CV but the bottom for mean. The remaining
labeled metabolites are in the top 10th percentile for population average with close to average population CV. Only known metabolites are labeled.
doi:10.1371/journal.pgen.1004779.g002
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loci for growth (Figs. 5 and S5). The growth QTL, GR.I.19 was

associated with variation in both average and per line CV of

growth while the QTL, GR.III.2, was specific to per line CV in

growth (Tables S4 and S5). There were no hotspot in the

metabolome or defense chemistry data for the GR.I.19 or the

GR.III.2 loci suggesting that the effect of these loci on the altered

per line CV in growth was not having a detectable impact on

metabolism Interestingly, only one average or per line CV growth

locus (GR.IV.2 vs M.IV.3) overlapped with any metabolomics

locus in the entire analysis suggesting we identified different

genetic loci for the two traits. Together, this shows that we can

map loci for per line CV of growth, metabolism, and defense

Fig. 3. Comparison of QTL detection across phenotype classes. Shown is the frequency of metabolite, defense or growth phenotypes that
detected a given number of nuclear genome QTLs. Solid lines for metabolites, dotted lines for defensive glucosinolates and dashed lines for growth.
A. Shows the number of QTLs for the CV phenotype. B. Shows the number of QTLs for the average phenotype.
doi:10.1371/journal.pgen.1004779.g003
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chemistry and identify loci specific to each trait. Thus, per line CV

loci are genetically distinct for all three traits and not reflective of a

global stochastic noise locus.

Cytoplasmic genome effects on metabolome CV. The

Kas x Tsu population was explicitly established as a reciprocal

population with approximately half of the lines having the Kas

organellar genomes and the remaining RILs having the Tsu

organellar genome. Thus, we explicitly tested if genetic variation

within the organellar genomes influenced phenotypic variation in

the metabolome, growth, and defense by adding the organellar

genome as a term in our single marker linear models (Tables S4

and S5). This analysis showed that genetic variation in the

Fig. 4. Genetic architecture of metabolite QTLs across the Kas x Tsu Genome. Heat map showing the location and effect of loci detected for
metabolite average with LOD scores above the permuted LOD threshold 2, across the five chromosomes. Red indicates a positive effect of the Kas
allele, while green indicates a positive effect of the Tsu allele. Vertical white lines separate the chromosomes (I to V from left to right). Clustering on
the left is based on the absolute Pearson correlation of QTL effects across all significant loci for each metabolite. A. QTLs identified for average
metabolite accumulation. B. QTLs identified for CV in metabolite accumulation.
doi:10.1371/journal.pgen.1004779.g004
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organelle affected variation in per line CV for 422 of the 559

metabolites tested (Tables S4 and S5). The metabolites where

per line CV was partly determined by genetic variation in the

organelle were spread throughout the metabolic network

(Fig. 7). The organellar genome variation affected both the

average and per line CV for a subset of metabolites although

often with opposite effects (Fig. 7). Organelle genetic variation

had opposing effects on average and per line CV for metabolites

like tyrosine, glycerate, spermidine, glutamine and citrate

(Fig. 7). For example, the Kas organelles lead to lower average

glutamine accumulation but higher per line CV of glutamine

accumulation (Fig. 7). In addition, there were compounds, like

succinate, where the organellar variation affected per line CV

but not the average accumulation (Fig. 7). Thus, genomic

variation within the chloroplast and/or the mitochondria affects

stochastic fluctuations in the steady state metabolome within

Arabidopsis.

Intriguingly, 49 of 96 polymorphisms within the mitochondria

are found within genes in the NADH complex or in cytochrome C

function [51]. These genes are key to controlling NADH

metabolism and thus modulating numerous enzymatic reactions

within the TCA cycle. Thus, it may not be surprising that two of

the metabolites that differed in how the organellar genome

influenced average and CV, succinate and citrate, are within the

TCA cycle. A more detailed search showed that glycerate,

shikimate, and tyrosine are also metabolites whose CV and

average are differently affected and their metabolic reactions are

also highly dependent on NAD/NADH [68,69]. Because NADH

metabolism provides key cofactors for a large number of metabolic

processes, it will require the development of new approaches to

manipulate the genes within the organelle to test if these genetic

polymorphisms in NADH metabolic genes within the mitochon-

dria can be linked to the differential stochastic variance within the

TCA cycle and other metabolic processes.

