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Abstract

Familial hemiplegic migraine type 2 (FHM2) is an autosomal dominant form of migraine with aura that is caused by
mutations of the a2-subunit of the Na,K-ATPase, an isoform almost exclusively expressed in astrocytes in the adult brain. We
generated the first FHM2 knock-in mouse model carrying the human W887R mutation in the Atp1a2 orthologous gene.
Homozygous Atp1a2R887/R887 mutants died just after birth, while heterozygous Atp1a2+/R887 mice showed no apparent
clinical phenotype. The mutant a2 Na,K-ATPase protein was barely detectable in the brain of homozygous mutants and
strongly reduced in the brain of heterozygous mutants, likely as a consequence of endoplasmic reticulum retention and
subsequent proteasomal degradation, as we demonstrate in transfected cells. In vivo analysis of cortical spreading
depression (CSD), the phenomenon underlying migraine aura, revealed a decreased induction threshold and an increased
velocity of propagation in the heterozygous FHM2 mouse. Since several lines of evidence involve a specific role of the glial
a2 Na,K pump in active reuptake of glutamate from the synaptic cleft, we hypothesize that CSD facilitation in the FHM2
mouse model is sustained by inefficient glutamate clearance by astrocytes and consequent increased cortical excitatory
neurotransmission. The demonstration that FHM2 and FHM1 mutations share the ability to facilitate induction and
propagation of CSD in mouse models further support the role of CSD as a key migraine trigger.
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Introduction

Migraine is a clinically heterogeneous disorder affecting more

than 10% of the general population. It generally occurs with

unilateral and pulsating severe headache often accompanied by

nausea, photophobia and phonophobia. In approximately one

third of migraineurs, the headache attack is preceded by aura, a

transient neurological symptom that are most frequently visual

but may involve other senses [1]. The migraine attack is triggered

by a brain dysfunction that leads to activation and sensitization

of the trigeminovascular system, particularly trigeminal nocicep-

tive afferents innervating the meninges and lastly to headache

[2,3,4]. Neuroimaging examination suggests that migraine aura is

associated to cortical spreading depression (CSD), a short-lasting,

intense wave of neuronal and glial cell depolarization. CSD

spreads slowly over the cortex at a rate of approximately 2–5 mm/

min and is followed by long lasting depression of neuronal activity

[5,6,7,8]. Experimental evidence on patients and animal models

supports CSD as both underlying migraine aura [1,7,8,9] and a

key triggering event for trigeminal activation [10,11,12], although

the role of CSD in migraine headache is still debated. As an

indirect confirmation, several migraine prophylactic agents cause

an increase of CSD initiation threshold [13].

Common migraine has a strong multifactorial genetic compo-

nent, which is higher in migraine with aura (MA) than in migraine

without aura (MO) [14,15]. As for many other multifactorial

diseases whose complexity hampers the investigation of the

pathogenetic mechanisms, rare monogenic forms that phenocopy

most or all the clinical features of the common disease are of great

help for describing the complicated events leading to migraine.

Familial hemiplegic migraine (FHM) is a rare autosomal dominant

subtype of MA, whose aura symptoms include hemiparesis. Aura

symptoms and headache duration are usually longer in FHM than

MA, but all other headache properties are similar. FHM is

genetically heterogeneous and is associated to mutations in three

different genes. Mutations in CACNA1A [16], ATP1A2 [17] and

SCN1A [18] genes are responsible for Familial hemiplegic migraine

type 1 (FHM1), type 2 (FHM2), and type 3 (FHM3), respectively.

The CACNA1A and SCN1A genes both encode neuronal voltage-

gated ion channels, whereas the ATP1A2 gene encodes the a2
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subunit of the Na,K-ATPase, hence suggesting a key role of cation

trafficking in the pathophysiology of FHM.

Until now, more than 50 FHM2 mutations have been identified

and most of these are missense mutations. A small fraction of

mutations is represented by microdeletions [19] and a single

mutation affecting the stop codon, which causes an extension

of the ATP1A2 protein by 27 aminoacid residues [20]. Most of

the ATP1A2 mutations are associated with pure FHM without

additional clinical symptoms [17,19,20,21,22]. However, a

number of FHM2 mutations have been associated to complica-

tions like cerebellar ataxia [23], childhood convulsions [24],

epilepsy [25] and mental retardation [26]. Interestingly, ATP1A2

mutations associated with non-hemiplegic migraine phenotypes,

such as basilar migraine and even common migraine have been

reported [27,28].

The Na,K ATPase is a P-type ion pump that utilizes the free

energy of ATP hydrolysis to exchange Na+ for K+ and maintains

gross cellular homeostasis. The functional pump is a heterodimer,

consisting of one a catalytic subunit and one b subunit that is

required for protein folding, assembling, membrane-addressing,

and modulates substrate affinity [29]. The a subunit exposes both

the amino- and carboxy- termini in the cytoplasm and crosses the

plasma membrane with ten transmembrane segments (M1–M10)

[30]. Four isoforms of a Na,K-ATPase (a1, a2, a3 and a4) are

present in mammals [29,31]. While no pathogenic mutations are

known for the ubiquitous a1- and the testis a4-subunits, mutation in

both a2 and a3 isoforms cause neurological diseases when mutated,

FHM2 and rapid-onset dystonia parkinsonism, respectively [32].

While in the adult brain the a1 isoform is nonspecifically present in

both neurons and glial cells and a3 is neuron-specific, the a2

isoform is essentially expressed in astrocytes [33].

Investigation of the functional consequences of FHM2 muta-

tions in heterologous expression systems revealed that these

mutations produce partial or complete loss of function of the a2

Na,K pump [34,35,36]. Here, we report the generation of the first

mouse model of FHM type 2, a knock-in mutant harboring the

W887R ATP1A2 mutation.

