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Abstract

Copy-number variations (CNVs) constitute very common differences between individual humans and possibly all genomes
and may therefore be important fuel for evolution, yet how they form remains elusive. In starving Escherichia coli, gene
amplification is induced by stress, controlled by the general stress response. Amplification has been detected only
encompassing genes that confer a growth advantage when amplified. We studied the structure of stress-induced gene
amplification in starving cells in the Lac assay in Escherichia coli by array comparative genomic hybridization (aCGH), with
polymerase chain reaction (pcr) and DNA sequencing to establish the structures generated. About 10% of 300 amplified
isolates carried other chromosomal structural change in addition to amplification. Most of these were inversions and
duplications associated with the amplification event. This complexity supports a mechanism similar to that seen in human
non-recurrent copy number variants. We interpret these complex events in terms of repeated template switching during
DNA replication. Importantly, we found a significant occurrence (6 out of 300) of chromosomal structural changes that were
apparently not involved in the amplification event. These secondary changes were absent from 240 samples derived from
starved cells not carrying amplification, suggesting that amplification happens in a differentiated subpopulation of stressed
cells licensed for global chromosomal structural change and genomic instability. These data imply that chromosomal
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structural changes occur in bursts or showers of instability that may have the potential to drive rapid evolution.
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Introduction

Copy number variations (CNVs) are regions of DNA either
deleted or duplicated/amplified relative to a reference genome.
CNVs constitute the most ubiquitous differences between indivi-
dual or personal human genomes [1], can be associated with many
Mendelian and complex human diseases [2] because de novo events
cause a significant fraction of sporadic birth defects [3] and are
responsible for the selected rapid evolutionary changes accompa-
nying animal domestication (e.g. [4]). In human, CNV arises
either through non-allelic crossing-over between repeated sequenc-
es, giving recurrent end-points, or at non-recurrent positions. Non-
recurrent events show two conspicuous features: many of them show
complexity [5], often in the form of lengths of nearby sequence
inserted at the novel junction, and second, the junctions tend to
show microhomology of a few base-pairs, not sufficient to allow
homologous recombination to occur (reviewed by [6,7]). We and
others have reported similar properties in our studies of amplifica-
tion in Escherichia coli, namely that some of the events are complex,
and the junctions show microhomology at the site of the joint
making F. coli a useful model for studying the mechanisms that
underlie human CNV [8,9,10].

Amplification at lac in the Lac assay system on an F’-plasmid in
E. coli requires DNA polymerase I (Pol I) but not excision repair
(also involving Pol I), placing the event at replication forks [10,11].
Parenthetically, in yeast both break-induced replication (BIR) [12]
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and CNV [13] require the non-essential DNA polymerase subunit
pol32. Furthermore, in E. coli amplification is enhanced by 3’
single-stranded DNA ends, suggesting priming of DNA synthesis
[10]. Based on these observations we proposed the long-distance
template-switch model, in which the 3’ primer-end at a stalled
replication fork switches template to a different replication fork
and anneals at a site of microhomology [10]. Repeated switches
would explain the complexity at the junctions, and a template
switch to a region already replicated would produce a duplication
that could be expanded into amplification by unequal crossing-
over. However, amplification also requires Tral [14], an endo-
nuclease that nicks the F-plasmid at the origin of transfer, 0r7, and
this requirement is suppressed by double-strand cutting near lac on
the F'-plasmid [14]. Taking these findings together with the report
that BIR repair of collapsed (broken) replication forks in yeast shows
frequent template switching [15], we proposed that microhomol-
ogy-mediated (MM) events might occur by a modification of BIR
(MMBIR) whereby repair is achieved by annealing of the 3'-tail at a
collapsed fork with any nearby single-stranded DNA [6]. Annealing
would have lower homology requirements than homologous recom-
bination, and hence explain the microhomology junctions. Another
possible explanation for recombination at sites of microhomology is
non-homologous end-joining (NHE]). NHE] requires two double-
strand breaks to make every heterologous junction, and conse-
quently complex events would require multiple DNA double-strand
breaks. NHE] fails to explain the requirement for DNA polymerase
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Author Summary