Fig. 5. QTL hotspots for metabolite average and CV. The number of metabolites for which a QTL was detected within a 5 cM sliding window is
plotted against the genetic location of the metabolite QTLs in cM. Metabolite average QTLs are shown in grey and CV in black. The permuted
threshold (P = 0.05) for detection of a significant metabolite hotspot is 21 QTLs for metabolite average and 17 for metabolite CV. Hotspots are labeled
above the respective locus with AV representing Average and CV representing CV followed by chromosome number and cM position. The hotspots
labeled in blue are detected for both average and CV.
doi:10.1371/journal.pgen.1004779.g005

Genomic Control over Metabolic Noise
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In contrast to the metabolome, none of the growth traits had

either the average or per line CV significantly influenced by the

organellar genomic variation. Defense chemistry per line CV also

was less affected by the organellar variation with only 5 of 19

phenotypes showing a significant link to organellar genomic

variation (Tables S4 and S5). This is similar to the average of these

phenotypes where growth and defense were less affected by

organellar genomic variation than the metabolome [51,56]. All

metabolome, growth and defense phenotypes were measured on

the same plants supporting that the differences in the genetic

architecture of per line CV for these traits are not due to

differences in the experiment or environment. Thus, the genetic

link between the organellar genomes and variation in per line CV

of defense chemistry is different than that for the metabolome.

Different levels of epistasis for CV and average. Using

the average values for growth, defense chemistry and the

metabolome, we had previously shown that there was extensive

epistasis in this population linking the nuclear and organellar

genomes [51,56]. Thus, we tested for epistasis affecting per line

CV using a multiple marker model including all hotspots (Tables

Fig. 6. Comparison of estimated additive effects across phenotype classes. The distribution of percent additive effects for nuclear loci is
shown for the metabolite, defensive and growth phenotypes. Solid lines for metabolites, dotted lines for glucosinolates and dashed lines for growth.
A. Shows the distribution of QTL effect sizes for the CV phenotype. B. Shows the distribution of QTL effect sizes for the average phenotype.
doi:10.1371/journal.pgen.1004779.g006

Genomic Control over Metabolic Noise
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S6 to S9). There was extensive epistasis for the average metabolite

accumulation of these 559 metabolites with each locus having a

median of 2 interactions with other loci and only one locus

showing no interactions (Fig. 8). This included the organellar

genome showing interactions with four different nuclear loci (I.50,

III.51, IV.3 and IV.82)(Fig. 8). In contrast, there was significantly

less epistasis for per line CV of metabolite accumulation with a

median of only 1 interaction per locus and almost half of the loci

showing no interactions (Fig. 8). Again, the organellar genome

showed the most epistatic interactions and accounted for all

detected epistasis involving three nuclear loci for per line CV of

metabolite accumulation (I.36, IV.3 and IV.23). Additionally,

there were no identifiable three-way epistatic interactions for per

line CV of metabolite accumulation, which is in contrast to the

average metabolite accumulation where there was extensive multi-

locus epistasis [51,56]. There was also less detectable epistasis for

per line CV of growth and defense chemistry in comparison to the

average of these traits (S6 and S7 Figs.). This lower fraction of

epistasis agrees with the fact that the range of variation across the

RILs for per line CV is less than that found for the average of these

traits (Fig. 1D). This suggests that the genetic architecture for per

line CV of all three trait classes appears to have more additive

polygenic basis than that found for the average of these traits

(Figs. 1, 5 and 8). In support of this hypothesis, the CV traits are

more normally distributed within the RILs than are the averages

(S8 Fig.). This is exactly as would be expected for a trait with

Fig. 7. Comparative effect of cytoplasmic genomic variation on Metabolite average and CV. A map of central metabolism was created in
cytoscape and used to plot the estimated additive effect of genetic variation in the cytoplasmic genomes. A red box shows increased metabolite
accumulation when the line contains the Kas cytoplasmic genome while green shows increased metabolite accumulation when the line contains the
Tsu cytoplasmic genome. White boxes are metabolites that were detected but not significantly influenced by the cytoplasmic genome and grey
boxes are metabolites that were not detected. A. Metabolites for which the average is significantly affected by the cytoplasmic variation. B.
Metabolites for which the CV is affected by the cytoplasmic variation.
doi:10.1371/journal.pgen.1004779.g007