The W887R mutation localizes to the extracellular loop

between M7 and M8, which includes the b subunit binding site

[37] and was shown to produce the almost complete loss of pump

activity [17,38]. Homozygous Atp1a2R887/R887 mutants die just

after birth, while heterozygous Atp1a2+/R887 mice are fertile and

show no apparent clinical phenotype. However, heterozygous

FHM2 mouse displays altered CSD properties, such as decreased

threshold and increased velocity of propagation. We hypothesize

that inefficient astrocyte-mediated clearance of glutamate from the

synaptic cleft is a key event for the enhanced susceptibility to CSD

in the FHM2 mouse.

Results

Generation of FHM2 knock-in mutant mouse
With the aim of investigating the molecular pathogenesis of FHM

type 2, we generated a knock-in mouse model by inserting an

FHM2 mutation, the transition T2763C that causes the aminoacid

replacement W887R in the Atp1a2 murine gene (construct details in

M&M). The amino acid sequence conservation between human

and mouse a2 Na,K-ATPase proteins is very high and, in particular,

in the extracellular domain between transmembrane domains M7–

M8, where W887R is located [17]. This mutation was one of the

first two mutations reported to be associated to typical cases of the

disease. Embryonic stem cells harboring the R887 and the neo

cassette were injected in C57Bl/6J blastocysts and then transferred

to pseudopregnant CD1 females. We obtained three chimeric mice,

one of which transmitted the Atp1a2+/R887-neo allele through

germline (Figure 1A). Heterozygous Atp1a2+/R887-neo mice were

genotyped by Southern blot analysis (Figure 1C), are fertile and

display no apparent phenotype. To remove the neo cassette that

hampers the natural expression of the mutant allele, we crossed the

Atp1a2+/R887-neo mice with transgenic mice expressing the Flippase

recombination enzyme (FLPe) under the control of the human

ACTB promoter (TgN(ACTFLPe)9205Dym; The Jackson Laboratory).

Hence, we obtained the heterozygous Atp1a2+/R887 knock-in mice

(Figure 1B), which are fertile as well and show no visible

clinical phenotype. Contrary to heterozygous mice, homozygous

Atp1a2R887/R887 mutants do not survive beyond the first day post

partum, thus resembling the neonatal lethal phenotype of the Atp1a2

null mutant [39], which succumbs for dysfunctional neuronal

activity and respiratory distress. Therefore, we addressed our

investigation onto the heterozygous knock-in mouse, which shares

the Atp1a2 gene asset with FHM2 patient. The general behavior of

heterozygous Atp1a2+/R887 mice was tested by a modified SHIRPA

protocol [40] that provides comparable quantitative data on animal

motor, sensory, autonomic and neuropsychiatric functions. The

scored parameters are summarized in Table 1. No major differences

in the sensory-motor functions were observed between heterozygous

Atp1a2+/R887 (n = 8) and wild-type (n = 6) mice, except for a higher

fear and anxiety of Atp1a2+/R887 at the specific tests of transfer

arousal and fear (p,0.05; Table 2).

In vivo expression of mutant a2- Na,K-ATPase
Mutant and wild type Atp1a2 gene expression was evaluated at

E19.5 in Atp1a2R887/R887 for lethality constrain and at adult age in

Atp1a2+/R887 mutants. Semi quantitative reverse transcription PCR

(RT-PCR) analysis showed that both wild type and mutant

Atp1a2R887 alleles express equal amount of transcripts (Figure 2A,

left panel). Each RT-PCR experiment was normalized on intra-

sample actin transcript level. The nucleotide replacement resulting

in the W887R mutation creates a new MspI restriction site that we

used to confirm the R887 mutation in the Atp1a2R887 transcript and

to quantify the mutant transcript in heterozygous mice as intra-

sample control (Figure 2A, right panel). The expression of a2 Na,K-

ATPase protein was assessed in embryonic brain. Immunoblot of

total lysate and microsomal fractions revealed a markedly reduced

amount of a2 Na,K-ATPase in the mutants, which displayed

approximately half the level of wild type in the Atp1a2+/R887 mice.

Author Summary

We previously reported that mutations of the a2 subunit
of the Na,K-ATPase cause familial hemiplegic migraine
type 2 (FHM2), a dominant form of migraine with aura. This
paper describes the first animal model of FHM2 and
represents the further proceeding in this disease investi-
gation. Homozygous knock-in mutant mice die just after
birth, while heterozygous mice show no apparent clinical
phenotype. However, in vivo analysis revealed a marked
facilitation of cortical spreading depression (CSD), the
phenomenon underlying migraine aura. Given the evi-
dence for specific functional coupling between the glial a2
Na,K pump and glutamate transporters, we hypothesize
that CSD facilitation in the FHM2 mouse model is
sustained by inefficient glutamate clearance by astrocytes
and consequent increased cortical excitatory neurotrans-
mission. We finally propose this FHM2 mouse as a valuable
in vivo model to investigate migraine mechanisms and,
possibly, treatments.

Mouse Model of Familial Hemiplegic Migraine Type 2
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Figure 1. Knock-in construct strategy. A. Genomic structure of the targeting vector and wt Atp1a2 allele. B. Predicted structure after homologous
recombination (Atp1a2R887-neo allele), and after Flp-mediated deletion of the neo-cassette (Atp1a2R887 allele). FRT sites are indicated by green circles.

