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Abstract

DNA methylation is an evolutionarily conserved epigenetic modification that is critical for gene silencing and the
maintenance of genome integrity. In Arabidopsis thaliana, the de novo DNA methyltransferase, DOMAINS REARRANGED
METHYLTRANSFERASE 2 (DRM2), is targeted to specific genomic loci by 24 nt small interfering RNAs (siRNAs) through a
pathway termed RNA–directed DNA methylation (RdDM). Biogenesis of the targeting siRNAs is thought to be initiated by
the activity of the plant-specific RNA polymerase IV (Pol-IV). However, the mechanism through which Pol-IV is targeted to
specific genomic loci and whether factors other than the core Pol-IV machinery are required for Pol-IV activity remain
unknown. Through the affinity purification of NUCLEAR RNA POLYMERASE D1 (NRPD1), the largest subunit of the Pol-IV
polymerase, we found that several previously identified RdDM components co-purify with Pol-IV, namely RNA–DEPENDENT
RNA POLYMERASE 2 (RDR2), CLASSY1 (CLSY1), and RNA–DIRECTED DNA METHYLATION 4 (RDM4), suggesting that the
upstream siRNA generating portion of the RdDM pathway may be more physically coupled than previously envisioned. A
homeodomain protein, SAWADEE HOMEODOMAIN HOMOLOG 1 (SHH1), was also found to co-purify with NRPD1; and we
demonstrate that SHH1 is required for de novo and maintenance DNA methylation, as well as for the accumulation of siRNAs
at specific loci, confirming it is a bonafide component of the RdDM pathway.
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Introduction

Epigenetic modifications, including DNA methylation, play

important roles in gene regulation and are critical for proper

development in most eukaryotic organisms. In Arabidopsis thaliana,

DNA methylation commonly occurs in all sequence contexts, CG,

CHG, and CHH (H = T, A, C). Methylation in the CG context is

present in the coding regions of some genes, while methylation in

all contexts is present at transposons and other repetitive DNA

elements [1]. The de novo methyltransferase, DOMAINS REAR-

RANGED METHYLTRANSFERASE 2 (DRM2), is required to

establish DNA methylation in all sequence contexts. However,

three largely distinct pathways function to maintain DNA

methylation in each context [1]: CG methylation is maintained

by DNA METHYLTRANSFERASE 1 (MET1), likely during

DNA replication in a manner analogous to the mechanism

described for CG methylation maintenance in mammals [1–3],

CHG methylation is maintained by CHROMOMETHYLASE 3

(CMT3) through a reinforcing loop of histone 3 lysine 9 (H3K9)

and DNA methylation [1], and CHH methylation is maintained

by continual de novo methylation by DRM2 in a process termed

RNA-directed DNA methylation (RdDM) [1,4].

Over the last several years many proteins required for RdDM

have been identified and characterized, leading to an emerging

view of the RdDM pathway [1,4]. Biogenesis of the targeting

siRNAs requires the plant specific Pol-IV polymerase, which is

proposed to generate single stranded RNA transcripts [5]. These

transcripts are then processed by RNA-DEPENDENT RNA

POLYMERASE 2 (RDR2) and DICER-LIKE 3 (DCL3) to

generate 24 nt siRNAs that are methylated on their 39 ends by

HUA ENHANCER 1 (HEN1) [6] and loaded into the

ARGONAUTE 4 (AGO4), AGO6 and AGO9 effector proteins

[1,4,7–9]. CLASSY 1 (CLSY1), a putative chromatin remodeling

factor, is also thought to act in this siRNA generating portion of

the pathway [10]. In addition to siRNAs, RdDM is also associated

with the presence of intergenic noncoding (IGN) RNA transcripts

[11]. The accumulation of IGN transcripts depends on another

plant specific RNA polymerase, Pol-V [11], and these transcripts

are proposed to act as scaffolds to recruit downstream RdDM

effector proteins, which in turn directly or indirectly aid in the

recruitment of DRM2 to loci that produce both siRNAs and IGN

transcripts. Indeed, both AGO4 and SUPPRESSOR OF TY

INSERTION 5-LIKE (SPT5-Like), an AGO4 interacting protein

[12,13], interact with IGN transcripts in vivo [12,14], and

PLoS Genetics | www.plosgenetics.org 1 July 2011 | Volume 7 | Issue 7 | e1002195



INVOLVED IN DE NOVO 2 (IDN2), a protein shown to bind

double stranded RNA with a 59 overhang, is also proposed to act

in this downstream portion of the RdDM pathway [15].