Much of the difference between individual humans is in
the number of copies of genes and lengths of genome.
The mechanisms by which copy number variation arises
are not well understood. We sought information on copy
number change mechanisms by extensive use of array
comparative genomic hybridization of whole genomes in
bacteria selected for amplification of part of the genome.
We report that about 10% of amplified isolates carried
other chromosomal structural changes associated with the
amplification, a result comparable to that seen in human
copy number variants. Importantly, we found a significant
occurrence of structural changes that were not involved in
the amplification event. These were not seen in a control
sample of stressed cells not carrying amplification. This
establishes that chromosomal structural change happens
in a subpopulation of cells apparently licensed to undergo
these changes. Because the changes occur under the
stress of starvation and require two of the cells’ stress-
response systems, we propose that licensing for cell-wide
structural change in this subpopulation is a component of
response to stress. This idea has implications for the
mechanisms of evolution and cancer progression, sug-
gesting that changes occur in a shower of events rather
than as isolated random events.

I or the involvement of 3" DNA ends in amplification. For these
reasons we do not favor NHE] as a mechanism for adaptive
amplification in the Lac assay, nor is it our preferred mechanism to
explain microhomology observed at human genomic deletion
rearrangements with a single junction; the latter being explained
more parsimoniously by a single template switch [1,5].

In the Lac assay in F. coli [16], stationary phase Lac  cells
carrying a +1 frameshift mutation are spread on lactose minimal
medium. Lac" colonies arise over days from the starving cells. The
colonies carry either amplified arrays of the leaky lac allele or a
compensating frame-shift mutation (point mutants) [17]. The point-
mutant Lac’ colonies are found to carry secondary unselected
mutations at a high frequency (up to 10”2 for some loci) [18,19,20].
Starved cells on the same plate that did not mutate to Lac* carry a
much lower frequency of unselected mutations [19]. Thus, some or
all Lac" colonies arise from a hypermutating subpopulation (HMS)
while the majority of the starved cells do not take part in
hypermutability. The HMS is defined by the stress responses that
are activated in given cell [21,22]. It has not been established
whether or not amplified Lac* colonies arise from a chromosomally
unstable subpopulation, though it has been shown that they do not
arise from the HMS [17].

This study reports the use of array comparative genomic
hybridization (aCGH) to analyze genome-wide changes in copy
number. We sought, first, evidence of secondary unselected cell-
wide chromosomal structural instability in those cells that carry
amplification at lac. Evidence of secondary chromosomal structural
change in amplified isolates that is not seen in controls constitutes
evidence of a physiological difference that affects genome stability
between cells undergoing amplification and those that do not. We
found a significantly higher occurrence of unselected events that
would not have bestowed a growth advantage among amplified
isolates compared with stressed Lac™ control cells. This demon-
strates that amplification is happening in a differentiated subpop-
ulation undergoing general chromosomal structural change,
suggesting that this differentiation might be mediated by stress
responses. Second, we sought further evidence that amplification in
E. coli shows similar complexity to human non-recurrent CNV
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events. We found complexity in the amplification events in over 7%
of amplified isolates, mostly in the form of inverted duplications
within the amplicons (units of amplification), confirming that there
is a tendency for events that mediate chromosomal structural
change to be complex.

Results

Using Oxford Gene Technologies 44K aCGH arrays, giving a
resolution of about 100 base-pairs (bp), we analyzed 300 isolates
that had an unstable Lac" phenotype, in comparison with a
reference DNA sample from the parental strain FC40 [16]. The
300 unstable Lac* isolates consisted of 284 new isolates from day 7
of adaptive mutation experiments and 16 isolates that were
reported before [10]. These were included to determine whether
there was complexity in the events that had not been detected by
our previous method of outward PCR [10]. Indeed, two of the 16
carried an additional event identified by aCGH. We also studied
180 cultures derived from Lac™ cells taken from lactose minimal
medium starvation plates on day 5 (this is equivalent to day seven
Lac” colonies, because point-mutant Lac’ take 2 days to form
visible colonies). We also analyzed 60 day seven Lac* point mutant
colonies, and include these with the Lac™ isolates from starvation
plates as a control of 240 stressed isolates that do not carry lac-
amplification. In addition, we studied 60 single cell Lac™ colonies
that had not been stressed. No change in copy number was found
in any of 300 non-amplified samples.

