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Abstract

Polygenic scores have recently been used to summarise genetic effects among an ensemble of markers that do not
individually achieve significance in a large-scale association study. Markers are selected using an initial training sample and
used to construct a score in an independent replication sample by forming the weighted sum of associated alleles within
each subject. Association between a trait and this composite score implies that a genetic signal is present among the
selected markers, and the score can then be used for prediction of individual trait values. This approach has been used to
obtain evidence of a genetic effect when no single markers are significant, to establish a common genetic basis for related
disorders, and to construct risk prediction models. In some cases, however, the desired association or prediction has not
been achieved. Here, the power and predictive accuracy of a polygenic score are derived from a quantitative genetics model
as a function of the sizes of the two samples, explained genetic variance, selection thresholds for including a marker in the
score, and methods for weighting effect sizes in the score. Expressions are derived for quantitative and discrete traits, the
latter allowing for case/control sampling. A novel approach to estimating the variance explained by a marker panel is also
proposed. It is shown that published studies with significant association of polygenic scores have been well powered,
whereas those with negative results can be explained by low sample size. It is also shown that useful levels of prediction
may only be approached when predictors are estimated from very large samples, up to an order of magnitude greater than
currently available. Therefore, polygenic scores currently have more utility for association testing than predicting complex
traits, but prediction will become more feasible as sample sizes continue to grow.
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Introduction

Although individually significant markers in genome-wide

association scans (GWAS) explain limited heritability of complex

traits, evidence has been accruing that a considerable proportion

of phenotypic variation can be explained by the ensemble of

markers not achieving significance. Thus, while most of the

specific genes underlying complex traits have yet to be identified, it

is likely that many are represented on current genotyping products

and specific identification is largely a matter of study size [1].

Polygenic score analysis has recently generated much interest for

assessing the explanatory power of an ensemble of markers. A

GWAS is conducted on an initial training sample, and the markers

are ranked by their evidence for association, usually their P-values.

An independent replication sample is then analysed by construct-

ing, for each subject, a polygenic score consisting of the weighted

sum of its trait-associated alleles, for some subset of top ranking

markers. Two related but distinct applications of this score are

then possible. Firstly, testing for association between the score and

the trait in the replication sample can determine whether

associated markers reside within those contributing to the score.

Secondly and perhaps more usefully, the polygenic score can be

used to predict individual trait values or risks of disease [2],

potentially giving a predictor with better discrimination properties

than one based on established markers only. Different consider-

ations apply for these two applications, as the size of the replication

sample has a direct bearing on the power of association testing,

whereas the accuracy of individual predictions depends only on

the size of the training sample.

The first successful application of polygenic score analysis to

GWAS data was in schizophrenia [3], in which few individual

markers were significant and the common disease common variant

hypothesis remained in question. It was shown that a large mass,

up to half, of all markers in one GWAS could be jointly associated

with disease in a second sample, implying a polygenic component

to disease risk that justified larger study sizes [4]. Furthermore,

markers from schizophrenia GWAS could together be associated

with bipolar disorder, and vice versa, establishing a common

polygenic basis to those conditions, whereas such cross-prediction

was not achieved with clinically distinct conditions such as

cardiovascular disease. This common basis has further been

exploited to discriminate sub-types of bipolar disorder [5].

Similar results using a large mass of markers have been obtained

for other complex traits including multiple sclerosis [6], height [7],

cardiovascular risk [8], rheumatoid arthritis [9] and body mass

index [10]. In addition, several studies have demonstrated

association of a score based on a limited number of top ranking

markers [11–13]. In some cases, however, the polygenic associ-

ation is less clear: studies of breast and prostate cancers have been

inconclusive, owing in part to technical aspects in analysis but also,

potentially, to their sample sizes [14,15]. An aim of the present

work is to determine whether negative results from those studies

could be explained by their sample size, or whether a true lack of

polygenic effect is the more likely explanation.
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Applications of polygenic scores to individual disease prediction

have so far been less successful, although proof of concept has been

established through simulations [2]. Several studies have shown

that a limited number of top ranking markers can discriminate

disease cases from unaffected subjects, but the degree of

discrimination falls short both of clinical utility and the maximum

achievable from genetic data [16–18]. The use of a mass of

markers across the whole genome has been explored, but to date

has not yielded a noticeable improvement in discrimination

[14,19].

Polygenic scores must be estimated from a finite training

sample, and their effectiveness for association testing and risk

prediction depends on the precision of this estimation as well as the

proportion of variation explained by the polygenic score. The role

of the sample size has not been thoroughly considered in this

context. Several authors have expressed sensitivity and specificity

in terms of the genetic variance of a predictor [17,20–22], but they

did not distinguish the variance explained by an estimated

predictor from that of the true predictor, that is the one that

would be estimated from an infinitely large sample. While large

samples lead to small sampling variance on individual marker

effects, the errors accumulate across multiple markers such that the

effect of sampling variation on the polygenic score can be

considerable. Wray et al [2] used simulations to study the

predictive accuracy of scores estimated from finite case/control

studies, but did not obtain an explicit relation between sample size

and accuracy. Similarly, the International Schizophrenia Consor-

tium (ISC) [3] used simulations to show empirical relations

between sample size and accuracy under several genetic models.

Daetwyler et al [23] considered the effect of sampling variation on

the correlation between polygenic score and total genetic value.

Their results can be adapted to prediction of phenotypes rather

than genetic values, and also to other measures of power and

accuracy, but their conclusions are limited by an assumption that

all the markers have effects and are included in the score.

In this work, statistical properties of polygenic score analyses are

derived from a quantitative genetics model as a function of the

explained genetic variance and sample sizes in discovery and

replication samples. A range of options for constructing the score is

considered, including estimation of the score from a different trait

to the one predicted, selection of markers according to their P-

values, and different methods for weighting markers in the score.

The power is obtained for testing a polygenic score for association

in a replication sample, and the correlation, mean square error,

and area under the receiver-operator characteristic curve (AUC)

are obtained for a predictor estimated from a finite training

sample. These results are used to assess some recent studies and to

discuss prospects for the future utility of polygenic score analyses

for the prediction of complex traits.

Results

Analytic power and accuracy
In the framework considered here, a set of genetic markers is

genotyped on an initial training sample and each marker is tested

for association to a trait. Effect sizes are estimated for each marker

and used to construct a polygenic score for each subject in an

independent replication sample. The score is tested for association

in the replication sample, in which the tested trait may differ from

that in the training sample. The correlation and mean square error

between the polygenic score and the tested trait are calculated. If

the traits are binary, the AUC is obtained.

More precisely, consider a pair of traits Y~(Y1,Y2)
0

expressed

as a linear combination of m genetic effects and an error term that

includes environmental and unmodelled genetic effects:

Y~b
0
GzE~

Xm

i~1

bi1GizE1,
Xm

i~1

bi2GizE2

 !0
ð1Þ

where b is a m|2 matrix of coefficients, G is a m-vector of coded

genetic markers, and E is a pair of random errors that are

independent of G. Now suppose that the genetic effects on Y1 are

estimated from a sample of size n1 and used to construct a

polygenic score to be tested for association to Y2 in an

independent sample of size Y1. Define the polygenic score to be

ŜS~
Xm

i~1

b̂bi1Gi

Some important statistical properties of ŜS can be expressed in

terms of cov(b̂bi1,bi2) and var(b̂bi1), expressions for which are

derived in the Methods. The coefficient of determination for the

polygenic score on the second trait is

R2
ŜS,Y2

~
m cov(b̂bi1,bi2)2

var(b̂bi1)var(Y2)
ð2Þ

which is the squared correlation between the score and the trait.

The prediction mean square error is

E (ŜS{Y2)2
h i

~m var(b̂bi1){2m cov(b̂bi1,bi2)zE(Y 2
2 ) ð3Þ

The asymptotic non-centrality parameter of the x2 test for

association of ŜS with Y2 is

l~
n2R2

ŜS,Y2

1{R2
ŜS,Y2

ð4Þ

Author Summary

Recently there has been much interest in combining
multiple genetic markers into a single score for predicting
disease risk. Even if many of the individual markers have no
detected effect, the combined score could be a strong
predictor of disease. This has allowed researchers to
demonstrate that some diseases have a strong genetic
basis, even if few actual genes have been identified, and it
has also revealed a common genetic basis for distinct
diseases. These analyses have so far been performed
opportunistically, with mixed results. Here I derive formu-
lae based on the heritability of disease and size of the
study, allowing researchers to plan their analyses from a
more informed position. I show that discouraging results
in some previous studies were due to the low number of
subjects studied, but a modest increase in study size
would allow more successful analysis. However, I also
show that, for genetics to become useful for predicting
individual risk of disease, hundreds of thousands of
subjects may be needed to estimate the gene effects.
This is larger than most existing studies, but will become
more common in the near future, so that gene scores will
become more useful for predicting disease than has
appeared to date.