Mouse Model of Familial Hemiplegic Migraine Type 2
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In the Atp1a2R887/R887 mutant, the R887 a2 Na,K-ATPase is barely

observable (Figure 2B). In order to investigate whether the reduced

amount of a2 isoform induces a compensatory increase of

expression of the paralogous a1 and a3 isoforms in the adult, when

the principal phenotype, CSD, is assessable, we analyzed brain

tissues with specific a isoform antibodies. No differences in the level

of a1 and a3 isoforms were observed in whole brain of Atp1a2+/R887

mice (Figure 2C) compared to wild type ones. On the contrary, the

Atp1a2+/R887 model displays an a2 expression level reduced to

approximately 50% in the cortex, 35% in cerebellum and 40% in

total brain (Figure 2D).

Mutant R887 alpha 2 ATPase is poorly exported to the
plasmamembrane

The loss of a2 protein in the Atp1a2R887/R887 prompted us to

investigate the fate of wild-type and mutant a2 proteins by cell

transfections. HeLa cells were co-transfected with pA2-R887 or

pA2-wt constructs, which express, respectively, mutant and wild

type full length c-myc-tagged ATP1A2 cDNAs, each together with

pB2 expressing the b2 subunit (as described in [17]). Immunoblot

revealed a decreased amount of R887 mutant (Figure 3A), thus

confirming the in vivo results on Atp1a2R887/R887 and Atp1a2+/R887

mutant mice. More important, immunofluorescence staining

demonstrated a different subcellular localization. Wild type a2

Na,K ATPase showed a typical plasmamembrane and slightly

endoplasmic reticulum staining (Figure 3B, upper panels).

Differently, most of R887 mutant protein appeared as punctuated

pattern localized in the perinuclear region, which overlapped

with the endoplasmic reticulum marker calnexin (Figure 3B; a

colocalization quantification appears on right panels). Misfolding

of the mutant a2 Na,K ATPase induced by the R887 mutation

causes very likely the endoplasmic reticulum retention and the

Grey boxes indicate respective exons, and yellow star the R887 mutation in exon19. C. Southern blot of F1 Atp1a2+/R887-neo mutant mice. EcoRV and
BamHI-digested genomic DNA from two genotypes for wild-type and Atp1a2+/R887neo mutant strains probed 59 and 39 probe.
doi:10.1371/journal.pgen.1002129.g001

Table 1. Parameters scored in SHIRPA primary screen.

Parameter Score Range of scores

Viewing Jar Body Position 0-5 Completely flat to repeated leaping

Spontaneous Activity 0-3 None to rapid movement

Respiration Rate 0-3 Gasping to hyperventilation

Tremors 0-2 None to marked

Arena Transfer Arousal 0-6 Coma to extremely excited

Palpebral Closing 0-2 Eyes wide open to closed

Piloerection 0-1 Absent or present

Gait 0-4 Normal to incapacity

Pelvic Elevation 0-3 Markedly flattened to elevated

Tail Elevation 0-4 Dragging to Straub

Touch Escape 0-3 None to extremely vigorous

Positional Passivity 0-4 Struggles or not when held by tail

Trunk curl 0-1 Absent or present

Limb Grasping 0-1 Absent or present

Tail Suspension Grip Strength 0-4 None to unusually effective

Body Tone 0-2 Flaccid to extreme resistance

Toe Pinch 0-4 No withdrawal to very brisk

Supine Restraint Heart Rate 0-2 Bradycardia to tachycardia

Skin Color 0-3 Pale to Pigmented

Limb Tone 0-4 No resistance to extreme resistance

Abdominal Tone 0-2 Flaccid to extreme resistance

Lacrimation 0-3 Normal eye to excessive lacrimation

Salivation 0-2 None to extreme wetness

Provoked Biting 0-1 Absent or present

Test Arena Righting Reflex (flip) 0-3 Landing on feet to failing to right

Negative Geotaxis 0-3 Climbing the grid to no movement

Vocalization 0-1 Absent or present

Irritability 0-1 Absent or present

Aggression 0-1 Absent or present

Fear 0-1 Absent or present

doi:10.1371/journal.pgen.1002129.t001

Mouse Model of Familial Hemiplegic Migraine Type 2
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inefficient and delayed secretion process. In fact, by inhibiting the

proteasome activity with MG132, wild-type and more consis-

tently mutant a2 subunits accumulated in transfected cells

(Figure 3C).

Atp1a2+/R887 knock-in mice are more prone to cortical
spreading depression

Migraine is a complex phenotype that hampers the objective

and quantitative evaluation in animal models. In order to assess

the effect of the R887 ATP1A2 mutation on an important

component of the migraine attack, cortical spreading depres-

sion (CSD), we analyzed this neuronal phenomenon in adult

Atp1a2+/R887 mice and in their wild type littermates. CSD was

induced by electrical stimulation of the visual cortex using a

bipolar electrode and recorded at two sites of somatosensory and

motor cortex (Figure 4A). Incremental current stimuli were

delivered up to CSD induction and the charge delivered at CSD

activation was considered as threshold.

Atp1a2+/R887mutants were more susceptible to undergo CSD.

Indeed the threshold for induction of CSD in mutant animals

was significantly lower than wild type animals (Atp1a2+/R887,

13.0061.7 mC, n = 20; wild type, 19.961.9 mC, n = 18; t-test

p,0.01) (Figure 4B, left graph). Moreover, CSD propagation rate

was altered in the mutant, which showed higher CSD velocity rising

from 3.8560.35 mm/min (wild type, n = 18) to 5.4160.41 mm/

min (n = 20; t-test p,0.01) in Atp1a2+/R887 mice (Figure 4B, middle

graph). No significant difference was observed in CSD duration

(Atp1a2+/R887 40.163.19 sec, n = 20; wild type 41.163.5 sec,

n = 18; t-test p = 0.83) (Figure 4B, right graph). After the first

CSD, the trace was monitored for further 90 minutes to reveal

repetitive CSDs, a parameter correlated with the phenotype severity

of FHM models [41]. Heterozygous R887 mutation did not modify

the proportion of mice showing repetitive CSD (Atp1a2+/R887 4 out

of 20 mice, wild type 4 out of 18 mice). We conclude that the R887

a2 Na,K-ATPase facilitates CSD induction and propagation, but it

neither affects its duration nor promotes the induction of repetitive

CSDs. Within groups, no difference in CSD threshold and

propagation rate was observed between male and female (see

Methods).