All 300 unstable Lac" isolates were found to carry amplification
at lac. The mean copy number at lac was 69.3+/—22.9 (mean +/ —
SD). The mean length of 298 amplicons was 22.7 kilobase pairs
(kb). These same isolates, when grown in lactose minimal medium
(to maintain selection for amplification) were found to have about
twice the amount of F'-borne chromosomal sequence than se-
quences that were only present on the chromosome (1.88+/—0.30-
fold). There was no increase in copy number of F' sequences in
previously stressed Lac ™ cells grown in glycerol minimal medium
or in previously stressed Lac* point mutant cells grown in lactose
minimal medium (0.99+/—0.10-fold). We sequenced the amplifi-
cation junctions of 40 amplicons. We found that all had micro-
homology at the junction sequence. Sixteen of the 40 were located
in REP sequences [23]. The sequences of the 40 amplification
junctions are shown in Table S1.

In 300 lac-amplified isolates, we identified 28 events that changed
chromosomal structure in addition to the amplification at lac (9.3%).
The positions of some of these changes on the standard map of E.
coli are shown in Figure 1. The difference in the occurrence of other
events in amplified isolates compared with zero in the 240 stressed
control samples is highly significant (p = 0.0001; Fisher’s exact test).
Using the Peto Odds Ratio we can estimate the odds ratio
(OR =6.7) and a corresponding 95% confidence interval ranging
from 3.1 to 14.1 [24]. Some of these additional events changed the
copy number at lac, and might therefore have played a role in
lac-amplification. Other events do not appear to offer a growth
advantage to Lac™ cells on lactose minimal medium, and there-
fore represent other events occurring in the same cells as
lac-amplification. We tested whether one inversion affected the rate
of amplification by measuring amplification in a derivative that had
lost amplification. Figure S2 shows that the inversion had no effect
on rate.

Events related to lac-amplification

The most common complexity was an inverted duplication
embedded in the amplified region (Figure 2a, PJH1490). This was
found in 16 of 300 amplified isolates (5.3%) (Table 1). The same
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configuration was found to be common in the study by Kugelberg
et al. with the Lac assay in Salmonella enterica [8]. In all 16 cases, the
lac region was included in the embedded duplication. Detailed
study of these events showed that the embedded inverted
duplications vary in size from 5.2 to 42.6 kb. Two novel junctions
were found in each case. The junctions showed microhomology of
3 to 30 bp (Table 1). We interpret these events as two inverted
template switches that generate an inverted triplication, followed
by unequal crossing-over that generates the amplified array
(Figure 3, see Discussion).

We identified two other inverted regions that generated a
distinct pattern on aCGH data where part of the amplicon appears
to be detached from the rest on the map of the parental strain
based on the standard map of E. coli (PJH39 and PJH2122) (one
example, PJH39, is indicated in Figure 2b by an open arrow).
When the map is corrected to include this inversion, the amplicon
is seen to be contiguous. These events show only two novel
junctions, the right end of the inversion and the amplification
being the same junction. We therefore regard the inversion and
the duplication as parts of the same event, and explain them below
as a pair of inverted template switches followed by unequal
crossing over (Figure 3c, 3d).

Another event of the same type, PJH2058, that did not involve
inversion or duplication of lac (apart from the amplification) is
shown in Figure 2c. There is a short sequence within amplicon
that i1s present in 2-fold less copy number than the rest of the
amplicon (open arrow in Figure 2c). This can also be explained by
2 switches, but neither of them is inverted (Figure 3e, 3f, see
below).

A very large tandem duplication (about 300 kb) was found in an
isolate (PJH1475) in which the F'-factor was integrated into the
chromosome, so that part of the F' including lac, and part of the
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chromosome was duplicated (Figure 1). We have confirmed the
HFR status of this isolate by showing that conjugational transfer of
proAB, which is on the F'-plasmid in FC40, is RecA-dependent in
this isolate, whereas it would not be if it were situated on a
plasmid. The duplication is flanked by IS5 sequences, and
therefore was presumably formed by homologous recombination
(Table 1). Similarly, the integration of the F'-plasmid occurred
by homologous recombination between sequences that are in
common between the chromosome and F'jo5, because aCGH
detected no other copy number change.