Power and Accuracy of Polygenic Scores
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on 1df, and the power of the two-tailed test of association at

significance level a is

1{W(W{1(1{
a

2
){

ffiffiffi
l
p

)zW(W{1(
a

2
){

ffiffiffi
l
p

) ð5Þ

Binary traits are assumed to arise from a liability threshold model

[24] leading to calculation of the AUC also in terms of cov(b̂bi1,bi2)

and var(b̂bi1), with the expressions given in the Methods. For

binary traits the coefficient of determination in equation (2) may

be transformed to the liability scale for more satisfactory

interpretation [25], the details also given in the Methods.

The expressions for power and accuracy are derived in terms of

the parameters listed in Table 1. Estimates of marker effects b̂bi1

are either obtained from linear regression or set to a signed

constant, which corresponds to the common approach of counting

risk alleles across markers. A proportion of markers is assumed to

have no effect, and markers may be selected by thresholding on

their P-values.

Equation 4 suggests an estimating equation for any parameter of

the quantitative model, given the association test between ŜS and

Y2. Write R2
ŜS,Y2

(h; y) explicitly as a function of some parameter h

in Table 1, treating all other parameters y as fixed and known.

For example, h might be the variance of marker effects in the

training sample s2
1, from which ms2

1 is the explained genetic

variance of the marker panel. Alternatively h might be the

covariance between marker effects in the two samples s12,

assuming fixed values for the explained variances, and so on.

Equation 4 is the squared coefficient of the linear regression of Y2

on ŜS, scaled by its sampling variance. The sampling distribution of

that coefficient is normal, with mean the square root of equation 4.

Therefore applying normal theory an estimator ĥh is the solution to

the equation

T2~
n2R2

ŜS,Y2
(ĥh; y)

1{R2
ŜS,Y2

(ĥh; y)
ð6Þ

where T2 is the observed x2 association statistic. An approximate

95% confidence interval for h is given by (ĥhL,ĥhH ) where ĥhL is the

solution of

W{1(:025; T)
� �2

~
n2R2

ŜS,Y2
(ĥhL; y)

1{R2
ŜS,Y2

(ĥhL; y)

and ĥhH is the solution of

W{1(:975; T)
� �2

~
n2R2

ŜS,Y2
(ĥhH ; y)

1{R2
ŜS,Y2

(ĥhH ; y)

Published data: Association testing
The ISC was the first to demonstrate the utility of testing

polygenic scores [3]. In their main result, odds ratios for 74062

nearly independent SNPs were estimated in 3322 cases and 3587

controls and used to construct a polygenic score that was tested in

2687 cases and 2656 controls of the Molecular Genetics of

Schizophrenia study [26]. The score was more strongly associated

as higher P-value thresholds were used for including SNPs, with

the most significant reported association having P~2|10{28

with an inclusion threshold of Pv0:5.

Assuming a prevalence of 1%, equation 5 gives a power of 80%

at nominal significance if the explained genetic variance in liability

is 7.2%, rising to 99% if the explained genetic variance is 11.7%.

Assuming a heritability of 80% [3] this shows that the test was well

powered if the marker panel explains about 10% of the

heritability, which seems reasonable. The observed result of

P~2|10{28 can be used in equation 6 to give an estimated

explained genetic variance of 28.7% (95% CI: 23.6%–33.7%),

which is 36% of the heritability, assuming that all SNPs have

effects that are identical in the two samples. The estimate reduces

only to 26.9% if 99% of the SNPs are assumed null. These results

are similar to a recent estimate using mixed modelling of the same

data [27].

In the ISC report, the P-value of the polygenic score decreases

as the SNP inclusion threshold increases. This seems to suggest

that a large number of associated markers lie within the mass of

individually non-significant SNPs. In Figure 1 and Figure 2, the

expected P-value of the polygenic score is shown as a function of

Table 1. Parameters and notation of polygenic model.

n1 Training sample size

n2 Replication sample size

m Number of markers in genotyping panel

s2
1

Variance of marker effects in training sample

s2
2

Variance of marker effects in replication sample

s12 Covariance of marker effects between training and replication samples

p0 Proportion of markers with no effect in either sample

p0 Lower bound on P-value in the training sample for a marker to be included in polygenic score

p1 Upper bound on P-value in the training sample for a marker to be included in polygenic score

K1 Prevalence of binary trait in training sample

K2 Prevalence of binary trait in replication sample

P1 Sampling proportion of cases of binary trait in training sample

P2 Sampling proportion of cases of binary trait in replication sample

doi:10.1371/journal.pgen.1003348.t001
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the inclusion threshold, with the explained genetic variance set to

its estimated value of 28.7% and other parameters as stated above.

The figures show that this trend could be observed when as many

as 90% of SNPs have no effects, and for the linear regression

estimator the significance of the score continues to improve until

the whole marker panel is included. Only for a very high

proportion of null SNPs is there an optimal inclusion threshold less

than 1. The allele count estimator has an optimum threshold less

than 1 for all scenarios, but it is consistently less significant. Thus,

in this dataset with high power, decreasing P-values are consistent

with a range of polygenic models including those with a high

proportion of null markers.

In this analysis the replication sample was smaller than the

training sample, and we may ask what balance of sample sizes is

optimal. Given the total sample size of 3322+2687 = 6009 cases

and 3587+2656 = 6243 controls, the non-centrality parameter can

be numerically maximised over the proportion of subjects

allocated to the training sample. It is found that the optimal split

is close to one-half regardless of the proportion of null SNPs or the

P-value threshold, and the non-centrality parameter is roughly

symmetrical around one-half. This suggests that given two samples

of different size, it matters little which is chosen for training and

which for testing. Furthermore, given an initial sample to be split

into training and replication subsets, an obvious rule of thumb is to

make an even split. Similar properties are seen under different

genetic models (results not shown). Note that these results apply to

association testing and not to individual prediction, which is

discussed in the next subsection. For association testing there is a

balance to be made between the precision of estimating the score

in the training subset, and the power of testing the score in the

replication subset. For prediction, however, the size of the

replication subset does not affect the accuracy, only how precisely

it is estimated; thus a larger training subset is more desirable in the

prediction context.

The ISC further tested the schizophrenia-derived score against

bipolar disorder, to test for a common genetic basis to those

conditions. Their strongest result was with the Wellcome Trust

Case-Control Consortium (WTCCC) sample of 1829 cases and

2935 controls, obtaining P~1|10{12 with an inclusion threshold

of p1~0:5. Assume similar heritability for bipolar disorder as for

schizophrenia [28] and the same genetic variance explained by the

markers, estimated above to be 28.7%. Then using equation 5, the

study had 80% power at nominal significance if the correlation is

28% between genetic effects on schizophrenia and bipolar

disorder. Using equation 6, the estimated correlation given the

observed association statistic is 70.6% (95%CI: 51.3%–89.7%)

Figure 1. Expected 2log10(P) of linear regression estimate as a function of P-value threshold for selecting markers into the
polygenic score. Training sample, 3322 cases and 3587 controls; replication sample, 2687 cases and 2656 controls. Marker panel of 74062
independent SNPs. Variance explained by markers, 28.7%. pi0, proportion of markers with no effect on disease.
doi:10.1371/journal.pgen.1003348.g001
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assuming that all SNPs have effects with explained variance 28.7%

in both samples. If 99% of SNPs are assumed null, the estimated

correlation reduces to 66.2% (95%CI: 48.1%–84.1%).

The International Multiple Sclerosis Consortium performed a

similar exercise using a training sample of 931 cases and 2431

controls, a replication sample of 876 cases and 2077 controls, and

a marker panel of 59470 nearly independent SNPs [6]. They also

observed decreasing P-values for association as more SNPs were

included in the score, obtaining P~6:12|10{21 when all SNPs

were included. Assuming prevalence of 0.1% this analysis has 80%

power at nominal significance for explained genetic variance of

9.4%, and the observed result yields an estimate of 31.5% (95%CI:

24.9%–37.9%) assuming all SNPs have effects.

In applying these ideas to breast and prostate cancers, Machiela

et al did not find significant associations of polygenic scores [14].

While this could be explained by the genetic architecture of the

diseases, a possible explanation (noted by the authors) is the lower

sample size together with the low heritability. Their breast cancer

study used a total sample of 2287 subjects, approximately half of

which were cases and half controls, which was split into training and

testing subsets in a 9:1 ratio for 10-fold cross-validation. The marker

panel consisted of 161,702 nearly independent SNPs. Assuming a

prevalence of 3.6% and sibling relative risk of 2.5 [29], this design

has only 17% power to detect an association of the polygenic score,

even if the markers explain the full heritability. If the sample were

split in a 1:1 ratio, the power would increase to 37%.

Their prostate cancer study had a total of 2277 subjects,

approximately half of which were cases, again split in a 9:1 ratio

and a marker panel of 165,508 nearly independent SNPs.

Assuming a prevalence of 2.4% and sibling relative risk of 2.8

[29], this design has 19% power if the markers explain the full

heritability. If the sample were split in a 1:1 ratio, the power would

be 42%. It is clear that even with the optimistic assumption that

the markers explain the full heritability, this study was unlikely to

detect an association of the polygenic score for either cancer.