Genomic Control over Metabolic Noise

PLOS Genetics | www.plosgenetics.org 10 January 2015 | Volume 11 | Issue 1 | e1004779



largely polygenic additive architecture [70]. Alternatively, there

could be an unrecognized issue with statistical power in the CV

traits in comparison to the mean traits. One possibility is that the

median variation of metabolite CV is slightly lower than that for

the mean across the RILs (0.48 versus 0.55) across the metabolites.

This difference in variation is likely not sufficient to alter the QTL

mapping. Another possibility is that the CV may be less normally

distributed but an analysis of the distributions showed that CV

actually shows more normal distribution across the RILs than does

average metabolite accumulation (S8 Fig.). Thus, it appears that

Fig. 8. Epistatic interactions of CV and Average QTL hotspots for the metabolome. The bar plots show the number of pairwise epistatic
interactions per locus for metabolite CV and Average using the respective QTL hotspots for each phenotype. Grey bars show the analysis with the
Average QTL hotspots and black bars represent the CV QTL hot spots. Only the interactions significantly affecting 10% or more metabolites were
considered. The width of the bars is scaled to the percentage of metabolites significantly affected by the main effect of that locus.
doi:10.1371/journal.pgen.1004779.g008
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this difference in genetic architecture is likely not an issue of the

statistical properties of CV in our data. However, further

experiments are required to fully validate the hypothesis that

CV and average may have a different genetic architecture as has

also been suggested for transcripts [24].

Discussion

Recent work has shown that it was possible to identify genetic

loci controlling the stochastic variation in transcript expression

within eukaryotes [21,23,24]. While modelling analysis suggested

that this stochastic variation could permeate into the metabolome,

it had been an unresolved question as to how or if there was

genetic loci controlling stochastic variation in higher order traits

like metabolite accumulation or growth [32,33]. Using a replicated

metabolome and growth analysis of Arabidopsis thaliana RILs, we

mapped genetic loci controlling stochastic variance in the

metabolome, defense chemistry and growth of a multi-cellular

eukaryote (Figs. 4 and S2). For all traits, it was possible to find

genetic loci that control within line stochastic variance. Addition-

ally for growth and the metabolome, there were loci that

specifically affect the stochastic variance with no statistically

identifiable effect on the phenotypic average (Figs. 4 and S2).

Because all traits were measured on the same individuals, we have

minimized any potential for these results to be caused by

experimental or environmental variation across the individuals.

Thus, it is possible to find genetic loci controlling stochastic

variation of traits from transcripts to metabolites to growth in

multi-cellular eukaryotes using standard mapping populations and

standard replicated experimental design. In agreement with recent

modelling studies, our empirical analysis shows stochastic noise

can be localized within small neighborhoods of the metabolic

network without spreading throughout the system [32,33]. Further

work will be required to map and clone the loci identified to

control the stochastic variation in the metabolome and growth.

Intrinsic stochasticity versus variable plasticity in the face
of micro-environmental perturbations

Studies on stochastic variation have difficulty discerning if the

observed genetic effects on CV are truly via intrinsic processes. An

alternative is that the loci could be reflecting genetic variation that

alters the phenotypic plasticity in the presence of micro-

environmental perturbations. We would argue that our data is

more reflective of intrinsic stochastic variation for the following

reasons. First, our experiment was conducted with complete

randomization at all levels that should prevent any signature of

local environmental structure in technical or biological replicates.