Two other large duplications, PJH1477 and PJH1487, were
found that included /ac and had one or both ends outside the
chromosomal sequence on the F’. The junctions were not found in
the IS5 elements that span chromosomal sequence on the F'-
plasmid as has been observed previously [8,9]. The same two
events contained duplications within the amplified segment. The
junction sequences of both duplications were found to be
recalcitrant to amplification by PCR. Multiple primer pairs were
used in all pair-wise orientations, but no product or only unspecific
product was found. Similar results have been reported for some
human non-recurrent copy number changes (e.g. [25]). It is
possible that these represent translocations, further unanticipated
orientational complexities at the breakpoint junctions, or insertions
of large genomic sequences/structures between the designed
primers that do not correspond to a preconceived notion based
on a reference genome sequence used for primer design. Array
CGH provides copy number information, but neither positional
nor orientational information. We were unable to characterize
these further.

These data establish that, like in human, a significant pro-
portion of events of chromosomal structural change that generate
amplification are complex in that more than one structural change
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occurred, apparently within the same event. This applies to 19 of
300 events resolved by our approach (omitting large duplications
that might have assisted amplification, but might not be part of the
same event).

Secondary events in lac-amplified isolates

In the same sample of 300 amplified isolates, we also found six
that included a chromosomal structural change that was not
apparently directly involved in the amplification. None was seen in
the 240 stressed control isolates. The null hypothesis that the
amount of that unrelated chromosomal structural change does not
differ between amplified and stressed non-amplified isolates, can be
rejected (p = 0.036; Fisher’s exact test [26,27]). Using the Peto Odds
Ratio we can estimate the odds ratio (OR =6.2) and a correspond-
ing 95% confidence interval ranging from 1.2 to 31.0. [24].

Duplications should be unstable, so it is not surprising that we
saw none that did not duplicate /lac and thereby provide selection
for maintenance of the duplication. Four of the unselected events
were deletions (1.33% of 300 events): two on the F'-plasmid and
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two on the chromosome. One of the deletions (PJH1474) was
flanked by non-identical IS elements, and so might have occurred
by homeologous recombination or alternatively might have
utilized the shorter homology stretches to mediate a template
switch. The other three show microhomology junctions (1 to 4 bp),
and so probably happened by events similar to those generating
amplification. The chromosomal deletions were 0.8 and 1.6 kb
long, and are situated at about 1.4 and 1.6 megabases on the
standard reference F. coli map (PJH2116 and PJH1482 respec-
tively). Deletions of 0.2 and 7.5 kb long (PJH2030 and PJH1482
respectively) were found on the F' at about 44 kb and 50 kb from
lac respectively (Figure 1). An example, PJH1474, is shown in
Figure 2D.

We found one inversion because it made an apparent separation
of the amplicon into two parts (based on the standard map)
(Figure 2e, PJH1479). The endpoints of the inversion and the
amplification are different, so we see no evidence that the events
are related. The inversion presumably happened before the
amplification, and the amplification then included part of the
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inverted region. Because most inversions would not be detected by
aCGH, we searched all 300 amplified and 240 stressed control
isolates for inversion within 20 kb to either side of lac by
unidirectional PCR (Figure 4). When PCR primers point in the
same direction, there is no PCR product unless the sequence at
one of the primer binding sites has been inverted. We found one
further inversion in an amplified isolate (PJH1465) and none in the
controls. These two inversions are described in Figure 4. It is
interesting that, although the exchanges were almost reciprocal,
the junctions are not exactly in the same position, so that a
mutation of a small deletion or insertion is made at either end of
both inversions.