What sample size would have sufficient power to detect

association of the polygenic score? For breast cancer the

heritability of liability is estimated as 44% [21]. If the marker

panel explains half of this heritability, roughly as in the ISC study,

then two samples each of 1978 cases and 1978 controls would have

80% power at nominal significance. For prostate cancer the

heritability of liability is also 44% and 1766 cases and controls

would be required in each sample. For the ISC study, assuming

explained genetic variance of 28.7%, 735 cases and controls in

each sample are sufficient. Thus it appears that association testing

is well powered at current sample sizes if two independent studies

are used for training and testing, but less well powered if a single

sample is split into two subsets.

Figure 2. Expected 2log10(P) of allele score estimate as a function of P-value threshold for selecting markers into the polygenic
score. Training sample, 3322 cases and 3587 controls; replication sample, 2687 cases and 2656 controls. Marker panel of 74062 independent SNPs.
Variance explained by markers, 28.7%. pi0, proportion of markers with no effect on disease.
doi:10.1371/journal.pgen.1003348.g002
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As a final example of association testing, this time with a

quantitative trait, Simonson et al studied the Framingham Risk

Score for cardiovascular disease risk [8]. They also used 10-fold

cross-validation of a single sample, giving training samples of 1575

subjects and testing samples of 175 subjects. They used a full set of

250,378 SNPs, which is here assumed to be similar to 100,000

independent SNPs. They first selected SNPs with P-values ,0.1

into the score, then selected SNPs with 0.1,P,0.2, then

0.2,P,0.3 and so on, giving ten analyses. Even if the trait is

fully heritable and explained by these markers, this analysis has

20% power for the SNPs with P,0.1, reducing with each P-value

interval. For 0.4,P,0.5, in which the authors found nominal

significance of the score, the power is 6.7%. If all SNPs are

included in the score, the power would be 38% if the trait is fully

explained by the markers, but under a more conservative model in

which the explained genetic variance is 30%, the power is just 8%

and increases to 13% under an even split of training and testing

samples. Again, splitting a single GWAS sample does not admit

high power for testing a polygenic score.

Published data: Risk prediction
In their study of breast and prostate cancers Machiela et al also

calculated the AUC for prediction of disease from the polygenic

score. Here it is more important for the training sample to be

large, ensuring accurate estimation of the score, justifying the 10-

fold cross-validation design. Their AUC did not exceed 53% for

breast cancer and 56.4% for prostate cancer. Under the same

assumptions as above, the analytic AUC is 53.6% for breast cancer

if the markers explain the full genetic variance, or 51.8% if they

explain half. However if the sample were infinitely large, the

AUCs would be 89% and 79% respectively. For prostate cancer,

the analytic AUCs are 54.1% if the markers explain the full genetic

variance, and 52% if they explain half; for a large sample they

would be 90% and 80%. Thus, the low AUCs observed by

Machiela et al are compatible with their study design, but they

could be considerably higher if a larger training sample were

available.

Evans et al considered prediction for the seven diseases of the

WTCCC [19]. Approximately 2000 cases were available for each

disease, with a common set of 1480 controls, and a marker panel

of all SNPs on the Affymetrix 500K chip after quality control and

exclusion of previously known loci. As this is the same chip used in

the ISC study, it is assumed here that the panel is equivalent to

74062 independent SNPs. Logistic regression and allele score

estimators were both used to construct scores, and a series of

P-value thresholds from 1025 to 0.8 were considered.

Table 2 compares the results of Evans et al to the analytic AUC

for the diseases without strong MHC effects, using P,0.8 to select

SNPs into the score, as that threshold generally gave the highest

AUC. At that threshold, the choice of p0 has little bearing on the

results unless it is very close to 1, so it is set to 0. Also shown is the

maximum AUC possible for each disease, obtained by letting the

sample size grow to infinity. Bearing in mind that those authors

noticed inflation in AUC for null SNPs, it is again clear that their

modest results are compatible with the study design, and more

encouraging results might be obtained from a larger sample. The

calculations also confirm their observation that the allele count

estimator is consistently less accurate than logistic regression;

however while the two estimators give similar results at this sample

size, more considerable differences emerge in the limit of large

samples.

Several other studies have reported pseudo-R2 from the

regression of disease on the polygenic score [3,6,9]. Although

prediction was not emphasised by those studies, they may still be

evaluated for that purpose. Recently, Lee et al have argued that,

for genetic predictors, R2 on the liability scale is a more

interpretable measure of accuracy for binary traits [25]. In

Table 3, liability R2 derived from those reports are compared to

analytic values assuming different levels of heritability explained

by the markers. The choice of p0 has little bearing on these results

so it is set to 0 throughout. The reported values are consistent with

the markers explaining around half the heritability, with variation

above and below. This is in line with the estimates of explained

variance that were reported by those studies, and those estimates

also agree well with those obtained using the method proposed

here (equation 6). The low reported values of R2 do not directly

reflect the degree of missing heritability; rather they reflect the

effect of sampling variation on the variance explained by an

estimated score. Corresponding AUC values are also shown, and it

is again clear that the currently modest utility of polygenic scores

for discrimination is explained by limited training sample sizes,

and much better results are possible through larger samples.

What sample size would permit estimation of a score with AUC

at a clinical useful level, or otherwise close to its maximum value?

The answer depends on p0, the proportion of null markers in the

panel, because if this is high then the individual marker effects will

also be high and a low P-value threshold will eliminate much

sampling error from the estimated score. Figure 3 shows AUC as a

function of sample size for Crohn’s disease, which has a high

heritability of 76%, and breast cancer, which has low heritability

of 44% [21], based on a panel of 100,000 independent markers.

This is a similar number to current genotyping products, and

results are given under a scenario in which the panel explains half

the heritability [30]. For each sample size and p0, the P-value

threshold is applied that leads to the highest AUC. An AUC of

0.75 is generally regarded as the minimum useful level for

screening subjects already considered at risk, whereas AUC of 0.99

is sufficient for screening the population at large [31]. For these

two diseases the latter cannot be achieved from genetic data alone,

so Table 4 gives minimum sample sizes for AUC of 0.75 and for

90%, 95% and 99% of the maximum possible AUC given the

heritability.

The most favourable condition shown is p0~0:99, that is there

are 1000 markers with effects on disease. Figure 3 and Table 4

show that a few thousand cases and controls could yield a clinically

useful AUC, but under most conditions several tens of thousands

are needed. Under less favourable conditions – low heritability,

low proportion of null markers – several hundred thousand cases

and controls are needed to obtain an AUC within 10% of the

achievable level, and even an AUC of 0.75 requires some tens of

thousands of subjects. In the worst case the order of magnitude is

of the millions.

Whole genome genotyping is now becoming feasible, under

which the entire narrow-sense heritability would be represented.

Assuming this is equivalent to about one million independent

common SNPs [32], the required sample sizes are shown in

Figure 4 and Table 5. Again, unless the heritability is explained by

about 1000 markers, several tens to hundreds of thousands of

subjects are needed to obtain a clinically useful AUC; for the

genetic predictor to approach its potential, the order of magnitude

is of the millions. The sample sizes to achieve AUC of 0.75 are

larger than for 100,000 SNPs explaining half the heritability, but

the latter scenario cannot achieve AUC of 0.99, so the clinical

context can influence the choice of marker panel used to derive the

predictor. It is clear that at current sample sizes, polygenic scores

are only going to approach useful levels of discrimination if the

marker panels include a high proportion of associated loci and the

number of such loci is relatively small. Furthermore, for highly
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polygenic conditions the sample sizes needed to approach this

potential are an order of magnitude higher than are currently

available.

Finally, Table 6 gives similar calculations for the correlation

between predicted and observed quantitative traits with high

(h2 = 0.8) and moderate (h2 = 0.4) heritability. The prospects here

appear more challenging in terms of the sample sizes needed to

approach the achievable correlation. For example, height has

heritability of about 0.8, and the number of associated variants is

known to be at least in the hundreds [7]. In the most optimistic

scenario shown, 31,000 subjects would be required to derive a

predictor with correlation 0.8 with the true height. In fact these

sample sizes are now being approached by collaborative studies,

and this result confirms that this is necessary for accurate

prediction of quantitative traits in addition to the primary goal

of identifying individually associated markers.

Discussion

To date polygenic score analyses have been performed

opportunistically. The results provided here allow a more

informed appraisal of these analyses, characterisation of the

statistical properties of the methods, and insights into the future

prospects of polygenic modelling. R code to compute the formulae

in this paper is available from the author (sites.google.com/site/

fdudbridge/software/).

Table 2. AUC calculated by Evans et al [19] compared to analytic values when (s2
g1

~
1

2
h2) marker panel explains half the

heritability, or (s2
g1

~h2) marker panel explains the full heritability.