Essentially all samples should be equally randomized across any

micro-environmental variation. In support of this, diurnally

responsive metabolites show all ranges of CV indicating that any

effect of micro-diurnal variation on the sampling and CV

estimation is minimal (Fig. 2)[71]. Further supporting this is the

observation that stress responsive metabolites are not showing

elevated CV as would be expected if we were measuring plasticity

in response to micro-environmental variation in stress. Secondly,

the primary metabolites, secondary metabolites and growth were

all measured on the same plants and as such should be exposed to

the same micro-environmental variation. Yet the loci identified

and genetic architecture of these traits is fundamentally different

suggesting that we have mapped loci specific to each metabolic

trait and not universal plasticity loci. Thirdly, there were no loci

identified with structured global effects in metabolic CV as would

be expected if there was the presence of systemic structured

biological or technical error (Figs. 7 and S5). Supporting the

absence of systemic sources of error came from randomizing the

metabolomic data while maintaining the inherent structure. This

analysis found that the maximal number of QTLs found was 53

which is only 9% of the 595 CV QTLs identified with the real data

arguing against systematic error. Finally, we have previously used

this same experimental set up to identify and validate that ELF3

specifically affects intrinsic stochastic noise [24]. Thus, we would

argue that while some of our loci may be loci affecting plasticity to

extrinsic variance, we have likely identified a number of loci that

affect intrinsic stochastic variance within the metabolome and

growth in a multi-cellular eukaryote. It will require vastly larger

validation experiments to separate which loci are associated with

intrinsic vs extrinsic stochastic variance.

Growth and whole organism stochastic variation
The link between genetic variation and differential stochastic

noise in a phenotype has been predominantly studied in single

celled organisms [16–20,72]. Additionally, in plants there are

whole plant processes that rely on stochastic cell autonomous

processes, such as flowering time [73,74]. This has generated some

confusion over the potential for stochastic variation at the whole

plant versus cell autonomous level. However, previous work

showed that it was possible to identify whole plant stochastic events

controlled by genetic polymorphisms buffered by HSP90

[13,14,75]. Within our analysis we mapped genetic variation that

influenced the stochastic variation of plant growth as measured by

the size of the whole rosette. Plant growth is a classical integrative

higher-order phenotype like crop yield or disease susceptibility

having complex underlying genetics [76,77]. Thus, it is possible to

identify genetic loci that determine the level of stochastic variation

in whole plant phenotypes. It remains to be seen if the underlying

molecular mechanisms work in cell non-autonomous manners to

control whole plant phenotypes or function as stochastic switches

in cell autonomous manners that sum up to a whole plant result.

Organellar variation and stochastic variation
Recent research is beginning to unveil the role of genetic

variation within organellar genomes in influencing variation for a

range of phenotypes from average metabolite accumulation to

growth [51,56]. Further, only diversity in nuclear encoded genes

like ELF3 have been linked to influencing stochastic variation

within plants [24]. Thus, there has not yet been an identified link

of the organellar genome variation to controlling different

stochastic variation within any organism. Within our study, we

found that genomic variation within the organelles lead to a

significant impact on the stochastic variation of metabolites as

measured by per line CV (Fig. 7). There was also a lesser impact

on the defense metabolites and growth (S6 and S7 Figs.). The

variation within the organellar genome influenced stochastic

variation of primary metabolism differently than average metab-

olite accumulation. Thus, the organelle genome influences

stochastic variation at all phenotypic levels and the CV effects

can be separated from the effects on the average phenotypes and

these effects are due to genes within the organellar genomes.

Defense chemistry and stochastic variation
It has been hypothesized that defense related phenotypes benefit

from having elevated levels of stochastic variation that generate a

bet-hedging-like mechanism whereby a single genotype samples a

wider phenotypic range. This can then lead to increases in

evolutionary stability of the defense mechanism. Within this

experiment, defense metabolites had numerous lines of evidence

indicating that they had a higher per line CV and more genetic

variation in per line CV than is found for primary metabolites in
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agreement with this theory. First, defense metabolites have a wider

population level variance of per line CV than that found for the

other metabolites (aliphatic glucosinolates 1.560.3, indolic

glucosinolates 0.860.3 and primary metabolites 0.560.1 [average

6 S.E. of population CV for per line CV])(S2 Table).

Additionally, we identified more per line CV QTLs for each

defense metabolite than for the other metabolites (Fig. 5). Finally,

for each identified QTL controlling per line CV, the mean effect

for defense metabolites was twice as large as that found for the

other metabolites (57% effect for aliphatic glucosinolates, 42%

effect for indolic glucosinolates and 22% effect for primary

metabolites)(Fig. 6). Taken together, there is a higher level of

genetically programmed stochastic variance in glucosinolate

defense metabolites in comparison to primary metabolites. Thus,

the genetic networks and natural variation influencing defense

metabolism in Arabidopsis may be structured to enable higher

levels of stochastic variation possibly to mediate bet-hedging

interactions within the environment [28,29].