Discussion

Stress-induction of amplification
Kugelberg et al [8,9], studying the Lac assay in Salmonella
enterica, have proposed that amplification at /ac is not induced by
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Table 1. Sequences of junctions of complex events for those events for which there was more than one junction.
Strain Size Secondary SV Tandem duplication junction Amplification junction
PJH1475 301.6 kb TD 1S5 (insH) TCAGG
Amplicon and inversion junction Inversion junction
PJH1484 13 kb EID CCGCC AGCGACTC
PJH1478 10 kb EID TGG TCCAGGCG
PJH1490 15.5 kb EID GCCGCC GCCCAG
PJH1488 42.6 kb EID GCGGGCAG GCGGCTACGAT
PJH1486 12.8 kb EID ACCGGTCAT ACG
PJH2184 5.2 kb EID CTGG GCTGGTG
PJH2052 25 kb EID GCAGCAGGC ACCGTG
PJH2185 13.7 kb EID GACGCGT CTC
PJH1489 17.3 kb EID GACGCGT TCAGGTTGGC
PJH2134 17.1 kb EID CGGCCTACGG TCAGGTTGGC
PJH36 37.8 kb EID GCTGCCGCGC TTGGCGCGATT
PJH1464 24.3 kb EID GCTGCTGACCGA GCCAACCTGA
PJH1489 17.5 kb EID AGCGTCGCATCAGGCATC GCCAACCTGA
PJH1483 12 kb EID GTAGGCCTGATAAGACGCG AAAACGGCGAG
PJH1480 17.1 kb EID GCGCACGACTGCCGGATGCGGCGT GCCAGCCACAC
PJH59 18 kb EID AGCGTCGCATCAGGCATCTGCGCACGACT AGGACGTTG
PJH39 7.9 kb PIA TGGCGGTGGCG CGCCAGC
PJH2122 13.7 kb PIA CGCGTCTTATCA GCCTGCT
PJH1465 1.5 kb IN CG AGCGAT
PJH 1479 2.4 kb IN TAGCGTCGCATCAGGCATCTGCGCACGACT ATTTGTAGG
Deletion left junction Deletion right junction
PJH1482 1.6 kb DE ...GACGCTTTTGtataacacttca... ...cattagctaaGGAAGGTGCG...
PJH2116 0.8 kb DE ...TTGCTGTCTGCtggttcagtaa... ...aagtttattgCTGCACTTGTTG...
PJH2030 0.2 kb DE ...GTGAATTCTGGggctggtgg... ...aatctgaagCTGGAACCGGCG...
PJH1474 7.5 kb DE IS element IS element
PJH2058 1.2 kb EDE ...AAAACGTCGCGGCAtcacg... ...tccaactCGTCGCGGCAAAGC...
PJH1477 23.8 kb ND
PJH1487 12.3 kb ND
TD: Tandem duplication; SV: Structural Variant; EID: Embedded Inverted Duplication; PIA: Partially Inverted Amplification; IN: Inversion; DE: Deletion; EDE: Embedded
Deletion; ND: Not-identified; Sequences in italics are located inside REP sequences. Sequences in italics and underlined represent REP between mhpE and mhpT. For
deletions, sequence deleted is shown in lower case, and junction sequences are bold. Array scans for PJH1475, PJH1477 and PJH1487 are shown in Figure S3.
doi:10.1371/journal.pgen.1002223.t001

the stress of starvation, but is a product of selection for more
B-galactosidase expression with parameters within those estab-
lished for chromosomal structural changes in growing cells of
E. coli. We regard these amplification events as stress-induced
because it was not pre-existing [17] and has been shown to require
two stress response regulators: the general and stationary-phase
stress-response regulator oS (RpoS) [28,29] and the periplasmic
misfolded protein stress-response regulator cE (RpoE) [30]. The
strong requirement for S would appear to be definitive, except
that a few RpoS-controlled functions are expressed in growing
cells [31], so one might argue that it is growth-dependent functions
that are required. This idea is refuted by the demonstration that
the growth phase level of expression of oS is insufficient for
adaptive mutation [14]. The strong requirement for the RpoE
stress-response 1s for both formation and maintenance of
amplification [30]. The requirement for two of the cell’s major
stress-response regulators is a strong argument for stress-induction
of amplification.
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Complexity of events

We report that a significant number of amplification events are
complex in that they show more than one novel junction,
indicating more than one non-homologous recombination event.
The case that amplification events in the Lac assay reflect template
switches during replication has been made in detail elsewhere
[6,7]. The events described here are readily interpretable in terms
of template-switching mechanisms, and support the concept.
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Figure 3 describes the template switch processes that we propose to
have occurred to explain the complex events that we see, based on
cither the long-distance template switch model [10] or the
MMBIR model [6]. Figure 3a and 3b show how two inverted
template switches form an inverted triplication interspersed with
direct and inverted duplications. Non-allelic homologous recom-
bination (or unequal crossing-over) between directly duplicated
regions will generate the complex amplicon that we see. Kugelberg
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doi:10.1371/journal.pgen.1002223.g004

et al. [8] use a very similar pattern of events to explain this
configuration, which was also common in their data for ampli-
fication in S. enterica. Figure 3¢ and 3d shows how a different
configuration, amplification overlapping an inverted region, which
we saw twice (Figure 2b, PJH39 and PJH2122), can be derived
very similarly from two inverted template switches followed by
unequal crossing-over. The difference is only in the relative posi-
tions of the two template switches.