Discussion

Genetic mouse models are essential tools to dissect complex

pathogenic mechanisms leading to human diseases. Here, we

report data on the generation of the first knock-in mouse

carrying the W887R ATP1A2 mutation causing FHM2. The

R887 allele has been associated to a typical form of FHM with

hemiparesis and epileptic episodes [17]. Since the effect of this

mutation is an almost complete loss of function [17,38], we

expected a neonatal lethality of homozygous mutant mice.

In fact, Atp1a2R887/R887 mutants die few minutes after birth,

closely resembling the knock-out models [39,42], which fail to

develop a regular respiratory rhythm [43,44]. Heterozygous

Atp1a2+/R887 mice are viable and fertile. A general behavior

characterization by a modified SHIRPA protocol [40] shows a

higher susceptibility to fear and anxiety in Atp1a2+/R887 mice.

This result resembles the previous reports by Ikeda et al. [42]

and Moseley et al [45] showing similar phenotype in the null

allele heterozygous Atp1a2+/2 mice by more specific tests for

anxiety and conditioned fear.

As we demonstrate, the mutant gene is correctly transcribed and

translated. However, the mutant R887 protein is ineffectively

exported from the endoplasmic reticulum-Golgi system. Mutant

R887 isoform is mostly degraded by the proteasomal system as

demonstrated by the remarkable accumulation of mutant protein

under proteasomal inhibition. This is particularly evident in vivo,

where the mutant protein is barely detectable in the homozygous

mutant brain. This finding is apparently in contrast with our

previous result [17] that showed the mutant R887 subunit

localized all over the cytoplasm in COS7 transfected cells and

seemingly to plasmamembrane as well. By the recent confocal

analysis and employing a transfection system that does not

saturate, like the COS7 cells, the cytoplasm of exogenous

protein, the mutant protein is shown as mostly endoplasmic

reticulum-retained.

It is worth noting that Koenderink and coworkers proposed a

plasmamembrane localization of the R887 protein by centrifugal

fractionation in Xenopus oocytes, probably due to the different

cellular system and conditions (room temperature) and the indirect

method of localization [38]. Infact, this test at room temperature

may favor the mislocalization of the a2 ATPase mutant protein, as

reported in [36]. Considering the autosomal dominant inheritance

of FHM, we have addressed our attention to the phenotype

analysis of the heterozygous knock-in mouse. CSD represents an

excellent phenotype to be analyzed in animal models of migraine

as CSD underlies migraine aura in patients [1,7,8,9] and can

activate the meningeal trigeminal nociceptors in animals [12].

Atp1a2+/R887 mutant mice, our FHM2 model, are more susceptible

to CSD as shown by the decreased threshold of induction and the

increased velocity of propagation of CSD induced by electrical

stimulation of the cortex in vivo. Duration of CSD in Atp1a2+/R887

mice is unchanged. The facilitation of CSD in our FHM2 mouse

model is thus very similar to that previously described in Cacna1a

knock-in mice representing the FHM1 models [41,46]. In fact,

both homozygous and heterozygous S218L and homozygous

R192Q FHM1 models showed a lower threshold for CSD

induction and a higher velocity of CSD propagation, whereas

CSD duration was not significantly prolonged. Interestingly, the

extent of CSD facilitation correlated with the severity of the

clinical phenotype of the two FHM1 mutations in humans

[41,46,47]. The demonstration that FHM2 and FHM1 mutations

share the ability to facilitate induction and propagation of CSD in

mouse models further support the role of CSD as a key migraine

trigger.

Table 2. SHIRPA results.

Tests Wild type Atp1a2+/R887

Spontaneous activity 1.6760.82 1.8760.64

Transfer arousal* 3.0060.76 4.6760.52

Tail elevation 1.3860.52 1.0060.00

Touch escape 2.2560.71 2.3360.82

Grip strength 1.6360.52 2.0060.00

Trunk curl 1.0060.00 1.3460.52

Heart rate 1.8860.35 1.3460.52

Vocalization 0.6360.52 1.0060.00

Irritability 0.6360.52 0.6760.52

Aggression 0.3860.52 0.3460.52

Fear* 1.0060.00 0.1760.41

SHIRPA primary screening was used to assess sensory-and motor function of
Atp1a2+/R887 knock-in mice (n = 8) lines. Wild-type littermates (n = 6) were used
as control. All data are expressed as mean 6 S.D.. Significant Mann-Whitney
non-parametric test is indicated (* = p,0.05).
doi:10.1371/journal.pgen.1002129.t002