Bipolar
disorder

Coronary artery
disease

Crohn’s
disease Hypertension

Type-2
diabetes

K 0.01 0.056 0.001 0.3 0.03

h2 0.69 0.72 0.76 1 0.6

Linear regression Evans 0.668 0.595 0.614 0.61 0.601

s2
g1

~
1

2
h2 0.570 (0.890) 0.547 (0.843) 0.620 (0.948) 0.539 (0.841) 0.545 (0.832)

s2
g1

~h2 0.638 (0.974) 0.592 (0.948) 0.727 (0.995) 0.577 (0.971) 0.588 (0.934)

Allele count Evans 0.653 0.599 0.617 0.602 0.589

s2
g1

~
1

2
h2 0.561 (0.827) 0.540 (0.780) 0.604 (0.894) 0.533 (0.770) 0.539 (0.772)

s2
g1

~h2 0.620 (0.922) 0.580 (0.880) 0.698 (0.970) 0.567 (0.885) 0.576 (0.868)

K, population prevalence and h2, heritability of liability taken from Wray et al [21] except for hypertension which is assumed fully heritable for illustration. In parentheses,
AUC achieved by an infinite sample.
doi:10.1371/journal.pgen.1003348.t002

Table 3. R2 reported for complex diseases compared to analytic values when (s2
g1

~
1

4
h2,

1

2
h2,h2) marker panel explains one quarter,

one half or the full heritability.

Schiz [3] MS [6] BrCa [14] PrCa [14] RA [9] Celiac [9] MI/CAD [9] T2D [9]

K .01 .001 .036 .024 .0075 .0075 .056 .03

h2 .8 .5 .44 .44 .55 .55 .72 .6

p0 0 0 0 0 .97 .98 .98 .96

Reported R2 .013 .012 .001 .001 .003 .007 .007 .013

s2
g1

~
1

4
h2 R2 .006 (.2) .002 (.125) .0002 (.11) .0002 (.11) .001 (.1375) .0008 (.1375) .001 (.18) .003 (.15)

AUC .56 (.81) .54 (.81) .51 (.71) .51 (.72) .52 (.52) .52 (.77) .52 (.75) .53 (.75)

s2
g1

~
1

2
h2 R2 .024 (.4) .008 (.25) .0008 (.22) .0009 (.22) .006 (.275) .003 (.275) .004 (.36) .010 (.3)

AUC .62 (.91) .58 (.90) .52 (.79) .52 (.80) .56 (.87) .55 (.87) .54 (.84) .57 (.94)

s2
g1

~h2 R2 .089 (.8) .03 (.5) .003 (.88) .003 (.44) .025 (.55) .013 (.55) .017 (.72) .013 (.6)

AUC .72 (.99) .66 (.97) .54 (.89) .54 (.90) .62 (.95) .59 (.96) .58 (.95) .63 (.94)

Reported s2
g1

.3 na na na .18 .44 .48 .49

ŝs2
g1

.29 .31 .30 .28 .21 .40 .47 .34

Schiz, schizophrenia. MS, multiple sclerosis. BrCa, breast cancer. PrCa, prostate cancer. RA, rheumatoid arthritis. Celiac, celiac disease. MI/CAD, early-onset myocardial
infarction or coronary artery disease. T2D, type-2 diabetes. K, population prevalence and h2, heritability of liability taken from Visscher et al [1] and Wray et al [21] except
for celiac, assumed equal to RA. p0, proportion of markers assumed to have no effects. Reported R2, highest R2 reported in cited publication, transformed to the liability
scale. In parentheses, values achieved by an infinite training sample. Reported s2

g1
, variance explained by markers as estimated in cited publication. ŝs2

g1
, estimated

variance explained using method proposed herein.
doi:10.1371/journal.pgen.1003348.t003
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Current sample sizes are clearly adequate for testing association

of a polygenic score in a replication sample, as long as full size

samples are used for both training and testing. This is already

apparent from the extraordinary significance levels reported in the

seminal studies [3,6], but here it is shown that those results are

compatible with realistic genetic models and are not necessarily

explained by analytic biases that accumulate across SNPs. This

had been previously shown by the ISC study, which simulated

Figure 3. AUC as a function of sample size, using a panel of 100,000 markers that explains half the heritability of liability. n, number
of cases and of controls in training sample. Heritability of liability, 76% for Crohn’s disease. 44% for breast cancer. Line annotations are the proportion
of markers with no effect on disease.
doi:10.1371/journal.pgen.1003348.g003

Table 4. Numbers of cases and controls (in 1000s of each, rounded up) required to attain a specified AUC using a panel of 100,000
markers that explains half the heritability of liability.

AUC p0 = 0.99 p0 = 0.90 p0 = 0.75 p0 = 0

Crohn’s disease (h2 = 0.76, K = 0.001, Max = 0.95) 0.75 2 (0.0004) 9 (0.02) 12 (0.5) 12 (1)

0.855 = 0.9*Max 3 (0.0004) 19 (0.01) 34 (0.06) 42 (1)

0.9025 = 0.95*Max 6 (0.0004) 35 (0.008) 68 (0.04) 100 (1)

0.9405 = 0.99*Max 23 (0.0003) 165 (0.004) 349 (0.02) 690 (1)

Breast cancer (h2 = 0.44, K = 0.036, Max = 0.79) 0.75 23 (0.0004) 157 (0.008) 311 (0.03) 476 (1)

0.711 = 0.9*Max 12 (0.0005) 77 (0.01) 144 (0.05) 183 (1)

0.7125 = 0.95*Max 23 (0.0005) 159 (0.01) 315 (0.05) 484 (1)

0.7821 = 0.99*Max 100 (0.00024) 755 (0.00389) 1610 (0.0147) 3281 (1)

p0, proportion of SNPs having no effect on disease. Max, maximum AUC achievable given the genetic variance of the marker panel. In parentheses, P-value threshold
that maximises the AUC.
doi:10.1371/journal.pgen.1003348.t004
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plausible genetic models and showed that they led to similar results

to those observed in the data [3]; here, the result is shown directly

for the common quantitative model, without recourse to simula-

tions. Studies that split a single sample into cross-validation subsets

have been less successful [8,14], but here it is shown that this could

be explained by their limited sample sizes, and more encouraging

results for the same traits could be obtained with modestly

increased samples.

Figure 4. AUC as a function of sample size, using a panel of 1,000,000 markers that explains the full heritability. n, number of cases
and of controls in training sample. Heritability of liability, 76% for Crohn’s disease. 44% for breast cancer. Line annotations are the proportion of
markers with no effect on disease.
doi:10.1371/journal.pgen.1003348.g004

Table 5. Numbers of cases and controls (in 1000s of each, rounded up) required to attain a specified AUC using a panel of
1,000,000 markers that explains the full heritability.

AUC p0 = 0.999 p0 = 0.99 p0 = 0.90 p0 = 0.75 p0 = 0

Crohn’s disease (h2 = 0.76, K = 0.001, Max = 1.00) 0.75 1 (0.00007) 5 (0.0004) 25 (0.08) 27 (1) 27 (1)

0.9 = 0.9*Max 2 (0.00007) 10 (0.0004) 62 (0.01) 107 (0.1) 117 (1)

0.95 = 0.95*Max 3 (0.00007) 16 (0.0005) 103 (0.01) 190 (0.05) 243 (1)

0.99 = 0.99*Max 8 (0.00007) 58 (0.0003) 413 (0.006) 847 (0.02) 1487 (1)

Breast cancer (h2 = 0.44, K = 0.036, Max = 0.89) 0.75 6 (0.00007) 41 (0.0004) 256 (0.01) 448 (0.09) 505 (1)

0.801 = 0.9*Max 9 (0.00007) 65 (0.0005) 428 (0.009) 806 (0.05) 1062 (1)

0.8455 = 0.95*Max 17 (0.00007) 124 (0.0004) 857 (0.007) 1702 (0.03) 2656 (1)

0.8811 = 0.99*Max 77 (0.00007) 566 (0.0002) 4305 (0.004) 9223 (0.01) 19191 (1)

p0, proportion of SNPs having no effect on disease. Max, maximum AUC achievable given the genetic variance of the marker panel. In parentheses, P-value threshold
that maximises the AUC.
doi:10.1371/journal.pgen.1003348.t005
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When a sample is to be split into two subsets, a roughly even

split yields the greatest power for testing association of the score.

However, for predicting individual trait values it is more important

for the training set to be large, and standard procedures such as

10-fold cross-validation remain preferable. If both testing and

prediction are intended from a single sample, a pragmatic

approach is to ensure adequate power by allocating about 2000

cases and 2000 controls to the replication sample, providing this is

less than half the total, and then to ensure high predictive accuracy

by allocating the remainder to the training sample.

The outlook for disease and trait prediction is more challenging.

To date the severe shortfall in the accuracy of genetic predictors

has generally been ascribed to incomplete coverage of marker

panels or failure to identify sufficiently many associated markers.

Here, however, no criteria for declaring individual significance are

imposed, but neither does the calculation force the predictor to

include markers that contribute no information. Under this

pragmatic approach it results that tens of thousands of subjects,

at least, are needed to derive predictors that are clinically useful.