If an inverted template switch occurs, the product will not be a
viable Lac" clone under the conditions of these experiments unless
there is a second inverted template switch. This is because a single
inverted switch will generate an incomplete F'-plasmid. However,
this requirement for a second inversion cannot be the explanation
for all complexity because, as shown in Figure 3e and 3f, we also
see evidence of double template switches in direct orientation,
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where no consideration of viability exists. In the case portrayed in
Figure 3e, PJH2058, the amplicon consists of a direct duplication
that has a deletion between the repeats. The events depicted in
Figure 3e and 3f differ from those interpreted above that include
inversions only in the positions and orientations of the switches.

Chromosomal structural instability in a subpopulation
To determine whether a secondary structural change might
play a role in the amplification process, we screened for loss of
amplification in one strain carrying a secondary inversion. When
this strain was used in a starvation-induced mutation experiment,
the rate of amplification was unchanged from the control strain
FC40 (Figure S2) suggesting that there is no functional reason for
the occurrence of this inversion in a strain that carries ampli-
fication at lac. Taking the four deletions and the two inversions
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that did not share a junction with amplification as events
secondary to amplification, we see a significant occurrence of
secondary events in cells that underwent amplification compared
with starved cells not showing amplification (p=10.036; Fisher’s
exact test). This is clearly an under-estimate of structural changes
because duplications would be expected to be unstable, so it is not
surprising that we saw none that did not duplicate lac. Those
duplications that include /lac presumably provide selection for
maintenance of the duplication [8,9]. We only found inversions
that were close to lac because we did not look elsewhere. Using
aCGH, we would detect only those unrelated inversions that
overlapped the amplicon, and we found one of these. We also
looked for inversion by unidirectional PCR, but only in the 40 kb
surrounding the lac locus.

The meaning of the finding that the sample of amplified isolates
differs in the frequency of secondary events from non-amplified
cells from the same plate is important. First, it means that
amplifying cells differ from other cells in their propensity to
undergo chromosomal structural change. Second, it shows that
this happened in a subpopulation of starved cells rather than in the
whole population of starved cells, because starved cells that did not
undergo amplification provide the basis of comparison. The
identification of chromosomal structural mutations that are
secondary to the selected event is analogous to the finding in the
Lac assay that lac" point mutation is correlated with an elevated
frequency of other unselected secondary point mutations
[18,19,20]. Third, the discovery in the same cells of events that
are apparently separate from the amplification events shows that
the structural changes occurring during starvation on lactose
medium are not targeted specifically or exclusively to the /ac locus.

The existence of this chromosomally unstable subpopulation is
compatible with the concept of stress-induced differentiation to a
condition permissive for chromosomal structural change and
genomic instability, and is incompatible with models that seek to
explain these events as normal change and sclection in slowly
growing cells. We suggest that this subpopulation is differentiated
to a physiological condition that allows chromosomal structural
change. This is suggested by the finding that some of the
secondary events occurred on the chromosome, indicating that a
diffusible factor is involved. Further, we suggest that this
differentiation was induced by the stress of starvation.