Mouse Model of Familial Hemiplegic Migraine Type 2
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Figure 2. In vivo expression of mutant Atp1a2. Total RNA and protein samples were isolated from brain of wild type (+/+), Atp1a2+/R887 (+/R887)
and homozygous Atp1a2R887/R887 (R887/R887) mice at E19.5. A. Left panel. Semi quantitative Atp1a2 RT-PCR (254 bp fragment) on brain cDNA. The b-
actin fragment (610 bp) is included as in-tube normalizer. Right panel, same Atp1a2 RT-PCR fragments digested by MspI. B. Protein blot of
microsomal fraction probed with anti-a2 Na,K-ATPase antibody and anti-neogenin as loading control; the a2 Na,K-ATPase and neogenin bands
appear at the expected size of 110 kDa and 52 kDa, respectively. C. Total brain lysates from adult wild type and Atp1a2+/R887 mice probed with anti-
a1, a2, and a3 Na,K-ATPase antibodies; anti- tubulin as loading control. Densitometric quantization shows a 50% reduction of the heterozygous
mutant a2 level compared to wild type. Error bars represent 6 SD; Student’s t test p,0.05, n = 3; a1, a2, and a3 Na,K-ATPases migrate as single bands
according to the expected size of 110 kDa. D. Region specific immunoblot from cortex, cerebellum and total brain of adult wild type and Atp1a2+/R887

Mouse Model of Familial Hemiplegic Migraine Type 2
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The facilitation of CSD in Atp1a2+/R887 mice could be due to

impaired clearance of K+ and/or glutamate by astrocytes during

cortical neuronal activity consequent to loss-of-function of the a2

Na,K ATPase pump, as previously suggested [34,48]. Pharmaco-

logical evidence shows that a3 and/or a2 Na,K pumps participate

in the clearance of K+ from the extracellular space during intense

neuronal activity, although the relative importance of a3 and a2

Na,K pumps is unclear[49,50]. Most models of CSD include local

increase of extracellular [K+] above a critical value as a triggering

event in the initiation of CSD, hence predicting that a reduced K+

clearance would result in a lower threshold for CSD induction

[51]. Indeed, in hippocampal slices the inhibition of a2 and a3

Na,K pumps by local administration of ouabain (at a concentra-

tion which only partially affects the low affinity a1 Na,K pump)

reduced the threshold for CSD induction by local pulses of high

[K+] [52]. This reduced CSD threshold was accompanied by a

large increase in CSD duration (and decrease in post-CSD

undershoots of membrane potential and external [K+]), pointing

to the involvement of a3 and/or a2 Na,K pump activity in CSD

termination. We speculate that our findings of a lower threshold

for CSD induction but unaltered CSD duration in Atp1a2+/R887

mice suggest a relatively minor role of the glial a2 Na,K pump in

K+ clearance. This is in agreement with the evidence that the a3

isoform contributes most of the Na,K ATPase activity in mouse

brain homogenates [53] and, therefore, we suggest that the

reduced CSD threshold in FHM2 knockin mice is not primarily

due to impaired K+ clearance by astrocytes.

Several lines of evidence indicate a specific role of the a2 Na,K

pump in glutamate clearance during synaptic transmission. The

a2 Na,K pump is specifically stimulated by glutamate in cultured

astrocytes [54]. In the adult somatosensory cortex the a2 Na,K

pump shows a specific localization in astrocyte processes

surrounding glutamatergic synaptic junctions, which coincides

with that of the glial glutamate transporters GLAST and GLT1

[55,56]. Also, a physical association and functional coupling

between the a2 Na,K pump and glutamate transporters has been

demonstrated [56].

We therefore hypothesize that CSD facilitation in the FHM2

mouse model is sustained by inefficient glutamate clearance by

astrocytes and consequent enhanced cortical excitatory neuro-

transmission, particularly the NMDA receptor-mediated trans-

mission during high-frequency action potential trains [57]. This

glutamatergic hypothesis finds suggestive echoes in the recent

report by Anttila et al. [58], where MTDH, a modulator of

glutamate transporters has been associated to the common form

of migraine with aura. In addition, a mutation of the glial

excitatory aminoacid transporter type 1 (EAAT1) leads to

neuronal hyperexcitability and subsequent seizures, hemiplegia,

and episodic ataxia by impaired glutamate uptake [59]. While

this scenario remains to be confirmed in the FHM2 mouse

model, FHM1 models displayed an enhanced glutamatergic

synaptic transmission due to increased Ca2+ influx through the

mutant presynaptic CaV2.1 channels and increased probability of

glutamate release at cortical pyramidal cell synapses [60]. A

causative link between gain of function of glutamatergic

transmission at recurrent cortical pyramidal cell synapses and

facilitation of experimental CSD was demonstrated in the FHM1

mouse model [60]. Both FHM1 and FHM2 mice point to a

model of CSD initiation, where the activation of NMDA

receptors by glutamate released from recurrent cortical pyramidal

cell synapses plays a key role in the positive feedback cycle that

provokes CSD [4].

Furthermore, the absence of the a2 Na,K pump from the glial

processes surrounding GABAergic terminals [55] suggests that

FHM2 mutations fail to affect inhibitory neurotransmission,

similarly to the FHM1 model, which showed unaltered inhibitory

neurotransmission at synapses between fast-spiking interneurons

and pyramidal cells [60].

We therefore propose that episodic disruptions of the excitation-

inhibition balance and hyperactivity of cortical circuits due to

excessive recurrent excitation underlie the vulnerability to

‘‘spontaneous’’ CSD ignition in both the rare forms of FHM1

and FHM2 and, probably, at least a fraction of common migraine

cases.

Materials and Methods

Antibodies
Commercially available rabbit polyclonal antibody directed

against a2 Na,K-ATPase isoform (cat. AB9094. Millipore,

Billerica, MA, USA); mouse monoclonal antibodies for Na,K-

ATPase alpha 1 isoform (a6F; Developmental Studies Hybridoma

Bank, Iowa City, IA, USA), for Na,K-ATPase alpha 3 isoform

(cat. MA3-915, Affinity Bio Reagents Suite 600 Golden, CO,

USA), anti-bovine a-tubulin, mouse monoclonal antibody (cat.