Furthermore, previous results on the potential accuracy of genetic

prediction [17,20–22] only become relevant at very large sample

sizes. Such numbers are now coming within reach of national

biobank projects and international consortia, so the emergence of

useful genetic predictors may not be too far off, although such

large samples create issues of effect heterogeneity that are not

addressed here. Recent estimates of the proportion of markers

having effects also suggest that the more optimistic scenarios

shown in Table 4, Table 5, Table 6 may apply [9,33]. Although

the focus here is on AUC, various other measures of predictive

accuracy are possible and can be computed within the same

framework [24,25]. The expressions given here could be adapted

to other measures without much difficulty.

For some diseases, fairly high AUC has already been observed

[17,19]. This does not conflict with the present work but reflects

the presence of major gene effects, usually in the MHC, which

depart from the quantitative model treated here. Similarly, some

diseases have non-genetic risk factors that already admit clinically

useful predictors. There the more relevant issue is the extent to

which genetics improves established models [34]. Again the focus

has tended to lie on identifying specific markers to improve

prediction, rather than the sample size needed to accurately

estimate their combined effects. The approach taken here could

easily be extended to accommodate additional fixed effects.

A fairly general construction of the polygenic score has been

described, including weighted and unweighted methods from

single marker analysis, and shrinkage methods used in multivariate

analysis. There is little to choose between these estimators in terms

of power, correlation or AUC, but the unweighted estimator will

perform relatively worse as sample size increases since its sampling

error does not reduce to zero. Shrinkage estimation leads to

reduced mean square error for prediction and has some other

advantages [35,36], but in the main applications for polygenic

scores to date, namely association testing and AUC, it does not

improve over the linear regression estimate.

However, some ideal conditions have been assumed including

independence of markers and of study subjects. In reality markers

will be in linkage disequilibrium and the approximation by an

effective number of independent tests is heuristic. Similarly,

subjects will be related, if distantly. Results from real data may

depart from those presented here if proper account is taken of

relationships between subjects. In particular, shrinkage estimation

is likely to improve power and correlation, as well as mean square

error, by analysing all markers simultaneously rather than each

one marginally [37].

The assumption that effects are normally distributed is

necessary when markers are selected by their P-values but not

otherwise. Similarly, allowing a proportion of markers to have no

effect only makes a difference when selecting markers by P-values.

Thus the present results are relevant even if one does not entirely

accept the polygenic model proposed. The normal distribution

simplifies some calculations, but various heavy-tailed distributions

have also been proposed for GWAS data [38,39] and would lead

to improved prediction if such models held in truth. Furthermore

the assumption of normality applies to effects on the standardised

genotype scale, but there are plausible models for effect sizes as a

function of allele frequency, leading to non-normal effects on the

standardised scale. This may particularly affect the results for

shrinkage estimation when the degree of shrinkage varies for

markers with different allele frequencies. The numerical results

presented are therefore not definitive but should be taken a guide

to the likely magnitude of results in specific applications.

A novel approach to estimating parameters of the polygenic model

has been proposed, showing promise for inferring the explained

genetic variance and/or proportion of null markers. The method

yields estimates that are similar to those obtained by existing

approaches [1,37]. A similar approach to estimation has been

developed by Stahl et al [9], based on simulating GWAS data from

proposed models, and using rejection sampling to construct posterior

distributions of their parameters. Apart from the accommodation of

prior distributions (which were uninformative), this is essentially the

same approach as used here except that whole genome simulation is

used to obtain a sampling distribution. The analytic results provided

here should allow this approach to be implemented more efficiently,

and this will be attempted in future work.

Table 6. Numbers of subjects (in 1000s, rounded up) required to attain a specified correlation with a normal trait using a panel of
1,000,000 markers that explains the full heritability.

Correlation p0 = 0.999 p0 = 0.99 p0 = 0.90 p0 = 0.75 p0 = 0

h2~0:8 (Max = 0.894) 0.8046 = 0.9*Max 31 (0.00007) 227 (0.0004) 1601 (0.007) 3231 (0.03) 5329 (1)

0.8493 = 0.95*Max 55 (0.00007) 411 (0.0003) 3004 (0.005) 6250 (0.02) 11571 (1)

0.88506 = 0.99*Max 213 (0.00007) 1546 (0.0002) 12171 (0.003) 26724 (0.01) 61565 (1)

h2~0:4 (Max = 0.632) 0.5688 = 0.9*Max 61 (0.00007) 453 (0.0004) 3201 (0.007) 6461 (0.03) 10658 (1)

0.6004 = 0.95*Max 109 (0.00007) 821 (0.0003) 6007 (0.005) 12500 (0.02) 23141 (1)

0.62568 = 0.99*Max 426 (0.00007) 3092 (0.0002) 24341 (0.003) 53448 (0.01) 123128 (1)

p0, proportion of SNPs having no effect on the trait. Max, maximum correlation achievable given the genetic variance of the marker panel. In parentheses, P-value
threshold that maximises the correlation.
doi:10.1371/journal.pgen.1003348.t006
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The P-value thresholds that maximise the power and AUC are

more permissive than the usual thresholds for individual markers.

This means that polygenic analyses can be powerful while still

including many non-significant markers, so they will continue to

be useful as long as individually associated markers remain to be

discovered. Although larger samples are needed for useful risk

prediction, polygenic scores have an ongoing current role in

assessing the variance explained by marker panels and the genetic

correlation between related traits and populations.

Methods

Quantitative model
Recall equation 1 in which a pair of traits Y~(Y1,Y2)

0
is

expressed as a linear combination of m genetic effects and an error

term that includes environmental and unmodelled genetic effects:

Y~b
0
GzE~

Xm

i~1

bi1GizE1,
Xm

i~1

bi2GizE2

 !0

where b is a m|2 matrix of coefficients, G is a m-vector of coded

genetic markers, and E is a pair of random errors that are

independent of G. Assume that the markers Gi are independent

and standardised. In the usual case of single nucleotide polymor-

phism (SNP) genotypes under Hardy-Weinberg Equilibrium,

Gi~(Xi{2fi)=(2fi(1{fi))
1
2 where Xi is the number of minor

alleles and fi is the minor allele frequency at SNP i. The genetic

effects bij are regarded as fixed across samples but random over

i~1,:::,m with E(bij)~0, var(bij)~s2
j and cov(bi1,bi2)~s12.

Then the variance-covariance matrix of Y is written as

SY~
ms2

1zs2
e1

ms12

ms12 ms2
2zs2

e2

" #
~

s2
g1

zs2
e1

rsg1
sg2

rsg1
sg2

s2
g2

zs2
e2

" #

For continuous traits, assume without loss of generality that Y1

and Y2 are standardised so that s2
g1

and s2
g2

are the proportions of

variation of each trait explained by G. These quantities will be

called the explained genetic variances, and are bounded above by

the heritabilities.

The genetic effects on Y1 are estimated from a sample of size n1

and used to construct a polygenic score to be tested for association

to Y2 in an independent sample of size n2. Define the polygenic

score to be

ŜS~
Xm

i~1

b̂bi1Gi

Clearly E(ŜS)~0. Furthermore if E(b̂bi1)~0 then

var(ŜS)~
Xm

i~1

var(b̂bi1Gi)~
Xm

i~1

b̂b2
i1&m var(b̂bi1)

cov(ŜS,Y2)~E
Xm

i~1

b̂bi1Gi

Xm

i~1

bi2Gi

" #
~E

Xm

i~1

b̂bi1bi2G2
i

" #

~
Xm

i~1

b̂bi1bi2&m cov(b̂bi1,bi2)

ð7Þ

These expressions are equalities in the limit of large m but are

approximations for a finite number of markers because the true

effects bij are a sample from their random effects distribution.

Equations 2–6 in Results follow immediately, in which the key

quantities are cov(b̂bi1,b2) and var(b̂bi1). They in turn depend upon

the form of the estimator b̂bi1, for which three alternatives are now

discussed.

Linear regression
A natural estimate of bi1 is the least squares estimate from the

univariate linear regression of Y1 on Gi. Then b̂bi1 is asymptotically

normally distributed with sampling mean bi1 and variance

var(b̂bi1{bi1)~(1{s2
1)n{1

1 since Gi is standardised by definition.

Assuming that genetic effects are small, it is henceforth conserva-

tively taken that var(b̂bi1{bi1)&n{1
1 as previously suggested by

Daetwyler et al [23]. The total variance of this estimator over

markers and samples is var(b̂bi1)~s2
1zn{1

1 , and its correlation

with the effects on Y2 is

cov(b̂bi1,bi2)~cov(bi1zei1,bi2)~cov(bi1,bi2)~s12

where ei1 are the sampling errors. Immediate power and accuracy

calculations are then available by substituting var(b̂bi1)~s2
1zn{1

1

and cov(b̂bi1,bi2)~s12 into equations 2–5. When cov(bi1,bi2)~s2
1,

as when the same trait is considered in both samples, equation 2

gives the formula previously derived by Daetwyler et al [23],

modified to allow for prediction of the phenotype rather than the

genetic value. In the present notation,

R2
ŜS,Y2

~
m2s4

1

(s2
1zn{1

1 )var(Y2)
~s2

g1

n1

m
s2

g1

(
n1

m
s2

g1
z1)var(Y2)

corresponds to equation 1 of those authors, with the additional

factor s2
g1

being the genetic variance of the phenotype. This shows

that the key determinants of the predictive accuracy are the

variance explained by the markers and the ratio of the sample size

to the number of markers.