Mechanism of inversion

We made the unexpected finding that some inversions involve
almost, but not quite, reciprocal non-homologous recombination
so that the junctions show insertions or deletions of a few tens of
base-pairs. We suggest that this might occur as follows: If a
template switch occurred because a replication fork was stalled
by secondary structure forming in template DNA, then the
complementary sequence on the other template would also be
capable of forming a similar secondary structure. If two such sites
occurred in a short interval, within the dimensions of a single
replication fork, then the series of template switches portrayed in
Figure 5 might explain how the almost reciprocal recombination
occurred to form the inversion. Uncoupling of lagging-strand
synthesis, after leading-strand synthesis is stalled by secondary
structure (labeled “1” in Figure 5), might allow both structures to
form on both strands, and so expose one to two kb of single-
stranded sequence within the same replication fork. An inverted
switch of the nascent leading strand from “1” to where lagging-
strand synthesis is blocked ahead of the second secondary structure
“2” is followed by synthesis in inverted orientation as far as the
complementary secondary structure to the first blockage “1R”.
The second template switch is to downstream of the complement
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to the second structure “2R”, thus completing the not quite
reciprocal exchanges that flank the inversion. This allows repli-
cation to escape the blockage imposed by secondary structures.
Figure 5 shows the secondary structures that could form in the
regions involved in one of the inversions. All four junction
sequences are in positions that can form a stem or a stem/loop of
secondary structure. We suggest that at least these two inversion
events formed by template switches [32,33] within a replication
fork induced by secondary structures in DNA.

The role of REP

REP is a pseudopalindromic sequence of about 38 bp that
occurs in clusters in intergenic regions [34]. Kugelberg et al. have
noted that there is a tendency for junctions to occur at REP
sequences [8,9], and interpret this as evidence of homologous
recombination. We found that 22 of 90 sequenced novel junctions
(24%) occur at REP sequences (Table 1 and Table S1). Of these,
14 are too short for homologous recombination (5 to 20 bp) and 8
are in a range that might or might not allow homologous recom-
bination (29 to 32 bp) [35,36], but could also allow microhomol-
ogy-mediated template switches as has been proposed for Alu
repetitive sequences in the human genome [5]. REP clusters are
rich in potential to form secondary structures. Iigure S1 shows
secondary structure predicted in a cluster of REP sequences near
lac that is involved in 20% of the junctions listed in Table 1 and
Table S1. We suggest that the propensity of the region to form
secondary structures, rather than homology, is instrumental in
forming this hotspot.

Study of the positions of novel junctions of amplification show a
preference for the stem of potential stem-loop structures. For 40
amplification junctions that we sequenced (Table S1), 16 are REP
sequences, and therefore rich in potential secondary structures.
Analyzing potential secondary structures in the regions close to the
junctions of the other 24 amplicons, only one junction sequence is
confined to predicted unstructured sequence, and only one is
confined to a potential hairpin loop. Those in the commonest class
(10/24) occur on the stems of predicted secondary structures, and
9/24 are on both a stem and a loop. We considered that secondary
structure might target amplification by blocking the progress of
replication forks, or it might function to provide single-stranded
DNA to which a primer could anneal during template switching.
Because a minority of junctions are situated on a predicted hairpin
loop where single-stranded DNA might occur, we favor the
hypothesis that secondary structures target amplification by
blocking replication. Others have reported that secondary
structures in DNA are involved in chromosomal structural change
[37]. Direct evidence of fork stalling at inverted repeats i vivo
strongly suggests that stalling is mediated by hairpin formation on
the lagging-strand template at replication forks [38].

Mechanism of copy number change at lac

We have suggested above that some inversions are formed by
template switching within a replication fork. Template switching is
much more difficult to apply to other events reported here because
most switches cover tens of kb, well beyond the 1.5 kb dimensions
of a replication fork in E. coli. For this reason, we suggested
previously that template switches occur between different
replication forks: the long distance template-switch model [10].
Based on the evidence that double-strand breaks are involved in
amplification at lac, we later suggested that the mechanism was a
modification of break-induced replication (BIR) at collapsed
replication forks, namely that in place of RecA-mediated strand
invasion, the broken end annealed by microhomology to nearby
single-stranded DNA (MMBIR) [6]. We know from experiments
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Figure 5. A model for inversion formation by template-switching giving non-homologous recombination in close to reciprocal
positions. a: Leading-strand DNA synthesis is blocked by a secondary structure (1) in the leading-strand template. b: The stalled 3’-end bypasses
blockage by an inverted switch to the lagging-strand template where lagging-strand synthesis has been blocked by a different secondary structure
(2). c: Inverted DNA synthesis in lagging-strand stalled for the second time by the reciprocal secondary structure (1R). d: The stalled 3’-end switches to
different reciprocal secondary structure (2R) in the leading-strand template. This allows replication to resume. e and f show potential secondary
structure near the junctions in mhpA and mhpC respectively of the inversion in PJH1465. Left junction sequence is shown in red, right in blue.

doi:10.1371/journal.pgen.1002223.g005

that use I-Scel endonuclease to make double-strand cuts near to lac
that double-strand breaks increase amplification at lac [14]. From
this we suggested that nicking at o777 by Tral provides a discon-
tinuity in the DNA template that leads to replication fork collapse
[6] followed by MMBIR.