Despite these advances in our understanding of the RdDM

pathway, the mechanism(s) through which the two plant specific

RNA polymerases, Pol-IV and Pol-V, are targeted to specific

genomic loci remain largely unknown [5,16]. Recently, some

mechanistic insight into the targeting of Pol-V was provided by the

identification a protein complex termed DDR [17] that contains

three proteins critical for the production of Pol-V dependent IGN

transcripts [11,14,17,18]. This complex is proposed to function at

the level of recruitment and/or activation of Pol-V at chromatin

and contains three stably associated subunits [17]: DEFECTIVE

IN RNA-DIRECTED DNA METHYLATION 1 (DRD1), a

putative chromatin remodeling protein [19], DEFECTIVE IN

MERISTEM SILENCING 3 (DMS3)/INVOLVED IN DE

NOVO 1 (IDN1), a protein with homology to the hinge region

of structural maintenance of chromosome (SMC) proteins [15,20],

and RNA-DIRECTED DNA METHYLATION 1 (RDM1)

[17,18]. In addition to the three DDR complex components,

two other proteins affect the accumulation of some Pol-V

dependent transcripts and siRNAs. The first, termed RNA-

DIRECTED DNA METHYLATION 4 (RDM4)/DEFECTIVE

IN MERISTEM SILENCING 4 (DMS4), is a protein similar to

the yeast protein termed Interacts with Pol II 1 (Iwr1) [21,22], and

the second, termed NUCLEAR RNA POLYMERASE B2

(NRPB2), is a Pol II specific subunit [23]. However, the

mechanisms through which these additional factors influence

Pol-IV and Pol-V targeting and/or activity awaits further

investigation.

To determine whether Pol-IV interacts with any accessory

proteins or transcription factors, which may shed light on the

mechanism(s) through which it is targeted to transposons and

other repetitive DNA elements within the genome, we utilized an

epitope tagged version of the largest Pol-IV subunit, NUCLEAR

RNA POLYMERASE D1 (NRPD1), to affinity purify the Pol-IV

polymerase. In addition to the previously identified Pol-IV

subunits [24], we identified several known RdDM components,

including RDR2, CLSY1, and RDM4 in our NRPD1 purification,

as well as a new RdDM component, SAWADEE HOMEODO-

MAIN HOMOLOG 1 (SHH1). SHH1 contains a cryptic

homeodomain and a SAWADEE domain of unknown function

and is required for the accumulation of siRNAs at some loci as well

as for both de novo and maintenance DNA methylation.

Results/Discussion

To aid in the purification of Pol-IV, constructs encoding epitope

tagged versions of the largest Pol-IV subunit, NRPD1, were

generated (Table S1) and transformed into the null nrpd1-4 mutant

background. Transgenic plant lines containing either an NRPD1-

36Flag or an NRPD1-36Flag-Biotin Ligase Recognition Peptide (BLRP)

transgene were able to complement the DNA methylation defects

observed at the MEA-ISR locus in the nrpd1-4 mutant, restoring

DNA methylation to a level similar to that observed in the wild-

type Columbia (Col) ecotype (Figure 1A). These complementing

transgenic lines were then used to affinity purify NRPD1 from

floral tissue and mass spectrometric (MS) analyses were used to

reveal the identity of co-purifying proteins (Table 1 and Figure S1).

As expected, the MS analyses revealed peptides corresponding to

many known Pol-IV subunits [24]. However peptides correspond-

ing to several other RNA-directed DNA methylation components,

as well as a previously uncharacterized protein, At1g15215, were

also identified (Table 1).

While the overall subunit composition of the Pol-IV polymerase

identified in this study is in strong agreement with that of the

previous purification [24] there were a few notable differences. In

two independent experiments our purification failed to yield

peptides corresponding to the NRPB8B/D8B/E8B subunit,

although peptides corresponding to all the other Pol-IV subunits

identified by Ream et al. [24] were identified (Table 1). In

addition, while Ream et al. [24] reported that the percent

coverage of the NRPE7 subunit in their Pol-IV purification was

much lower than observed for the NRPD7 subunit, and concluded

that NRPD7 is the predominant subunit associated with Pol-IV,

we found that the percent coverage of these two proteins was

roughly similar (Table 1 and Figure S1). Similarly, we found that

the NRPE3B and NRPB3/D3/E3A subunits were both covered

to similar extents. Finally, although no peptides corresponding to

the NRPB9A/E9A subunit were recovered by Ream et al. [24],

we found that the NRPB9A/E9A and NRPB9B/D9B/E9B

subunits were both covered to similar extents. We also identified

peptides corresponding to NRPE5B (At2g41340) (Table 1), one of

the three NRPE5-like proteins (also designated NRPE5A,

NRPE5B, and NRPE5C) present in the Arabidopsis RPB5 family

of RNA polymerase subunits [25]. Taken together our affinity

purification data demonstrates that the NRPE3B, NRPE5B,

NRPE7, and NRPB9A/E9A subunits can all associate with the

Pol-IV polymerase and should be re-designated NRPD3B/E3B,

NRPD5B/E5B, NRPD7B/E7B, and NRPB9A/D9A/E9A

(Table 1). The identification of these polymerase subunits in our

Pol-IV purification could reflect the less stringent ionic conditions

used for our purification and may suggest these proteins are less

stably associated with the core Pol-IV machinery than some of the

other subunits.