Now suppose markers are only selected into the polygenic score

if they have two-tailed P-values between thresholds p0,p1 where

0ƒp0ƒp1ƒ1. Asymptotically the equivalent constraint for b̂bi1 is

obtained from the Wald statistic as

n
{1

2q1ƒ b̂b1j

��� ���ƒn
{1

2q0 ð8Þ

where q0~W{1(1{
1

2
p0), q1~W{1(1{

1

2
p1).

Suppose further that a proportion p0 of the m markers have no

effect on Y1 (ie. bi1~0), and the remaining markers have effects

drawn from N(0,(1{p0){1s2
1). Then among the null markers the

variance of b̂bi1, conditional on selection into the polygenic score, is

obtained from properties of the truncated normal distribution as

[40]

n{1
1 1z

q1w(q1){q0w(q0)

W(q0){W(q1)

� �
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Similarly, among the non-null markers the variance of b̂b1j ,

conditional on selection into the polygenic score, is

((1{p0){1s2
1zn{1

1 ) 1z
r1w(r1){r0w(r0)

W(r0){W(r1)

� �
ð9Þ

where r0~q0(n1(1{p0){1s2
1z1)

{1
2, r1~q1(n1(1{p0){1s2

1z

1)
{1

2. The probability that a null marker is selected into the

polygenic score is 2p0(W(q0){W(q1)) and the corresponding

probability for a non-null marker is 2(1{p0)(W(r0){W(r1)).

Therefore the total variance of b̂bi1 is

var(b̂bi1)~2p0n{1
1 W(q0){W(q1)zq1w(q1){q0w(q0)½ �z

2(1{p0)((1{p0){1s2
1zn{1

1 ) W(r0){W(r1)zr1w(r1){r0w(r0)½ �
ð10Þ

Note that when p0~0 and p1~1, that is all markers are included

in the score, then equation 10 reverts to var(b̂bi1)~s2
1zn{1

1 ,

which is invariant to the proportion of null markers p0 and does

not assume a normal distribution for the non-null effects [23].

To obtain cov(b̂bi1,bi2) allowing for selection of markers, note

that the regression of bi2 on b̂bi1 has the same coefficient regardless

of selection on b̂bi1. For non-null markers this coefficient is

(1{p0){1s12

(1{p0){1s2
1zn{1

1

and the covariance is this coefficient times the conditional variance

of b̂bi1 given in equation 9. For null markers the covariance is zero,

so the total covariance is

cov(b̂bi1,bi2)~
(1{p0){1s12

(1{p0){1s2
1zn{1

1

:

2(1{p0)((1{p0){1s2
1zn{1

1 ) W(r0){W(r1)zr1w(r1){r0w(r0)½ �

~2s12 W(r0){W(r1)zr1w(r1){r0w(r0)½ �

This expression is substituted into equations 2–5 together with the

variance in equation 10 to obtain the power and accuracy of the

polygenic score when markers are selected into the score based on

their P-values.

Shrinkage estimation
It is well known that estimation and prediction for multivariate

models can be improved, in terms of mean squared error, by

assuming that their effects come from a common underlying

distribution. A common approach in quantitative genetics is to fit a

mixed model in which genetic markers have random effects for which

best linear unbiased predictors (BLUPs) are obtained [35]. This is one

of several closely related formulations of multilevel models [36]. As

these approaches tend to give similar results when the number of

markers is large, a basic Bayesian estimation scheme is outlined here

and will be assumed to give typical results for a shrinkage estimator.

Suppose bi1 has the prior distribution bi1*N(0,s2
1), and let the

‘‘data’’ consist of the univariate linear regression estimates,

b̂bi1Dbi1*N(bi1,n{1
1 ). Then the posterior for bi1 given b̂bi1 is also

normal, bi1Db̂bi1*N(Ab̂bi1,An{1
1 ) where A~

s2
1

s2
1zn{1

1

[41]. A

natural estimator for bi1 is therefore the posterior mean ~bbi1~Ab̂bi1

for which var(~bbi1)~A2 var(b̂bi1)and cov(~bbi1,bi2)~A cov(b̂bi1,bi2).
Since all effects are shrunk by the same factor A it follows that this

approach leads to the same power and correlation as the linear

regression estimator b̂bi1, but the mean square error is reduced to

mA2 var(b̂bi1){2mA cov(b̂bi1,bi2)z1.

Allele count
A currently common approach is to construct the polygenic

score by summing the number of trait-increasing alleles across

selected markers, without considering their effect sizes other than

to identify the direction of association at each marker. This may be

called an unweighted score, in contrast to the above approaches

that estimate weights for each marker. The unweighted score may

be more robust against errors in estimating the effect sizes arising

from limited sample size, population heterogeneity, ‘‘winner’s

curse’’ bias, and confounding by population structure. Here a

related approach is considered in which all markers are given the

same absolute effect size on the standardised genotype scale. This

is equivalent to the allele counting approach when all markers

have the same allele frequency. When allele frequencies are

heterogeneous, allele counting assumes that all markers have the

same effect on the trait, whereas the present approach assumes

that all markers contribute the same proportion of variance to the

trait. Both models can be criticised but the present approach will

allow the comparison of weighted to unweighted scores without

considering the distribution of allele frequencies or their relation to

the effect sizes.

The polygenic score is now calculated as

ŜS~
Xm

i~1

sgn(b̂bi1)Gi

where sgn(x)~
xj j
x

and b̂bi1 is the linear regression estimate as

before. Clearly var(sgn(b̂bi1))~1. The covariance cov(sgn(b̂bi1),bi2)
is obtained by integrating over the distribution of bi1. Allow again

for selection of markers by their P-values as in equation 8 and

denote the selection event by f : n
{1

2q1ƒ b̂b1j

��� ���ƒn
{1

2q0. Then using

the symmetry of the distribution of bi1 the required covariance is

cov(sgn(b̂bi1),bi2)~E(sgn(b̂bi1)bi2)

~2

ð?
x~0

Pr(bi1~xjf)

Pr(b̂bi1w0jbi1~x,f){Pr(b̂bi1v0jbi1~x,f)
h i

E(bi2jbi1~x)dx

~2

ð?
x~0

Pr(bi1~x)Pr(fjbi1~x)

Pr(f)

(Pr(b̂bi1w0,fjbi1~x){Pr(b̂bi1v0,fjbi1~x))

Pr(fjbi1~x)

E(bi2jbi1~x)dx

~
2

Pr(f)

ð?
x~0

Pr(bi1~x) Pr(b̂bi1w0,fjbi1~x){Pr(b̂bi1v0,fjbi1~x)
h i

E(bi2jbi1~x)dx

The probabilities in this expression are as follows. The selection

probability is again
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Pr(f)~2(1{p0)(W(r0){W(r1))z2p0(W(q0){W(q1)):

The probability density for nonzero bi1 is

Pr(bi1~x,bi1=0)~Pr(bi1=0)Pr(bi1~xjbi1=0)

~(1{p0)
3
2s{1

1 w(x(1{p0)
1
2s{1

1 ):

Given some value of bi1w0 the probability that its estimator is also

positive, and the marker is selected into the score, is

Pr(b̂bi1w0,fDbi1)~W(q0{n
1
2
1bi1){W(q1{n

1
2
1bi1)

Similarly given bi1w0

the probability that its estimator is negative, and the marker is

selected, is

Pr(b̂bi1v0,fDbi1)~W({q1{n
1
2
1bi1){W({q0{n

1
2
1bi1)

Finally the conditional mean of bi2 given bi1 is given by properties of

the bivariate normal distribution as E(bi2Dbi1)~
s12

s2
1

bi1. The

integral can be evaluated numerically, yielding values for power

and accuracy from equations 2–5.

Binary traits
The forgoing is based on linear regression, which is the usual

approach for quantitative traits. For binary traits the standard

analysis is logistic regression, used both for estimating the coefficients

bi1 in the polygenic score and for testing the association of the score

in a replication sample. For small effects the log-odds are

approximately linear in the predictors, so we may continue to work

in a linear regression framework for estimating power and accuracy.

That is, the binary trait is coded as 0/1 and treated as the response in

ordinary linear regression. The variance of Y2 in equation 2 is now

the binomial variance P2(1{P2) where Pj is the proportion of study

subjects with Yj~1. In a prospective sample, Pj is the population

proportion of the trait, whereas in a case/control sample (to be

discussed further below), it is the sampling proportion of cases.