A11126, Molecular probes, Inc. 29851 Willow Creek Road,

Eugene, OR, USA); GAPDH (6C5) mouse monoclonal antibody

(sc-32233, Santa Cruz Biotechnology Inc., California, USA);

Ubiquitin (P4D1), mouse monoclonal antibody (sc-8017, Santa

Cruz Biotechnology Inc. CA, USA). ECL anti-mouse and anti-

rabbit IgG and horseradish peroxidase (HRP)-linked species-

specific whole antibodies were purchased from GE Healthcare.

Polyclonal rabbit anti-goat IgG/HRP was obtained from Dako

(Glostrup, Denmark). For immunofluorescence experiments, the

following antibodies were used: monoclonal anti c-Myc (9E10) and

rabbit anti- calnexin (Sigma-Aldrich, Milan, Italy). Secondary

antibodies were conjugated with Alexa 488 and Alexa 596

(Invitrogen, Carlsbad, CA, USA).

Generation of R887 knock-in mice
Procedures involving animals and their care were conducted in

conformity with guidelines of the Institutional Animal Care and Use

Committee at San Raffaele Hospital (Milan, Italy) in compliance

with national (D.L. No. 116, G.U. Suppl. 40. Feb 18, 1992,

Circolare No. 8 G.U., 14 Lug. 1994) and international (EEC

Council Directive 86/609, OJ L 358, 1 DEC.12, 1987; National

Institutes of Health Guide for the Care and Use of Laboratory

Animals, U.S. National Research Council, 1996) laws and policies.

Animals were housed in Specific Pathogen Free (SPF) conditions,

maintained on a 12-h light/dark cycle, with free access to food and

water. Atp1a2+/R887-neo knock-in mice were generated using

homologous recombination in embryonic stem (ES) cells to modify

the Atp1a2 gene such that the exon 19 contained the human FHM-2

W887R mutation. In the targeting vector, the original TGG triplet

codon (POSITION 2763, CODON 921) was changed into CGG

by mutagenesis, creating the W887R mutation. Downstream of

exon 19, a PGK-driven neo cassette flanked by LoxP sites was

present. ES cells were electroporated, and clones were selected for

mice probed with anti-a2 and anti- glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as loading control (Figure 2D). Densitometry evaluation
shows significant reduction in a2 level (p,0.05) of 50%, 35% and 40% in cortex, cerebellum and total brain, respectively. Error bars represent 6 SD;
Student’s t test p,0.05, n = 3.
doi:10.1371/journal.pgen.1002129.g002
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Figure 3. In vitro expression and localization of a2-ATPase. A. Immunoblot of HeLa cells transfected with pA2-wt-Myc (wt) and pA2-R887-Myc
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homologous recombination by Southern blot analysis. The presence

of the W887R mutation was tested by PCR using primers 59-

GGCTTCTTTACCTACTTTGTGATA-39 and 59-ATGCCCT-

GCTGGAACACTGAGTTG-39 and subsequent sequencing anal-

ysis of exon 19. Targeted ES cells were injected into C57Bl/6J

blastocysts and these transferred into pseudopregnant CD1 females

to create chimeric animals. Chimeras were backcrossed with wild-

type C57Bl/6J to generate F1 progeny and the agouti offsprings

were genotyped for transmission of the mutant allele, generating

transgenic line Atp1a2+/R887-neo knock-in mice. Heterozygous

Atp1a2+/R887-neo knock-in mice were bred with transgenic mice

expressing FLPe recombinase under the control of the human

ACTB promoter (TgN(ACTFLPe)9205Dym; The Jackson Labo-

ratory) to remove the neo cassette. Expression of FLPe recombinase

as early as embryonic day 10.5 causes the Flippase recognition

target (FRT) sites recombination and the removal of the neo

cassette. Germ line transmission was obtained and transgenic line

Atp1a2+/R887-neo was established. Mice were further bred with

(R887) probed with anti a2-ATPase antibody. B. Calnexin (red) and a2 ATPase (probed with anti-myc; green) immunofluorescence staining of wt or
R887 transfected Hela cells. R887 a2 ATPase mostly colocalises with the endoplasmic reticulum. In the right graphs, the scatter plot of red (ch1) vs.
green (ch2) colocalization intensities. (wt parameters: Rr 0.369, R 0.6, Ch1:Ch2 0.999; R887 parameters: Rr 0.558, R 0.755, Ch1:Ch2 0.997). C. HeLa cells
expressing wt or R887 variant of a2 ATPase are treated with the reversible proteasome inhibitor MG132 (10 mM for 4, 6 and 8 hrs). Blots are probed
with anti- a2 isoform antibody, anti-ubiquitin antibody and anti-tubulin as loading control.
doi:10.1371/journal.pgen.1002129.g003

Figure 4. In vivo CSD recording. A. On the left, a sketch of the positioning of the stimulating (stim) and recording electrodes (1, 2) is outlined.
Example of traces recorded in wild type (+/+) and Atp1a2+/R887 mutants (+/R887) at the two electrodes with dotted line indicating the wave recorded
at the first electrode and full line indicating the wave recorded at the second electrode in both wild type and mutated animals. B. CSD threshold,
velocity and duration of wild type and mutant are reported in box plots reporting bottom-up the 5th percentile, 25th percentile, median, 75th

percentile and 95th percentile. The single dot represents the mean value described for each group. Atp1a2+/R887 heterozygous animals are more
sensitive to CSD induction (+/R887, 13.0061.7 mC, n = 20; +/+, 19.961.9 mC, n = 18; p,0.01; left graph). CSD velocity of propagation is increased in
Atp1a2+/R887 mutants (wild type, 3.8560.35 mm/min n = 18); mutant, 5.4160.41 mm/min, n = 20; p,0.01; middle graph). No significant difference
was observed in CSD duration (wild type 41.163.5 sec, n = 18; Atp1a2+/R887 40.163.19 sec, n = 20; p = 0.83; right graph).
doi:10.1371/journal.pgen.1002129.g004
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C57Bl/6J for seven generations, at this stage the background would

nevertheless be .90% congenic. Heterozygous Atp1a2+/R88 and

Atp1a2+/+ littermates were used for further analysis.