In addition to Pol-IV subunits, peptides corresponding to

several known RdDM components were also identified as co-

purifying with epitope tagged NRPD1. These components include

RDR2, an RNA-dependent RNA polymerase [26], RDM4, an

IWR-type transcription factor [21,22], and CLSY1, a putative

chromatin remodeling factor [10] (Table 1). Three other putative

Author Summary

In eukaryotic organisms many systems have evolved to
ensure the proper expression of genetic information
within each cell, and when these systems malfunction
genes can be mis-expressed and cause numerous diseases.
One such system involves cytosine DNA methylation, an
epigenetic modification that is commonly associated with
the repression of transcription and is critical for genome
integrity and proper development. In the plant model
organism Arabidopsis thaliana, DNA methylation is cata-
lyzed by DOMAINS REARRANGED METHYL-TRANSFERASE
2, a homolog of the mammalian de novo DNA methyl-
transferase family, and is targeted to specific loci by small
interfering RNAs (siRNAs) through a pathway termed RNA–
directed DNA methylation (RdDM). Here we present
analysis of our purification of RNA polymerase IV, the
polymerase thought to initiate biogenesis of the targeting
siRNAs. In addition to the previously identified polymerase
IV subunits, we found that several other proteins required
for RdDM also co-purify with RNA polymerase IV.
Furthermore, we identified a new component required
for RdDM, SAWADEE HOMEODOMAIN HOMOLOG 1
(SHH1). Together these findings serve to increase our
understanding of DNA methylation by further expanding
our knowledge regarding the initial siRNA generating
phase of the RdDM pathway.

SHH1 Is Required for Methylation in Arabidopsis
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Figure 1. Complementation of DNA methylation defects with epitope tagged RdDM components and co-immunoprecipitation
analyses. (A and B) Southern blot analysis of DNA methylation at the MEA-ISR locus using genomic DNA digested with the Msp I methylation
sensitive restriction enzyme. Bands representing the presence or absence of DNA methylation are indicated as ME or unME, respectively. In (A),
genomic DNA was isolated from either wild-type plants of the Columbia (Col) ecotype, homozygous nrpd1-4 mutant plants, or T4 plants homozygous
for both the nrpd1-4 allele and a transgene containing the indicated carboxy-terminal epitope tagged versions of the NRPD1 gene under the control
of its endogenous promoter (pNRPD1). BLRP; Biotin Ligase Recognition Peptide. In (B), genomic DNA was isolated from either Col plants, shh1-1,
rdr2-2, or clsy1-7 single mutant plants, or T2 transgenic plants expressing the indicated epitope tagged versions of SHH1, RDR2, or CLSY1 in their
respective homozygous mutant backgrounds. (C–F) Co-immunoprecipitation analyses confirming the interactions between (C) NRPD1 and RDR2, (D)
NRPD1 and CLSY1, (E) NRPD1 and SHH1, and (F) NRPD1 and RDM4. For each experiment, lanes containing protein extracted from each of the parental
lines and the resultant F1 line are indicated below the ‘‘input’’ and ‘‘immunoprecipitation (IP)’’ headings and the antibody (a) used for each western
blot is indicated next to each panel (upper left corner). The position of each epitope tagged or endogenous protein is indicated with a closed
arrowhead and background bands are indicated by an asterisk (*).
doi:10.1371/journal.pgen.1002195.g001

SHH1 Is Required for Methylation in Arabidopsis
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chromatin remodeling factors, specifically CLSY2 (At5g20420),

CHROMATIN REMODELING 31 (CHR31) (At1g05490), and

CHR40 (At3g24340), which are all closely related to CLSY1 [10],

were also identified (Table 1), suggesting they may also interact with

Pol-IV and may play a role in DNA methylation. Based on their co-

purification with Pol-IV, and their phylogenetic relationship with

CLSY1 and CLSY2, we herein designate CHR31 and CHR40 as

CLASSY3 (CLSY3) and CLASSY4 (CLSY4), respectively.

In order to confirm the interactions between the known RdDM

components and NRPD1, co-immunoprecipitation (co-IP) exper-

iments were conducted utilizing either an RDM4 antibody or F1

transgenic plant lines expressing complementing epitope tagged

versions of NRPD1 and either RDR2 or CLSY1 (Figure 1B).

Consistent with the MS analyses, these experiments demonstrate

that RDR2, CLSY1, and RDM4 co-purify with NRPD1

(Figure 1C, 1D, 1F). Notably, while these RdDM components

are all thought to act in the upstream, siRNA generating portion of

the RdDM pathway, their co-purification with the NRPD1

subunit of Pol-IV provides the first evidence that they may

physically associate with each other and/or with the Pol-IV

machinery. However, further biochemistry will be required to

determine whether all these upstream RdDM components are

present in the same complex with Pol-IV or whether multiple

Pol-IV complexes are present and possibly functioning in a locus

specific manner.