Future potential
Within this study, we show that it is possible to identify genetic

loci in both the nuclear and organelles that lead to altered

stochastic variation in all measured phenotypes from individual

metabolites to whole plant growth. Further, these loci differ from

trait to trait, suggesting that we are not identifying generic

variance loci as might be expected if they were affecting global

mechanisms like HSP90. Instead, these CV loci affect specific

genetic networks that are distinct for each trait. This suggests that

there may be stochastic specific loci for each plant trait. For

instance, numerous natural and induced mutant screens and

surveys have been conducted in Arabidopsis to determine the

genes controlling the phenotypic average [78–80]. Similar large

scale approaches have been conducted in numerous other

organisms focused on phenotypic averages [31,81,82]. While

these have provided great advances in our understanding of

biology, it raises the question of what would happen if we repeat

these screens and surveys to identify genetic variation controlling

stochastic noise in phenotypes. Would we identify the same genes

or would we begin to identify a large suite of previously unknown

genes that control stochastic variation rather than phenotypic

average? This indicates there is a need for additional experiments

focused on stochastic variation within multi-cellular organisms to

explore a new avenue of organismal biology.

Materials and Methods

Measuring metabolite and growth CV
To directly estimate the CV for each individual metabolites

accumulation as a separate phenotype within the Kas x Tsu RIL

population [51,56], we utilized two independent metabolomics

experiments in which 316 lines had been measured in duplicate

within each experiment [51,56]. Within each experiment, the 316

lines were planted in randomized complete blocks and all blocks

within all experiments were independently randomized. This

greatly diminishes any potential for correlated errors in the

analysis. Additionally, the metabolomics samples were also

randomized prior to injection within the block structure. Again

all randomization was independent across blocks for the

metabolomics. Only 559 metabolites were measured in all four

samples of the previous experiment and we focused solely on these

signals to maximize our power to measure metabolite CV [51,56].

To measure growth and defense compound CV, we obtained the

raw data where the plants had also been measured for daily

growth (5 growth phenotypes) and glucosinolate accumulation (19

glucosinolate phenotypes) [51,56]. For each phenotype, metabolite

and growth, we utilized the absolute phenotypic values to measure

the CV for each phenotype separately for each experiment using

s/m [16,21,83], thus providing two independent biological

replicate measures of CV for each phenotype. The use of CV as

a direct phenotype has previously been used in a number of

instances. By measuring the within line CV as a phenotype for the

Kas x Tsu population allows us to then utilize CV as a direct

measurement of stochastic variation as a phenotype. The level of

per line replication for the array data does not support the use of

Levene’s variance tests or measures. Additionally, all lines were

planted and harvested within a randomized complete block design

at all stages thus limiting any potential technical bias to generate

these observations [41,84]. Similarly, the metabolomics analysis

was conducted with mixed internal standards run approximately

every 20 samples to normalize all of the runs to minimize any

potential technical error from the instrument [85–87].

Estimation of CV heritability
For estimating broad-sense heritability, we utilized the inde-

pendent measures of CV directly as a phenotypic measure. All

RIL lines were represented in every block in both experiments

creating a perfectly balanced randomized complete block design.

All phenotypic data was used to calculate estimates of broad-sense

heritability (H) for each phenotype as H = s2
g/s

2
p, where s2

g

was estimated for both the RIL genotypes and cytoplasmic

genotypes and s2
p was the total phenotypic variance for a trait

[88]. The ANOVA model (Line heritability Model) for each

metabolite phenotype in each line (ygmeb) was:

ygce~mzCczGg(Cc)zEezCc|EezGg(Cc)|Eezegce where

c = the Kas or Tsu cytoplasm; g = the 1…316 for the 316 RILs,

e = experiment 1 or 2. This allowed cytoplasmic effects to be

directly tested in the C term and each RIL genotype (G) nested

within the appropriate cytoplasmic class, either Kas or Tsu.