Behavioral analysis
Sensory-motor function of mutant mice compared with controls

was assessed by a modified version of the SHIRPA protocol

primary screening [40]. Briefly, undisturbed behavior of each

animal was first observed in its own home cage: body position,

spontaneous activity and respiration rate were recorded, assigning

a score to each behavior. In addition, manifestations of tremors,

bizarre behaviors, stereotypes or convulsions were checked at this

stage of the protocol. Thereafter mice were transferred individ-

ually to a new arena and were tested for transfer arousal, palpebral

closing, piloerection, gait, pelvic and tail elevation, touch escape

and positional passivity. There followed a sequence of manipula-

tions using tail suspension and a grid across the width of the arena;

animals were scored for trunk curl, limb grasping and grip

strength. To complete the assessment, the animals were restrained

in a supine position to record autonomic behaviors (heart rate, skin

color, limb and abdominal tone, lacrimation, salivation) prior to

measurement of the righting reflex after flip of the animal.

Vocalizations and irritability (during supine restrain) were also

recorded. Fear was assessed based on reaction to transfer to a new

environment. A score was assigned to each behavioral test as

described in Table 1.

RT-PCR
Total RNA was extracted from embryonic mice (E19.5) (n = 9,

3 embryos for each genotype) neuronal (brain) tissues by Trizol

method (Invitrogen, Carlsbad, CA, USA). RNA was reverse

transcribed using random hexamers SuperScriptH First-Strand

Synthesis System (Invitrogen, Carlsbad, CA, USA) according to

the manufacturer’s instructions. Atp1a2 cDNA was amplified using

forward primer on exon 19 (59-GGCTTCTTTACCTACTTTG-

TGATA-39) and reverse primer on exon 20 (59-ATGCCCTG-

CTGGAACACTGAGTTG-39) with Hot Master Taq DNA

polymerase (Eppendorf, Hamburg, Germany) at 94uC for 2 min,

35 cycles at 94uC for 30 s, 58uC for 30 s, 65uC for 30 s, and 65uC
for 5 min. This strategy allows amplification of both endogenous

wild-type and mutant allele (PCR product: 254 bp). The relative

Atp1a2 amount was normalized to the b-actin expression levels

(610 bp PCR product). Since the R887 missense mutation

introduces a new restriction site for MspI enzyme, the PCR

product was subsequently digested with MspI (New England

Biolabs, Ipswich, MA, USA) to discriminate the endogenous gene

(uncut, band size: 254 bp band) and the mutant (cut, bands size:

178 bp+76 bp). PCR products were run on a 2% agarose gel in

TAE buffer.

Western blot analysis
To prevent proteolysis during the procedure, all steps were

carried out on ice, and all buffers contained protease inhibitor

cocktail (Roche, Mannheim, Germany) and phenylmethanesulfo-

nyl fluoride (1 mM). Embryonic brains of the various genotypes

(n = 12, 4 for each genotype) were processed simultaneously.

For the extraction of membrane proteins, whole brain was

homogenized with a glass-Teflon homogenizer in Sucrose solution

(0.32 M Sucrose, 5 mM Hepes pH 7.4, 2 mM EDTA). After a

short centrifugation (5000 rpm, 2094uC) the supernatant was

centrifuged for 1 hr at 42,000 rpm 1 h 4uC (Beckman,

ultraTL100, rotor TL100.3) and the pellet resuspended in Sucrose

buffer. Protein concentration was measured using the Bio-Rad

Protein Assay according to the manufacturer’s instructions. The

preparation of cells and tissues (total brain, cortex and cerebellum)

total lysates were performed adding RIPA buffer (50 mM Tris-

HCl, pH 7.4, 150 mM NaCl, 0.5% sodium deoxycholate, 0.1%

SDS, 2 mM EDTA, and 1% Igepal CA-630) to the collected

samples and left 309 on ice than the lysates were centrifuged

13000 g 2094uC. The protein content of the supernatant was

measured using the BCA protein assay with bovine serum albumin

as standard. We resuspended equal amounts of proteins (15 mg

each sample in 20 ml) in SDS-PAGE buffer (100 mM Tris-Glycine

pH 6.8, 0.56 M mercaptoethanol, 2% SDS, 15% glycerol, and

0.1% BFB), and separated them for 2 h at 100volt in 8% SDS-

polyacrilamide gels. Proteins were electrophoretically transferred

to hybond ECL nitrocellulose membranes (GE Healthcare,

Munich, Germany) and blots were blocked overnight with 5%

non-fat milk 0.1% Tween-20 in PBS. The blocked blots were

incubated for 2 h with subunit specific antibodies, washed three

times for 10 minutes each with 0.1% Tween-20 in PBS then

incubated with the appropriate peroxidase conjugated secondary

antibodies. After another series of washes (three times for

10 minutes each) peroxidase was detected using a chemilumines-

cent substrate (GE Healthcare, Munich, Germany).