Affinity purification of epitope tagged NRPD1 also yielded

peptides that correspond to an uncharacterized protein,

At1g15215 (Table 1), suggesting that this protein may function

in the RdDM pathway. At1g15215 encodes a protein of ,30 KDa

which contains a cryptic homeodomain and a SAWADEE

domain, placing it in the SAWADEE class of plant specific

homeobox transcription factor genes [27]. Although the function

of the SAWADEE domain is unknown, the presence of conserved

cysteine and histidine residues suggests it may function in binding

DNA [27]. The Arabidopsis genome encodes one other protein

within this class of homeodomain proteins, At3g18380, but no

peptides specific to this protein were identified in the MS analysis.

At1g15215 and At3g18380 have the same domain architecture,

are 53% similar and 41% identical and have homologs in moss,

Selaginella, and other flowering plants [27] and are herein named

SAWADEE HOMEODOMAIN HOMOLOG 1 (SHH1) and

SAWADEE HOMEODOMAIN HOMOLOG 2 (SHH2), re-

spectively. In order to confirm the interaction between SHH1 and

NRPD1, a co-IP experiment was conducted (Figure 1E) using F1

plants expressing complementing, epitope tagged versions of both

NRPD1 and SHH1 (Figure 1A, 1B). Consistent with the MS

Table 1. Mass-spectrometric analysis of NRPD1 affinity purifications.

Pol IV subunits

Protein Re-designation AGI code Spectra Unique Peptides % Coverage NSAF % NRPD1

NRPD1 At1g63020 363 72 38 1178.1 100

NRPD2/E2 At3g23780 274 51 24.5 1130.6 96

NRPB3/D3/E3A At2g15430 125 23 44.2 1847.8 157

NRPE3B NRPD3B/E3B At2g15400 46 13 24.8 680.0 58

NRPD4/E4 At4g15950 23 3 12.7 677.9 58

NRPB5/D5 At3g22320 60 14 44.9 1380.2 117

NRPE5B NRPD5B/E5B At2g41340 17 8 35.8 367.7 31

NRPB6A/D6A/E6A At5g51940 4 2 17.4 131.0 11

NRPD7 NRPD7A At3g22900 10 3 19.5 271.0 23

NRPE7 NRPD7B/E7B At4g14660 2 2 14.6 53.0 4

NRPB8B/D8B/E8B At3g59600 0 0 0 0.0 0

NRPB9A/E9A NRPB9A/D9A/E9A At3g16980 28 8 43.9 1158.2 98

NRPB9B/D9B/E9B At4g16265 37 7 46.5 1530.5 130

NRPB10/D10/E10 At1g11475 29 2 12.7 1926.1 163

NRPB11/D11/E11 At3g52090 21 6 26 853.7 72

NRPB12/D12/E12 At5g41010 10 7 74.5 924.6 78

Other RdDM components

RDR2 At4g11130 195 38 29.7 811.6 69

DMS4/RDM4 At2g30280 20 7 11.6 272.6 23

CLSY1 At3g42670 27 14 8 101.4 9

CLSY2 At5g20420 28 14 11.8 104.7 9

CHR31 CLSY3 At1g05490 40 20 16.9 133.8 11

CHR40 CLSY4 At3g24340 25 15 13.8 104.1 9

SHH1 At1g15215 13 6 25.2 237.6 20

Table summarizing the polymerase subunits (upper) and other known or putative RNA directed DNA methylation (RdDM) components (lower) found to co-purify with
NRPD1. Based on these MS analyses, several proteins have been given the additional designation of NRP ‘‘D#’’, to indicate they are also present in the Pol-IV
polymerase. The percent coverage (% coverage) column takes into account peptides that map only to the AGI code indicated in the third column (see also Figure S1).
The percentage of NRPD1 (% NRPD1) column indicates the approximate stoichiometry of each co-purifying protein as a function of the Normalized Spectral Abundance
Factor (NSAF)610e5 [43].
doi:10.1371/journal.pgen.1002195.t001

SHH1 Is Required for Methylation in Arabidopsis
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analyses, this experiment demonstrated that SHH1 and NRPD1

co-immunoprecipitate (Figure 1E).

The homeodomain protein, SHH1, is required for
maintenance and de novo DNA methylation

To determine whether SHH1 is required for DNA methyla-

tion, a T-DNA insertion mutant, shh1-1 (Salk_074540C), was

obtained and the SHH1 transcript levels in this mutant were

assessed by semi-quantitative Reverse Transcriptase PCR assays

(Figure 2). In the mutant line, the abundance of transcripts

corresponding to the 59 and 39 portions of the SHH1 gene were

reduced and the full-length transcript was undetectable, suggest-

ing that no wild-type SHH1 protein is produced in this mutant

(Figure 2B). This allele was then used to assess the levels of DNA

methylation relative to several known DNA methylation mutants

at loci controlled by each of the three Arabidopsis DNA

methyltransferases (DRM2, CMT3, and MET1) by Southern

blotting, bisulfite sequencing and methyl-sensitive PCR cutting

assays. At a DRM2 controlled locus, MEA-ISR, mutation of

SHH1 causes a strong decrease in DNA methylation, reducing

the level of methylation to near the level observed in the drm2

mutant (Figure 3A). At a CMT3 controlled locus, Ta3, mutation

of SHH1 had no effect on DNA methylation (Figure 3B).