Experiment was treated as a random term within the model to

better parse the variation. All resulting variance estimates, P-values

and heritability terms are presented (S1 Table). s2
g for RIL was

pulled from the Gg(C c) term while s2
g for cytoplasmic variation

was pulled directly from the C cMm term. We used mean CV

values for each RIL for further analysis as we had a randomized

complete block design with no missing lines (S2 Table).

QTL analysis
We used the previously reported genetic map for these lines of

the Kas 6Tsu RIL population [56,57]. To detect CV QTLs, we

used the average CV per phenotype per RIL across all

experiments (S2 Table)[56,57]. For QTL detection, composite

interval mapping (CIM) was implemented using cim function in

R/qtl package with a 10 cM window. Forward regression was used

to identify three cofactors per trait. To control for genome-wide

false positive rates, declaration of statistically significant QTLs was

based on permutation-derived empirical thresholds using 1,000

permutations for each mapped trait which yielded a range of LOD

significances of 1.8–3.5 to call significant QTLs. In addition to

setting a significance threshold, this approach also randomizes the

genotype-to-phenotype link to establish a false positive rate. To be

conservative, QTLs with a LOD score above 2 were considered

significant for further analysis [89,90]. Composite interval

mapping to assign significance based on the underlying trait

distribution is robust at handling normal or near normal trait

distributions [91], as found for most of our phenotypes. The define

peak function implemented in R/eqtl package was used to identify

the peak location and one-LOD interval of each significant QTL

for each trait [92]. The effectscan function in R/qtl package was
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used to estimate the QTL additive effect [93]. Allelic effects for

each significant QTL are presented as percent effect, by estimating

½xTsu -xKas �=xRIL for each significant main effect marker (S3

Table).

QTL clusters were identified using a QTL summation approach

where the position of each QTL for each trait was plotted on the

chromosome by placing a 1 at the peak of the QTL. This was then

used to sum the number of traits that had a detected QTL at a

given position using a 5cM sliding window across the genome [94].

The QTL clusters identified defined genetic positions that were

named respective to their phenotypic class and genetic positions

with a prefix indicating the phenotype followed by the chromo-

some number and the cM position. For example, M.CV.II.16

indicates a CV metabolomics QTL hotspot on chromosome II at

16 cM. The cluster analysis was conducted separately for

metabolomic, defense chemistry and growth phenotypes.

To further assess the potential of structured technical or

biological variation to influence our analysis, we conducted a

permutation analysis wherein we randomized the line to

metabolome links within each of the four randomized blocks.

This maintains any correlative structure between the metabolites

within a metabolomic sample that may have been caused by

structured technical or biological error. We then recalculated CV

and mean within each RIL using the randomized phenotype data

and used this to re-conduct the entire QTL analysis as described

above. 100 permutations of the entire dataset identified a

maximum of only 53 metabolomic CV QTL identified across

the 559 metabolites in any given permutation which lead to no

hotspots being identified. This suggests that the observed hotspots

are not caused by structured error within the metabolomics

samples.

Additive ANOVA model
To directly test the additive effect of each identified QTL

cluster, we used an ANOVA model containing the markers most

closely associated with each of the significant QTL clusters as

individual main effect terms. For each metabolite the average

accumulation in lines of genotype g at marker m was shown as ygm.

The model (Additive Model) for each metabolite in each line (ygm)

was: ygm~mz
X2

g~1

Xm

m~1
Mmgzegm

where g = Kas(1) or Tsu(2); m = 1, …,11. The main effect of the

markers was denoted as M involving 15 markers (m). The

cytoplasmic genome was included as an additional marker to test

for cytoplasmic genome effects. We independently tested the

average metabolite accumulation and CV of each metabolite as a

separate phenotype with the appropriate model using lm function

implemented in the R/car package, which returned all P values,

Type III sums-of-squares for the complete model and each main

effect. The results using the average metabolite accumulation are

presented (S4 Table) separately from those for the CV of

metabolite accumulation (S5 Table). QTL main-effect estimates

(in terms of allelic substitution values) were estimated for each

marker [93,95]. The same analysis was conducted for the aliphatic

glucosinolates, indolic glucosinolates and growth except that these

phenotypes only had 9 loci instead of 10 (Tables S4 and S5). There

is no significant single marker or pairwise segregation distortion in

this population indicating that the model is balanced for all

markers [57].