Transfections and immunocytochemistry
Plasmid constructs were the same as in [17]) by metafectene

(Biontex, Martinsried/Planegg, Germany) according to the

manufacturer’s instructions. We selected the ratio range of

Metafectene (ml) to plasmids DNA (mg) of 5:1. 48 h after

transfection, we fixed HeLa cells in 4% paraformaldehyde (PFA)

for 30 min at RT and blocked and permeabilized with 10%

donkey serum 0.2% Triton-X100 in phosphate-buffered saline

solution (PBS) for 30 min at RT. Permeabilized cells were then

incubated with primary antibodies for 2 hr at RT, than washed

(three times) in PBS, incubated with appropriate secondary

antibodies and washed three times with PBS solution. We placed

cells in fluorescent mounting medium (Dako Cytomation,

Glostrup, Denmark) over microscope slides and confocal micros-

copy was performed on the Perkin Elmer UltraVIEW.

Colocalization analysis
Immunofluorescence colocalization was visualized by confocal

microscopy and analyzed by Wright Cell Imaging Facility

(WCIF) colocalization plug-in of Image J software (http://www.

uhnresearch.ca/facilities/wcif/imagej/colour_analysis.htm). The

following parameters were measured: Pearson’s correlation

coefficient (Rr; 1, perfect correlation, to 21, perfect exclusion);

Mander’s overlap coefficient (R; 1, highest, to 0, random

correlation); Ch1:Ch2, the red:green pixel ratio.

Proteasome inhibitor
Proteasome inhibitor MG132 (carbobenzoxy-L-leucyl-L-leucyl-

L-leucinal) was obtained from Sigma-Aldrich, Milan, Italy (cat.

C2211). MG132 were dissolved in DMSO and applied to cells at

the concentration of 10 mM, after 48 hours of transfection for the

time periods indicated in the text and. An equivalent volume of

DMSO was added to control cells. Anti ubiquitin antibody was

used to reveal the increase of ubiquitinated proteins after

proteasome inhibition.

Cortical spreading depression
CSD was recorded as described in Van den Maagdenberg, et al.

[46]. Briefly, mice (20–30 g) were anaesthetized with urethane

(20% in saline; 6 ml/kg i.p.). Animals, mounted on a stereotaxic

apparatus were continuously monitored for adequate level of
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anesthesia, temperature, heart rate and nociceptive reflexes. Blood

oxygen saturation and flux as well as heart and breathing rates

were monitored non-invasively using an oximeter (Starr, Life

Science Corp.). Oxygen was supplied to maintain blood

oxygenation above 93% for the entire duration of the experiment.

Heart rate was between 400–600 beats/min, and breathing rate

approximately 200 breaths/min. Animals not meeting these

criteria were excluded from our sample. To record CSD three

holes were drilled in the skull over the left hemisphere. The first

corresponded to the occipital cortex and was used for access of the

electrical stimulation electrode (0 mm A-P, 2 mm M-L from

lambda). The second hole, at the parietal cortex (1 mm M-L,

1 mm caudal to bregma) and the third hole, at the frontal cortex

(1 mm M-L, 1 mm rostral to bregma), were used for placement of

the CSD recording electrodes. The steady (DC) potential was

recorded with glass micropipettes filled with NaCl (3 M, tip

resistance 1–2 MV) inserted 200 mm below the dural surface. An

Ag/AgCl reference electrode was placed subcutaneous above the

nose. Cortical stimulation was conducted using a copper bipolar

electrode (0.2 mm tip diameter, 0.3 mm intertip distance) placed

on the cortex surface after removing the dura. Single pulses of

increasing intensity (20, 30, 40, 50, 60, 80, 100, 120, 140, 160,

180, 200, 230, 260, 290, 320, 350, 380, 430, 480, 530, 600, 700,

800, 900, 1000 mA) were applied for 100 ms at 3-min intervals by

using a stimulus isolator/constant current unit (WPI, USA) until a

CSD event was observed [13]. DC cortical potential was amplified

(106) and low-pass filtered at 200 Hz (Cyberamp, Axon

Instruments, Union City, CA). Signals were continuously digitized

and recorded using Labview data acquisition and analysis system.

The minimal stimulus intensity at which a CSD event was elicited

was taken as the CSD threshold. In all mice, when CSD was

elicited, recordings were continued for 90 min to detect multiple

CSDs. To estimate CSD propagation velocity, the distance

between the two recording electrodes was divided by the time

elapsed between the CSD onsets at the first and second recording

sites. The percentage of mice with multiple CSD events was

determined only from the mice that could be recorded for one full

90 min following the first detected event. CSD duration was

measured at half-maximal amplitude [13]. Because no difference

in CSD threshold and propagation rate was observed between

male (N = 11 wild type and N = 11 mutants) and female (N = 7

wild type and N = 9 mutants) within each genotype (wild type:

threshold male 20.762.1 mC, female 18.763.5 Mann-Whitney

test p = 0.61; propagation rate male 3.960.42 mm/min, female

3.860.66 mm/min Mann-Whitney test p = 0.86; mutants: thresh-

old male 13.463.0 mC, female 12.661.3 t-test p = 0.82; propaga-

tion rate male 5.260.32 mm/min, female 5.660.84 mm/min

Mann-Whitney test p = 0.94) the results from males and females

were pooled.

Statistical analysis
For SHIRPA protocol primary screening, comparisons were

performed with the Mann-Whitney nonparametric test. The

Student’s t-test with one-tail distribution was used for significance

calculation in densitometric analysis.

Statistical analysis for CSD recordings was performed using

Sigma Stat 3.1 (Systat Software, Chicago IL USA). Multiple

groups were compared by ANOVA followed by post-hoc

comparisons applying Bonferroni correction or Holm-Sidak test.

When two groups were compared, t-test was applied. Normality

and homoschedasticity of the data was checked. Data not normally

distributed were compared using nonparametric Kruskal-Wallis

ANOVA or Mann-Whitney rank sum test. Significance level was

equal to 0.05. Data are reported as average 6 SEM.
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