However, at a locus controlled by both DRM2 and CMT3,

AtSN1, mutation of SHH1 again resulted in reduced DNA

methylation (Figure 3D). At the FWA locus, which is controlled

by MET1, the level of CG methylation was not reduced in the

shh1 mutant, however, like observed in drm2 and other RdDM

mutants, the levels of non-CG methylation were reduced

(Figure 3C). To confirm that the decreases in DNA methylation

observed in the shh1 mutant were indeed due to disruption of the

SHH1 locus, shh1 plants were transformed with a construct

containing the SHH1 gene, including its upstream promoter

region, and DNA methylation was assessed at the MEA-ISR locus.

In the majority of the resulting T1 plant lines DNA methylation

was restored to the wild-type level (Figure 2C). Together, these

DNA methylation analyses demonstrate that SHH1 is required

for DNA methylation and, consistent with its co-purification with

NRPD1, it appears to be specific for the DRM2-mediated DNA

methylation pathway.

In Arabidopsis, the DRM2 pathway is also required for de novo

DNA methylation. To assess de novo DNA methylation, an FWA

transgene transformation assay is often employed [28,29]. In this

assay, an FWA transgene, the expression of which is controlled by

DNA methylation, is stably introduced into the Arabidopsis genome.

If de novo methylation occurs the transgene is silenced, but if the de

novo methylation pathway is impaired the transgene is expressed,

leading to a delay in flowering that can be scored as an increase in

the number of rosette leaves produced prior to flowering. Upon

introduction of an FWA transgene, shh1 mutant plants flowered an

average of seven leaves later than untransformed plants

(Figure 3E), demonstrating that SHH1 is required to silence the

incoming transgene. Furthermore, bisulfite sequencing of the FWA

transgene from several wild type Col and shh1 transformants in the

T2 generation confirmed that de novo methylation was impaired in

the shh1 mutant (Figure 3F). However, consistent with the partial

phenotype observed for maintenance methylation (Figure 3A, 3C,

3D), flowering was not as delayed in the shh1 mutant as was

observed for the drm2 mutant (Figure 3E).

Figure 2. Characterization of the shh1-1 allele and genomic
complementation. (A) Cartoon representation of the SHH1 locus. The
promoter and UTRs are shown in grey and the exons are shown as black
arrows. The location of the T-DNA insertion in the shh1-1 mutant is
indicated and the three regions, A, B, and C, amplified by Reverse-
Transcriptase PCR are indicated below. (B) Analysis of SHH1 expression
in the shh1-1 allele by Reverse Transcriptase followed by gene specific
PCR. Three primer sets, (A), (B), and (C), within the SHH1 gene were
assessed (see Table S2). As a loading control, primers amplifying a
ubiquitin gene (UBQ) were also used (see Table S2). Reactions lacking (-)
the Reverse Transcriptase (RT) were included to ensure that no DNA
contamination was present and reactions containing (+) the RT were
conducted in duplicate. (---) indicates the PCR reaction was conducted
in the absence of cDNA. (C) MEA-ISR Southern blot as described in
Figure 1, showing complementation of the shh1-1 mutant phenotype

with a genomic SHH1 transgene (pSHH1::SHH1) using genomic DNA
extracted from wild-type Col plants, shh1 mutants, or individual T1

transformants in the shh1-1 mutant background.
doi:10.1371/journal.pgen.1002195.g002

SHH1 Is Required for Methylation in Arabidopsis
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SHH1 is required for the accumulation of siRNAs but not
for the production of Pol-V–dependent transcripts

To gain insight into where in the RdDM pathway SHH1

functions, the production of siRNAs and Pol-V dependent

noncoding RNA transcripts were assessed in the shh1 mutant.

Consistent with the co-purification of SHH1 with the NRPD1

subunit of Pol-IV, siRNAs levels at some loci were significantly

reduced in the shh1 mutant (Figure 4A), as was previously observed

for clsy1 [10], another weak DNA methylation mutant [30]. These

findings demonstrate that SHH1 plays an important role in the

accumulation of siRNAs.

To determine whether SHH1 also functions in the accumula-

tion of Pol-V dependent IGN transcripts, the levels of such

transcripts at the MEA-ISR and IGN5 loci were assessed. In the

clsy1 and shh1 mutants the levels of Pol-V dependent transcripts

were unaffected in three biological replicates (Figure 4B, 4C),

suggesting that these RdDM components may be specific to the

siRNA generating portion of the RdDM pathway.