The binary traits are now assumed to arise from a liability

threshold model, under which all individuals have an underlying

normally distributed trait, called the liability, and all those whose

liability exceeds a fixed threshold will exhibit the trait. Although

the liability is not directly observed, this model has several

advantages for modelling polygenic effects, including indepen-

dence of the genetic effects from the trait prevalence, and an

elegant linear transformation between effects on liability to

corresponding effects on the observed (0/1) trait. This model has

recently been elucidated by several authors for studying the

quantitative genetics of binary traits in humans, and the reader is

referred to their papers for more detailed discussion [21,24,30].

Assuming the marginal liabilities Lj are distributed as a

standard normal, the threshold for exhibiting trait j[f1,2g is

tj~W{1(1{Kj) where Kj is the population prevalence. The

genetic effects bij are now taken to act on liability, and for small

effects a linear transformation to the corresponding effect on the

observed trait may be obtained as [30]

bij

cov(Lj ,Yj)

var(Lj)
~bijE(LjYj)~bijK

w(tj)

K
~w(tj)bij ð11Þ

Given the genetic variance-covariance matrix SY on the liability

scale, the statistical properties of the polygenic score may now be

calculated as before, but substituting w(tj)
2s2

j for s2
j and

w(t1)w(t2)s12 for s12 throughout, and using P1(1{P1)n{1
1 as

the sampling variance of b̂bij .

Sensitivity and specificity are often of interest in the prediction

of binary traits. In particular, the accuracy of a predictor can be

assessed by the AUC constructed as follows. Subjects are classified

such that those with a polygenic score above a fixed threshold are

predicted to have the trait, those below the threshold to not have

it. Sensitivity is the proportion of subjects with the trait who are

correctly predicted as such, and specificity the proportion of

subjects without the trait correctly predicted as such. Each possible

threshold leads to a value of sensitivity and specificity, defining the

receiver operator characteristic curve by plotting sensitivity against

1-specificity. The AUC can be defined as the probability that a

pair of subjects, one with the trait and one without, is correctly

classified by the predictor. Because the central limit theorem

implies that the polygenic score is normally distributed, the

expected AUC can be calculated as [21]

AUC~W
E(ŜSDY2~1){E(ŜSDY2~0)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var(ŜSDY2~1)zvar(ŜSDY2~0)

q
0
B@

1
CA ð12Þ

In this expression, ŜS is formed from effects on Y1 estimated on the

observed scale whereas the conditional means and variances are

conveniently calculated on the liability scale for Y2. There is a

linear transformation between effects on Y1 and those on Y2,

defined by their bivariate normal distribution, and equation 11

gives another linear transformation between effects on Y2 and

those on L2. Equation 12 may therefore be equivalently written in

terms of effects on L2 with the corresponding score denoted ŜSL2
.

The conditional means and variances are functions of the variance

in L2 explained by ŜSL2
[21,40], which is R2

ŜS,Y2
var(Y2=w(t2)),

giving

E(ŜSL2
DY2~1)~

w(t2)

K2

R2
ŜS,Y2

K2(1{K2)

w2(t2)
~

R2
ŜS,Y2

(1{K2)

w(t2)

and

var(ŜSL2
jY2~1)~

R2
ŜS,Y2

K2(1{K2)

w(t2)2
1{

R2
ŜS,Y2

(1{K2)

w(t2)

w(t2)

K2

{t2

� 	2
4

3
5:
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Similarly

E(ŜSL2
DY2~0)~

{R2
ŜS,Y2

K2

q(t2)

and

var(ŜSL2
DY2~0)~

R2
ŜS,Y2

K2(1{K2)

q(t2)2
1{

R2
ŜS,Y2

K2

q(t2)

q(t2)

1{K2

zt2

� 	2
4

3
5:

Case/control studies
In case/control studies the increased ascertainment of cases

leads to departure from the normal distribution of liability

assumed in the previous subsection. To overcome this problem,

it is again assumed that there is a linear transformation from an

effect bi1 on liability to one on the observed trait in which the 0/1

response denotes ascertained case status.

When there is no selection on Yj or Gi the regression of Yj on

Gi has coefficient
cov(Yj ,Gi)

var(Gj )
~cov(Yj ,Gi)~q(tj)bij from equation

11. The converse regression of Gi on Yj has coefficient
cov(Yj ,Gi)

var(Yj )
~

q(tj )bij

Kj (1{Kj )
. The latter will also apply when there is

ascertainment on Yj , but the regression of Gi on ascertained Yj

can also be written as
cov(Yj ,Gi DA)

var(Yj DA)
, where A denotes ascertainment,

so that

cov(Yj ,Gi DA)~
q(tj)bij var(Yj DA)

Kj(1{Kj)

The desired quantity is the coefficient for the regression of

ascertained Yj on Gi which is thus

q(tj)bij var(Yj DA)

Kj(1{Kj)var(Gi DA)

In general the variance of genetic markers Gi will differ from 1

under ascertainment but it will henceforth be assumed that its

expectation over markers is approximately 1. A heuristic

justification for this assumption is given in the Text S1. Based

on this assumption, an effect bij on liability is transformed by the

factor

q(tj)
Pj(1{Pj)

Kj(1{Kj)
ð13Þ

to the observed case/control scale. Similarly to before, given the

genetic variance-covariance matrix SY on the liability scale, the

properties of the polygenic score can be calculated on the observed

scale, substituting q(tj)
2

P2
j

(1{Pj )2

K2
j

(1{Kj )2
s2

j for s2
j and

q(t1)q(t2)
P1(1{P1)P2(1{P2)

K1(1{K1)K2(1{K2)
s12 for s12 throughout, and using

P1(1{P1)n{1
1 as the sampling variance of b̂bij .

To obtain the AUC, the same approach as before is used, but

now using

R2
ŜS,Y2

var
K2(1{K2)

q(t2)P2(1{P2)
Y2

� 	

as the variance in L2 explained by ŜSL2
. Therefore,

E(ŜSL2
jY2~1)~

w(t2)

K2
R2

ŜS,Y2

K2(1{K2)

w(t2)P2(1{P2)

� 	2

P2(1{P2)

~
R2

ŜS,Y2
K2(1{K2)2

w(t2)P2(1{P2)

and

var(ŜSL2
jY2~1)~R2

ŜS,Y2

K2(1{K2)

w(t2)P2(1{P2)

� 	2

P2(1{P2)

1{
R2

ŜS,Y2
K2(1{K2)2

w(t2)P2(1{P2)

w(t2)

K2
{t2

� 	2
4

3
5

Similarly

E(ŜSL2
DY2~0)~~

{R2
ŜS,Y2

K2
2 (1{K2)

q(t2)P2(1{P2)

and

var(ŜSL2
jY2~0)~R2

ŜS,Y2

K2(1{K2)

w(t2)P2(1{P2)

� 	2

P2(1{P2)

1{
R2

ŜS,Y2
K2

2 (1{K2)

w(t2)P2(1{P2)

w(t2)

K2
zt2

� 	2
4

3
5

The transformation from liability to observed scales differs from

that of Lee et al [30], which is for the total genetic liability (their

equation 19). Here the interest is in the individual marker effects

on the observed scale, because they are what are estimated when

constructing the polygenic score.

Liability R2

The derived expressions involve R2
ŜS,Y2

which is the coefficient of

determination on the observed scale. Lee et al have argued that,

for a genetic predictor, R2 on the liability scale is more

interpretable for binary traits as it is invariant to the population

prevalence and sampling ratio [25]. An approximate transforma-

tion to the liability scale is obtained by transforming the genetic

effects using equation 13 and rescaling the trait variance from the

binomial variance on the observed scale to the unit variance on the

liability scale. Therefore,

R2
liab&R2

ŜS,Y2

K2
2 (1{K2)2

q(t2)2P2(1{P2)

Log-risk model
An alternative to the liability threshold model is the log-risk

model for binary traits, which is equivalent to the logistic model in

the limit of low prevalence. Here the polygenic score estimates the
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log risk of disease, which is assumed to be normally distributed in

the population with mean log K{log lS and variance 2 log lS ,

where lS is the sibling relative recurrence risk [17,20]. Under this

model the log risk has the same variance in cases and controls, but

the mean log risk among cases is increased by that same variance,

becoming log Kzlog lS . This model allows a simpler calculation

of AUC for rare disease, which is given here but not pursued

further.

Given Kj and lSj
and denoting log-risk of trait j by Rj , the

transformation from log-risk to observed scales is

cov(Rj ,Yj)

var(Rj)
~

E(RjYj){E(Rj)E(Yj)

2 log lSj

~
Kj(log Kjzlog lSj

){(log Kj{log lSj
)Kj

2 log lSj

~Kj

with the same adjustment for case/control ascertainment (equa-

tion 13). The difference in polygenic scores between cases and

controls is the variance of the score,

E(ŜSL2
jY2~1){E(ŜSL2

jY2~0)~R2
ŜS,Y2

K2(1{K2)

K2P2(1{P2)

� 	2

P2(1{P2)

~
R2

ŜS,Y2
(1{K2)2

P2(1{P2)

Since the polygenic score has the same variance in cases and

controls, equation 12 gives the AUC as

AUC~W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

ŜS,Y2
(1{K2)2

2P2(1{P2)

vuut
0
B@

1
CA

Simulations
The derived expressions were compared to simulations in which

the major assumptions were examined under realistic scenarios.