Conclusion

We present evidence that, among stressed cells, a small
proportion enters a state of heightened genomic instability during
which multiple chromosomal structural changes might occur
anywhere in the genome. Many such changes would be expected
to be disadvantageous, but rarely a change occurs that allows
escape from the stress. Because the events that we studied here in a
bacterial model system are similar to those described for copy
number changes in human, this conclusion might apply generally
throughout biology. This view suggests that genome evolution
might occur in bursts of multiple simultaneous chromosomal
changes induced by stress. This view also has implications
for understanding cancer progression in the stressful tumor

@ PLoS Genetics | www.plosgenetics.org

microenvironment and the stresses imposed by chemotherapy,
both of which might induce showers of chromosomal structural
changes.

Materials and Methods

Strains

Escherichia coli cells of strain SMR4562 [39], isogenic with FC40
[16] carry the conjugative plasmid F'jo5 with a leaky lac +1
frameshift mutation were initially grown to stationary phase for 3
days at 32° [14]. We then followed the standard procedure [40] for
adaptive mutation experiment in the Lac assay [16]. Lac* colonies
arise over several days, and are marked daily. Amplification was
distinguished from point mutation by its instability as seen by blue
and white sectoring of colonies grown on rich medium with X-gal.
284 Tac® colonies from day 7 together with 16 previously
published amplified strains [10] were collected for further study.
We also studied 60 Lac" colonies arising on day 7 that carried
point mutations reverting the /ac mutation. 180 Lac  stressed
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FC40 control cells were collected by taking plugs from the same
lactose plate on day 5. Sixty colonies derived from unstressed
control cells were taken from the initial stationary phase culture.

These 584 new isolates are identified by strain numbers
PJH1458-PJH1642 and PJH2025-PJH2425. Those described pre-
viously [10] are strains PJH2, PJH5, PJH6, PJH7, PJH19, PJH20,
PJH22, PJH26, PJH27, PJH39, PJH59, PJH64, PJH79, PJH80,
PJH81 and PJH165.

Array comparative genomic hybridization (aCGH)

Total genomic DNA was extracted from exponential culture in
M9 lactose medium for Lac* isolates or M9 glycerol medium for
Lac™ isolates by using the QIAGEN DNA Purification kit. E.coli
custom high-resolution genomic microarray (4x44K) containing
44,000 unique sequence oligonucleotides spaced at about 100-bp
intervals were obtained from Oxford Gene Technology (OGT).
Probe labeling and hybridization were performed following the
manufacturer’s protocol (Agilent Oligonucleotide Array-based
CGH for Genomic DNA Analysis). Slides were scanned on a
GenePix 4000B Microarray Scanner (Axon Instruments). Data
extraction, normalization and visualization were achieved by using
Agilent Feature Extraction Software A.7.5.1. Extraction data were
analyzed for copy number differences by using Microsoft Excel
software. All occurrences of two or more adjacent probes showing
2-fold or more increase or decrease in copy number relative to the
reference FC40 DNA were investigated further, except those that
mapped to repetitive elements or prophages.

Structure confirmation by PCR and sequence analysis
All deletion, inversion and duplication junctions were further
validated by PCR and sequencing. Inward-facing primers for
deletions and inversions and outward-facing primers for tandem
duplication were designed based on sequence from National
Center for Biotechnology Information (NCBI) Escherichia coli K-12
substr. MG1655. Long-range PCR was performed using Long-
Amp™ Tag Master Mix (New England Biolabs). The PCR
products were purified with either a QIAquick PCR Purification
Kit (QIAGEN) or a QIAEX II Gel Extraction Kit (QIAGEN)
following the manufacturer’s instructions, and sequenced by Lone
Star Labs (Houston, Texas, United States). DNA sequences were
analyzed by comparison to reference sequences with the use of
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Deamplification
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