Conclusion
Through the affinity purification of the NRPD1 subunit of the

Pol-IV polymerase we were able to further refine the subunit

composition of Pol-IV and identify two putative additional

components, NRPB9A/D9A/E9A and NRPD5B/E5B. In addi-

tion to Pol-IV subunits, our purification also yielded peptides

corresponding to several known RdDM components, which like

Pol-IV are thought to function in the upstream, siRNA generating

portion of the RdDM pathway. These proteins include the RDM4

transcription factor, the CLSY1 putative chromatin remodeling

protein, and RDR2, the RNA-dependent RNA polymerase shown

previously to be required for siRNA biogenesis. The finding that

these upstream RdDM components co-purify with Pol-IV suggests

that this portion of the pathway may be more physically coupled

than previously envisioned. Indeed, the approximate stoichiometry

of NRPD1 and RDR2 is near 1:1 (Table 1) and it is likely that

tight coupling of the activities of Pol-IV and RDR2 is biologically

relevant. For example, this could restrict the activity of RDR2 to

transcripts being produced specifically by Pol-IV, thereby reducing

the chances that transcripts from other polymerases would be

copied into double stranded RNA and channeled into the siRNA-

directed DNA methylation pathway, which could lead to off-target

DNA methylation and gene silencing.

Our affinity purification of NRPD1 also led to the identification

of a new component of the RdDM pathway, SHH1. Mutations in

SHH1 result in decreased DNA methylation at loci controlled by

the RdDM pathway and in reduced levels of siRNAs, suggesting

that SHH1 may function early in the RdDM pathway. Although it

is tempting to speculate that SHH1 may be involved in the

targeting and/or recruitment of the Pol-IV polymerase to

chromatin, as it possesses both a homeodomain and a SAWADEE

domain, further experiments will be required to determine

whether SHH1 interacts with chromatin and whether it plays a

role in the recruitment of Pol-IV to silenced loci.

Materials and Methods

Plant materials
Plants were grown under long day conditions and the following

previously characterized T-DNA insertion mutant lines in the Col

ecotype were utilized: cmt3-11 (SALK_148381) [31], drm2-2

(SALK_150863) [31], rdr2-2 (SALK_059661) [32], nrpd1-4

(SALK_083051) [33], nrpe1-12 (SALK_033852) [34], clsy1-7

(SALK_018319) [35]. Characterization of the Col shh1-1

(SALK_074540C) T-DNA insertion allele is described in Figure 2.

Generation of gateway entry clones, destination clones,
and transgenic Arabidopsis plant lines

DNA fragments containing the NRPD1, RDR2, CLSY1, or

SHH1 genes, including their endogenous promoter regions, were

amplified by PCR using the primers listed in Table S2. For

NRPD1, a pEarlyGate302 plasmid [36] containing the NRPD1

gene and promoter [37] was used as the DNA template while for

RDR2, CLSY1, and SHH1 genomic DNA isolated from the Col

ecotype served as the DNA template. PCR products were cloned

into the pENTR/D-TOPO vector (Invitrogen) per manufacturer

instructions. For NRPD1, SHH1 and RDR2, carboxy-terminal tags

(Table S1) were inserted into a 39 Asc I site present in the

pENTR/D-TOPO vector. For CLSY1, an amino-terminal BLRP-

36HA tag (Table S1) was inserted into a Kpn I restriction site

engineered into the CLSY1 genomic sequence upstream of the start

codon through quickchange site directed mutagenesis (Stratagene)

per manufacturer instructions.