These assumptions include a large number of markers with effects,

for equality in equation 7, and small genetic effects, so that effects

on the liability scale are approximately linear. In case/control

designs the disease prevalence is assumed to be not too small, so

that the variance of the ascertained genotypes remains near 1 as

assumed in equation 13 and Text S1. Effects are assumed to be

normally distributed on the standardised genotype scale. Sample

sizes are assumed large so that estimates of genetic effects are

normally distributed.

A baseline scenario was defined to reflect that seen in recent

studies, as follows. Two normally distributed traits were simulated

with explained genetic variances 0.4 and 0.3 and correlation of

genetic effects of 0.65. Genotypes from 100,000 independent SNPs

were simulated, with minor allele frequencies uniformly distribut-

ed on (0.01, 0.5). This reflects current marker panels that directly

explain about half the heritability [1]. The proportion of null SNPs

was 0.95 or 0.99 [9], with the same SNPs having effects for both

traits. Their effect sizes were drawn from the bivariate normal

distribution such that the desired variances and covariance were

attained. The traits were then generated from the quantitative

model in equation 1.

The polygenic score was estimated using the first trait in a

sample of 4000 unrelated subjects. The score was constructed

using P-value thresholds of 0.1 and 0.001 for p0 = 0.95 and 0.99

respectively; these thresholds yielded the highest R2 and AUC

values. The score was then tested for association with the second

trait in an independent sample of 4000 subjects. The correlation

and mean square error between the score and the second trait

were also estimated in the second sample. The association tests

were used in equation 6 to estimate the explained genetic

variances in the first and second samples in turn, and then the

covariance between effects in the two samples, each time keeping

other parameters fixed to their simulation values.

Table S1 shows estimates from 1000 simulations compared to

the analytic values, for the three estimators discussed. Mean

square error for the allele count estimator is not meaningful

without further scaling of the polygenic score, which is a further

problem not of present interest. All simulations agree well with the

analytic results. Because the variances and covariance are

bounded in (0,1), their median estimates are shown with the

coverage, rather than their means. The proposed estimating

equations are seen to be accurate, but the confidence intervals are

anti-conservative when the number of markers with effects is low,

here 1000. This is because the realised variance and covariance in

equation 7 depart from their large m expectation, with resulting

over-dispersion in the estimating equation (left hand side of

equation 6). However when the number of markers with effects is

5000, the correct coverage is attained.

The traits were then treated as liabilities for binary diseases with

prevalence 0.2. Disease status was simulated prospectively, as in a

cohort study. The polygenic score was estimated and tested using

both linear and logistic regression. Table S2 shows estimates of

power and AUC compared to the analytic values. Results for the

shrinkage estimator are identical to the regression estimator and

are not shown. All simulations agree well with the analytic results,

and the proposed estimating equations are accurate. The results

for logistic regression agree well with those for linear regression,

justifying the use of the latter to derive the analytic results.

Then, a case/control design was simulated in which the disease

prevalence was now 0.001. The same total sample sizes were used

but included equal numbers of cases and controls. A computa-

tionally efficient approach to this simulation is described in Text

S2. The results are given in Table S3. Again all simulations are

seen to agree with the analytic values, but when the number of

markers with effects is low, there is a downward bias in the

parameter estimates and the confidence intervals of the parameter

estimates are anti-conservative. Again the logistic regression results

agree well with those for linear regression. Taking Tables S1, S2,

S3 together, the analytic methods are accurate for the strongest

effects likely to be seen in current studies, but when the number of

SNPs with effects is about 1000, there is downward bias in the

effect estimates and under-coverage of the confidence intervals, the

degree of which appears to vary with the strength of the

association.

To assess robustness to normality of the marker effects, the

simulations were repeated with the effects drawn from Laplace

distributions and then rescaled to give the same explained variance

and correlation as before. Instead of p0 = 0.95 and P,0.1,

simulations with p0 = 0 and P,1 were performed to verify that

this situation does not assume normality. The results in Table S4,

Table S5 and Table S6 confirm this to be the case, whereas when

p0 = 0.99 and P,0.001 the analytic expressions tend to underes-

timate the power and accuracy. This is due to the heavier tails of

the Laplace distribution compared to the normal, and quantita-

tively different results would be seen for different generating

models. Again, bias and under-coverage is seen when there are

1000 markers with effects.
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Supporting Information

Table S1 Simulations of quantitative traits compared to analytic

results. Analytic values are in parentheses. Genotypes for 100,000

SNPs were simulated in 4000 subjects in each of two samples.

Minor allele frequencies were drawn from Unif(0.01,0.5). Effect

sizes in the two samples were drawn from the bivariate normal

distribution with marginal variances 0.4, 0.3 and correlation 0.65.

p0, proportion of SNPs having no effect on traits. P, P-value for

including SNP in the polygenic score. NCP, non-centrality

parameter. Power computed at a= 0.05. MSE, mean square

error. s2
1, s2

2, r, median estimates of model parameters, with

coverage of 95%CI in brackets.

(DOCX)

Table S2 Simulations of binary traits in prospective samples

compared to analytic results. Analytic values are in parentheses.

Genotypes for 100,000 SNPs were simulated in 4000 subjects in

each of two samples. Minor allele frequencies were drawn from

Unif(0.01,0.5). Effect sizes on liability were drawn from the

bivariate normal distribution with marginal variances 0.4, 0.3 and

correlation 0.65. Trait prevalence was 0.2 in both samples. p0,

proportion of SNPs having no effect on traits. P, P-value for

including SNP in the polygenic score. NCP, non-centrality

parameter. Power computed at a= 0.05. AUC, area under

receiver-operator characteristic curve. s2
1, s2

2, r, median estimates

of model parameters, with coverage of 95%CI in brackets.

(DOCX)

Table S3 Simulations of binary traits in case/control samples

compared to analytic results. Analytic values are in parentheses.

Genotypes for 100,000 SNPs were simulated in 4000 subjects in

each of two samples. Minor allele frequencies were drawn from

Unif(0.01,0.5). Effect sizes on liability were drawn from a bivariate

normal distribution with marginal variances 0.4, 0.3 and

correlation 0.65. Trait prevalence was 0.001 in both samples,

cases and controls sampled in equal proportion. p0, proportion of

SNPs having no effect on traits. P, P-value for including SNP in

the polygenic score. NCP, non-centrality parameter. Power

computed at a= 0.05. AUC, area under receiver-operator

characteristic curve. s2
1, s2

2, r, median estimates of model

parameters, with coverage of 95%CI in brackets.

(DOCX)

Table S4 Simulations of quantitative traits compared to analytic

results. Analytic values are in parentheses. Genotypes for 100,000

SNPs were simulated in 4000 subjects in each of two samples.

Minor allele frequencies were drawn from Unif(0.01,0.5). Effect

sizes in the two samples were drawn from Laplace distributions

such that their marginal variances were 0.4, 0.3 and their

correlation was 0.65. p0, proportion of SNPs having no effect on

traits. P, P-value for including SNP in the polygenic score. NCP,

non-centrality parameter. Power computed at a= 0.05. MSE,

mean square error. s2
1, s2

2, r, median estimates of model

parameters, with coverage of 95%CI in brackets.

(DOCX)

Table S5 Simulations of binary traits in prospective samples

compared to analytic results. Analytic values are in parentheses.

Genotypes for 100,000 SNPs were simulated in 4000 subjects in

each of two samples. Minor allele frequencies were drawn from

Unif(0.01,0.5). Effect sizes on liability were drawn from Lapace

distributions such that their marginal variances were 0.4, 0.3 and

their correlation was 0.65. Trait prevalence was 0.2 in both

samples. p0, proportion of SNPs having no effect on traits. P, P-

value for including SNP in the polygenic score. NCP, non-

centrality parameter. Power computed at a= 0.05. AUC, area

under receiver-operator characteristic curve. s2
1, s2

2, r, median

estimates of model parameters, with coverage of 95%CI in

brackets.

(DOCX)

Table S6 Simulations of binary traits in case/control samples

compared to analytic results. Analytic values are in parentheses.

Genotypes for 100,000 SNPs were simulated in 4000 subjects in

each of two samples. Minor allele frequencies were drawn from

Unif(0.01,0.5). Effect sizes on liability were drawn from Laplace

distributions such that their marginal variances were 0.4, 0.3 and

their correlation was 0.65. Trait prevalence was 0.001 in both

samples, cases and controls sampled in equal proportion. p0,

proportion of SNPs having no effect on traits. P, P-value for

including SNP in the polygenic score. NCP, non-centrality

parameter. Power computed at a= 0.05. AUC, area under

receiver-operator characteristic curve. s2
1, s2

2, r, median estimates

of model parameters, with coverage of 95%CI in brackets.

(DOCX)

Text S1 Variance of genetic marker in a case/control sample.
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Text S2 Simulation of genotypes in a case/control study.
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