QTL epistasis analysis
To test directly for epistatic interactions between the detected

QTLs, we conducted an ANOVA using the pairwise epistasis

model. We used this pairwise epistasis model per metabolite

because we had previous evidence that RIL populations have a

significant false negative QTL detection issue and wanted to be

inclusive of all possible significant loci [49]. Within the model, we

tested all possible pairwise interactions between the markers. For

each phenotype, the average value in the RILs of genotype g at

marker m was shown as ygm. The model (Pairwise epistasis model)

for each metabolite in each line (ygm) was:

ygm~mz
X2

g~1

Xm

m~1
Mgm

z
X2

g~1

Xm

m~1

Xm

n~mz1
MgmMgnzegmn

where g = Kas(1) or Tsu(2); m = 1, …,14 and n was the identity

of the second marker for an interaction. The main effect of the

markers was denoted as M having a model involving 15 markers.

The cytoplasmic genome was included as an additional single-

locus marker to test for interactions between the cytoplasmic and

nuclear genomes. We independently tested the average metabolite

accumulation and CV of each metabolite as a separate phenotype

with the appropriate model using lm function implemented in the

R/car package, which returned all P values, Type III sums-of-

squares for the complete model and each main effect. The results

using the average metabolite accumulation are presented (Tables

S6 and S7) separately from those for the CV of metabolite

accumulation (Tables S8 and S9). Significance values were

corrected for multiple testing within a model using FDR

(,0.05). The main effect and epistatic interactions of the loci

were visualized using cytoscape.v2.8.3 with interactions significant

for less than 10% of the phenotypes were excluded from the

network analysis [44,96]. The 10% threshold was chosen as an

additional correction for multiple testing to provide a more

conservative image of the network. The same analysis was

conducted for the aliphatic glucosinolates, indolic glucosinolates

and growth except that these phenotypes only had 9 loci instead of

10 (Tables S6 to S9). There are no pairwise locus segregation

distortions within this population showing that the genotypes in

this analysis are balanced [57].

Supporting Information

S1 Fig. Comparison of CV and Average genetics in Kas x Tsu

for growth and defense. Comparison of estimated metabolite

heritability’s using each metabolites CV (black) and average (grey)

phenotype across Kas x Tsu RIL populations. A frequency plot

shows the estimated heritability’s ascribed to the nuclear (solid

lines) and organellar (dotted) genomes across all the metabolites.

A. Aliphatic Glucosinolate phenotypes. B. Indolic Glucosinolate

phenotypes. C. Growth phenotypes.

(TIF)

S2 Fig. Relationship between metabolite average and CV across

the RILs. Shown is a hexbin plot of the relationship between the

mean and CV of each metabolite in each RIL across the entire

dataset. The resolution of the plot is set to 50 bins.

(TIF)

S3 Fig. Lack of correlation in QTL number and effect for CV

and Mean metabolite accumulation. A. Shown is the number of

QTLs for a given metabolite for both CV and mean. The size of

the pie’s is proportionate to the number of metabolites present in

that specific grouping. No significant correlation was found using

either spearman or pearson tests. B. For metabolites where the CV

and mean QTLs 1 LOD interval overlapped, the estimated
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additive effect on CV and mean are plotted. No significant

correlation was found using either spearman or pearson tests.

(TIF)

S4 Fig. Effect of CV hotspots on CV across the metabolomic

network. A map of central metabolism was created in cytoscape

and used to plot the estimated additive effect of genetic variation of

each metabolite CV hotspot on the affected primary metabolites.

A red box shows increased metabolite accumulation when the line

contains the Kas cytoplasmic genome while green shows increased

metabolite accumulation when the line contains the Tsu

cytoplasmic genome. White boxes are metabolites that were

detected but not significantly influenced by the cytoplasmic

genome and grey boxes are metabolites that were not detected.

Each page represents a unique metabolite CV hotspot.

(PDF)

S5 Fig. QTL hotspots for defense and growth average and CV.