The described pENTR/D constructs were digested with the

Mlu I restriction enzyme and then recombined into one of two

modified gateway destination vectors, which differ only in their

plant drug resistance gene, using LR Clonase (Invitrogen) per

manufacturer instructions. For the NRPD1 constructs the destina-

tion vector used contains a gene conferring resistance to the

BASTA herbicide and for the RDR2, SHH1 and CLSY1 constructs

the destination vector used contains a gene conferring resistance to

Hygromycin. Both destination vectors are based on the pEarley-

Gate302 vectors described in [36] but were modified as previously

described [38,39], such that they contain the BirA gene, the

product of which transfers a biotin group onto a lysine residue

present in the BLRP epitope tag, under the control of an ACTIN

promoter. These destination vectors were then transformed into

the AGLO strain of Agrobacterium by electroporation. Arabidopsis

plants carrying the nrpd1-4, shh1-1, rdr2-2, or clsy1-7 mutant alleles

were transformed with the various NRPD1, SHH1, RDR2, or

CLSY1 epitope tagged constructs, respectively, by the floral dip

method as described in [40]. Transformed plants were selected

using either BASTA or hygromycin and transformants containing

Figure 3. Characterization of methylation defects in the shh1 mutant. Assessment of DNA methylation levels at the (A) MEA-ISR and (B) Ta3
loci by Southern blotting using Msp I digested genomic DNA extracted from the genotypes indicated above each lane and a locus-specific
radiolabeled probe. ME; methylated DNA, unME; unmethylated DNA. (C) Assessment of the levels of DNA methylation at the endogenous FWA locus
by bisulfite sequencing. The y axis is the percent of methylation and the x-axis is the context of methylation. (D) Assessment of the level of DNA
methylation at the AtSN1 locus using a methyl-cutting assay in which genomic DNA extracted from the indicated genotypes was either untreated
(unCut) or digested with the methylation sensitive Hae III enzyme prior to amplification of the AtSN1 locus. (E and F) Assessment of the role of SHH1
in de novo DNA methylation by flowering time (E) and bisulfite sequencing (F). In (E), the graph shows the leaf number (y axis) of individual T1 plants
of the indicated genotype (x axis) either untransformed or transformed with a transgene carrying the FWA gene. The black bars represent standard
error. In (F), T2 tissue from individual Col or shh1 T1 transformants was used to assess the level of DNA methylation on the FWA transgene. The y axis is
the percent of methylation observed and the x-axis is the context of methylation. The number in parentheses next to the plant genotype indicates
the flowering time of the T1 parent.
doi:10.1371/journal.pgen.1002195.g003
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only a single insertion site were determined by segregation analysis

in the subsequent generation.

Affinity purification and mass-spectrometric analyses
Approximately 10 g of flower tissue from NRPD1-36Flag and

NRPD1-36Flag-BLRP transgenic T4 plants, or from Col plants as

a negative control, were ground in liquid nitrogen, and

resuspended in 50 mL of lysis buffer (LB: 50 mM Tris pH7.6,

150 mM NaCL, 5 mM MgCl2, 10% glycerol, 0.1% NP-40,

0.5 mM DTT, 1 mg/mL pepstatin, 1 mM PMSF and 1 protease

inhibitor cocktail tablet (Roche, 14696200)). The tissue was then

homogenized by douncing and centrifuged at 4uC in an SS34

rotor for 25 minutes at 12,500 rpm. Each supernatant was

incubated at 4uC for 2.5 hours with 200 mL of Dynabeads (M-

270 Epoxy, Invitrogen, 143.01) conjugated with a Flag antibody

(Sigma F 3165) according to manufacturer instructions. The Flag

beads were then washed twice with 40 mL of LB and five times

with 1 mL of LB. For each wash, the beads were rotated at 4uC for

5 minutes. Proteins were then released from the Flag beads during

five room temperature incubations with 150 mL of 36Flag peptide

(Sigma, F 4799) at a concentration of 100 mg/mL.

Mass spectrometric analyses were conducted as described in

[17]. For comparison with the previously published Pol-IV affinity

purification and MS analyses [24], peptide coverage maps (Figure

S1) were generated and the percent coverage (Table 1: ‘‘%

Coverage’’) of each Pol-IV subunit was calculated using only the

uniquely mapping peptides recovered from the MS analysis, as

was done in Ream et al. [24].

Co-immunoprecipitation analyses
For the co-IP experiments between NRPD1 and RDR2,

CLSY1, and SHH1, 0.5 g–1 g of tissue from each parental line

as well as F1 plants expressing complementing, epitope tagged

versions of both proteins were used. For the co-IP between

NRPD1 and RDM4, 1 g of tissue from either Col plants or plants

expressing a complementing, epitope tagged version of NRPD1

was used. For each experiment, the tissue as ground in liquid

nitrogen with lysis buffer (LB) (2.5 mL per 0.5 g of tissue) and the

lysate was cleared by centrifugation at 13,200 rpm in microfuge

tubes for 10 minutes at 4uC. The supernatants were incubated

with 100 mL of either Myc agarose (50% slurry Covance AFC-

150P) or M2 Flag agarose (50% slurry, Sigma A2220) beads for

2 hours at 4uC with rotation. The beads were then washed 5

times, for 5 minutes, with 1 mL of LB and resuspended in 50 mL

of SDS-PAGE loading buffer. 35 mL or 9 mL of input and bead

eluate were run on 4–12% SDS-PAGE gels in Figure 1D–1F or

Figure 1C, respectively, and the various proteins were detected by

western blotting using either ANTI-FLAG M2 Monoclonal

Antibody-Peroxidase Conjugate (Sigma A 8592) at a dilution of

1:5000, c-Myc 9E10 mouse monoclonal antibody (Santa Cruz

Biotechnology, sc-40) at a dilution of 1:5000, or anti-RDM4 at a

dilution of 1:2500. Goat anti-mouse IgG horseradish peroxidase

(Thermo scientific, 31430) or goat anti-rabbit IgG horseradish

peroxidase (Thermo scientific, 31460) was used at a dilution of

1:5000 as the secondary antibody. All westerns were developed

using ECL Plus Western Blotting Detection System (GE

healthcare RPN2132).

DNA methylation
Genomic DNA isolation and Southern blot analyses at the

MEA-ISR and Ta3 loci were conducted as described in [38].

Bisulfite treatment of genomic DNA, amplification of the FWA

endogene, cloning and sequencing of the resulting PCR products

were as described in [38]. For the Col control and each mutant

Figure 4. Characterization of siRNAs and Pol-V dependent
transcripts in the shh1 mutant. (A) Assessment of siRNA levels at the
indicated loci (right) by northern blotting using RNA extracted from the
genotypes indicated above. (B–C) Assessment of Pol-V dependent
transcript levels (y axis) using RNA isolated from the genotypes indicated
(x axis) relative to ACTIN and normalized to Col at the MEA-ISR and IGN5
loci. Thick blue bars represent the average of three biological replicates
and thin black bars are the standard error of the three experiments.
doi:10.1371/journal.pgen.1002195.g004
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,10–15 clones were analyzed. For bisulfite analysis of the FWA

transgene, genomic DNA was extracted from pooled T2 plants

from individual T1 transformants and digested with the Bgl II

restriction enzyme, which specifically cuts within the FWA

endogene, prior to bisulfite conversion. The AtSN1 cutting assay

was conducted as described in [41] except the uncut samples were

amplified for 25 cycles, the cut samples for 32 cycles, and the

amplification products were visualized by agarose gel electropho-

resis. FWA transformation, T1 selection and flowering time

analysis were as describe in [15].

RNA analysis
siRNAs for northern blotting were isolated as follows: 1 g of flower

tissue from each genotype was ground in liquid nitrogen with a

mortar and pestle, incubated with 10 mL of trizol reagent (Invitrogen

15596-026) at room temperature for 10 minutes, and mixed with

2 mL of chloroform. The samples were then centrifuged at

13,000 rpm for 30 minutes at 4uC and the supernatants were mixed

with one volume of cold isopropanol. Samples were then centrifuged

at 13,000 rpm for 30 minutes at 4uC and the pelleted RNA was

resuspended in 500 mL of DEPC-treated water. These total RNA

preparations were then enriched for small RNAs through a

polyethelene glycol (PEG) precipitation step. One volume of a 20%

PEG 8000/2M NaCl solution was added to each RNA preparation

and then centrifuged at 13,000 rpm for 15 minutes at 4uC. The

supernatant, containing the small RNA molecules, was collected and

precipitated with 0.8 volumes of cold isopopanol as described above.

,30 mg of the resulting small RNA samples were run on 15%

polyacrlyamide-7M Urea gels and transferred to Hybond-NX

membranes (Amersham RPN303T). Membranes were blocked using

10 mL of ULTRhyb-Oligo buffer (Ambion AM8663) and probed

with 59 end radiolabeled oligos as described in [42].

SHH1 expression was assessed by Reverse Transcriptase PCR

using total RNA extracted from 100 mg of flower tissue using the

Trizol reagent and cDNAs were synthesized using Super ScriptII

(Invitrogen) per manufacturer instructions.

Detection of Pol-V dependent transcripts at the MEA-ISR and

IGN5 loci were conducted as described in [17]. The data represents

three biological replicates with standard errors. To quantify the levels

of each transcript the signal from the ACTIN, MEA-ISR, and IGN5

primer pairs were determined relative to a standard curve generated

using sonicated DNA from Col plants. The levels of the MEA-ISR

and IGN5 transcripts where then normalized to the level of the

ACTIN transcript. Since a different standard curve was used for each

of the three different biological replicates, the values for MEA-ISR/

ACTIN and IGN5/ACTIN for each genotype within a single biological

replicate were normalized to the signal of MEA-ISR/ACTIN and

IGN5/ACTIN observed for the Col sample from the same biological

replicate (with this signal being set to 100), allowing comparison of the

three different sets of data.

Supporting Information

Figure S1 Peptide coverage maps of each Pol IV subunit and

other co-purifying RdDM components. Listed below are the gene

names and AGI numbers for each protein listed in Table 1

followed by their full length protein sequence. The peptides

recovered from the MS analysis are listed and mapped onto the

protein sequence. Regions that are crossed out correspond to

peptides that also maps to another gene while regions that are

highlighted in yellow correspond to a unique peptide (i.e. a peptide

that maps only to the listed protein sequence) and regions in green

correspond to two unique peptides.

(DOC)

Table S1 Amino acid sequences of epitope tags. The amino acid

sequence of each tandem affinity epitope tag are shown with the

Biotin Ligase Recognition Peptide (BLRP) in bold type, the L to R

mutation in the mutated BLRP tag in red, the 3C protease

cleavage site underlined and the Flag, Myc or HA tag in large,

non-bold text. * indicates a stop codon.

(DOC)

Table S2 DNA sequences of primers and quantitative PCR

probes.

(DOC)
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