The number of metabolites for which a QTL was detected within

a 5 cM sliding window is plotted against the genetic location of the

metabolite QTLs in cM. Metabolite average QTLs are shown in

grey and CV in black. A. Aliphatic Glucosinolate phenotypes. B.

Indolic Glucosinolate phenotypes. C. Growth phenotypes.

(TIF)

S6 Fig. Epistatic interactions of Glucosinolate phenotypes using

both the average and CV QTL hotspots. The bar plots show the

number of pairwise epistatic interactions per locus for Aliphatic (A)

and Indole (B) glucosinolate CV and Average using the respective

QTL hotspots for each phenotype. Grey bars show the analysis

with the Average QTL hotspots and black bars represent the CV

QTL hot spots. Only the interactions significantly affecting 10%

or more metabolites were considered. The width of the bars is

scaled to the percentage of metabolites significantly affected by the

main effect of that locus as shown.

(TIF)

S7 Fig. Epistatic interactions of growth phenotypes using both

the average and CV QTL hotspots. The bar plots show the

number of pairwise epistatic interactions per locus for growth CV

and Average using the respective QTL hotspots for each

phenotype. Grey bars show the analysis with the Average QTL

hotspots and black bars represent the CV QTL hot spots. Only the

interactions significantly affecting 10% or more metabolites were

considered. The width of the bars is scaled to the percentage of

metabolites significantly affected by the main effect of that locus as

shown.

(TIF)

S8 Fig. Differential normality of CV and Mean across the RILs.

For each metabolite, the skewness and kurtosis was measured for

both CV and mean across the RILs. The distribution of these

values across the metabolites for both CV and mean(AV) are

shown.

(TIF)

S1 Table Estimation of Heritability for Metabolite CV. The

results of the linear model analyzing the variation of CV across the

Experiments and two estimatible genomes (Organellar and

Nuclear) are shown.

(XLSX)

S2 Table Average per line CV for all phenotypes. Shown is the

average per line CV for each RIL for each phenotype as estimated

from the ANOVA.

(XLSX)

S3 Table QTLs identified for per line CV for all phenotypes.

The position and estimated effect size for each identified QTL for

each phenotype is presented.

(XLSX)

S4 Table Results of single marker ANOVA model testing QTL

effects for average phenotypes. Results of the single marker

validation modeling using the QTL hotspots found in this analysis

with the average phenotypes. Metabolites are at the start with

defense compounds and growth at the bottom of the table.

(XLSX)

S5 Table Results of single marker ANOVA model testing QTL

effects for per line CV phenotypes. Results of the single marker

validation modeling using the QTL hotspots found in this analysis

with the per line CV phenotypes. Metabolites are at the start with

defense compounds and growth at the bottom of the table.

(XLSX)

S6 Table P values of Pairwise epistasis tests using ANOVA for

all average phenotypes. Results of the pairwise epistasis analysis

using the average phenotypes and QTLs validated from the single

marker ANOVA. Only P values for the model are shown in this

table. Metabolites are at the start with defense compounds and

growth at the bottom of the table.

(XLSX)

S7 Table Type III Sums of squares for Pairwise epistasis tests

using ANOVA for all average phenotypes. Results of the pairwise

epistasis analysis using the average phenotypes and QTLs

validated from the single marker ANOVA. Only type III Sums-

of-square values for the model are shown in this table. Metabolites

are at the start with defense compounds and growth at the bottom

of the table.

(XLSX)

S8 Table P values of Pairwise epistasis tests using ANOVA for

all per line CV phenotypes. Results of the pairwise epistasis

analysis using per line CV phenotypes and QTLs validated from

the single marker ANOVA. Only P values for the model are

shown in this table. Metabolites are at the start with defense

compounds and growth at the bottom of the table.

(XLSX)

S9 Table Type III Sums of squares for Pairwise epistasis tests

using ANOVA for all per line CV phenotypes. Results of the

pairwise epistasis analysis using per line CV phenotypes and QTLs

validated from the single marker ANOVA. Only type III Sums-of-

Squares values for the model are shown in this table. Metabolites

are at the start with defense compounds and growth at the bottom

of the table.

(XLSX)
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