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Abstract

Constitutive heterochromatin comprising the centromeric and telomeric parts of chromosomes includes DNA marked by
high levels of methylation associated with histones modified by repressive marks. These epigenetic modifications silence
transcription and ensure stable inheritance of this inert state. Although environmental cues can alter epigenetic marks and
lead to modulation of the transcription of genes located in euchromatic parts of the chromosomes, there is no evidence
that external stimuli can globally destabilize silencing of constitutive heterochromatin. We have found that
heterochromatin-associated silencing in Arabidopsis plants subjected to a particular temperature regime is released in a
genome-wide manner. This occurs without alteration of repressive epigenetic modifications and does not involve common
epigenetic mechanisms. Such induced release of silencing is mostly transient, and rapid restoration of the silent state occurs
without the involvement of factors known to be required for silencing initiation. Thus, our results reveal new regulatory
aspects of transcriptional repression in constitutive heterochromatin and open up possibilities to identify the molecular
mechanisms involved.
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Introduction

Chromatin can adopt conformations that were first defined

cytologically as condensed heterochromatin and open euchroma-

tin [1]. Subsequent genomic studies characterized euchromatin as

gene rich and transcriptionally active, and heterochromatin as

inert matter, mostly holding transcriptionally silent repeats,

remnants of transposons and DNA sequences without clearly

defined functions. It is, however, remarkable that a very large

proportion of genomic DNA is packaged into heterochromatin,

often overwhelming the amounts of DNA associated with

euchromatin. Such disproportion is especially apparent for large

mammalian genomes [2–4] and those of plants, where in maize,

for example, approximately 85% of DNA resides in heterochro-

matin [5,6]. It is inherently difficult to assign sequence-specific

activities and functions to heterochromatic DNA due to the high

degree of repetitiveness, which may even prevent unequivocal

assembly of sequences at these parts of chromosomes.

Nevertheless, the oldest and best-documented functions of

heterochromatin relate to basic chromosomal activities such as the

formation and behavior of centromeres and telomeres [7–9]. It has

also been postulated that suppressive properties of heterochroma-

tin towards transcription are essential for silencing of transposons,

which are inactivated when inserted into heterochromatic DNA

and passively transmitted through mitosis and meiosis thus

harmless to the host genome [10]. The maintenance of compact

and inert heterochromatin seems to be correlated with the

propagation of particular covalent modifications of DNA and

histones. These modifications, termed epigenetic marks, are

propagated together with replicating DNA. In plants and

mammals, heterochromatic DNA is densely methylated at cytosine

residues (mC) and is associated with deacetylated histones H3

methylated at lysine 9 (H3K9me). In euchromatin, DNA

methylation levels are lower and H3 gains acetylation and

methylation at lysine 4 (H3K4me) losing H3K9me [11,12].

Transcriptional responses to a plethora of environmental stimuli

have been documented for many euchromatin-associated genes

and/or gene networks. These responses seem to be specific to

particular environmental challenges. Since only a subset of genes

undergoes activation or suppression in response to a given

challenge, this provides an expression fingerprint that allows for

rapid adaptation to a unique or combinations of environmental

stress [13–18]. These responses have been associated with

alterations in epigenetic regulatory mechanisms, such as changes

in the distribution of DNA methylation, histone modifications [19]

or populations of regulatory small RNAs [20,21]. The involvement

of small RNAs (siRNAs and miRNAs) leading to modifications of

epigenetic marks at target genes and/or degradation of mRNAs or

the translational inhibition by post-transcriptional gene silencing

(PTGS) seem to play important roles in stress responses [22]. One
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of the best-studied examples is an arms race occurring during viral

infection, where plants and invertebrates deploy RNA silencing for

their defense, which involves the production of virus-derived small

interfering RNAs (viRNAs) [23]. In plants, siRNAs (including

natural antisense transcripts-derived siRNAs, nat-siRNAs) and

miRNAs have been shown to participate in antibacterial defense

(reviewed in [24,25]), in abiotic stress responses, and in reactions

to nutrient deprivation (reviewed in [22,24]). Notably, these

adaptations seem to occur in a transient fashion with kinetics

similar to the regulation of transcription by transcription factors.

Therefore, it has been difficult to define whether epigenetic

mechanisms associated with transcriptional gene responses are

causal or secondary to gene activation. Nevertheless, although

stress-induced alterations in euchromatic gene transcription are

well documented, there is only limited evidence so far that

environmental stimuli can alleviate the profound suppression of

transcription in heterochromatin [26], which seems to be

constitutively silenced by multilayer of epigenetic control.

Although this secures transcriptional gene silencing (TGS) in

these chromosomal regions, transcriptional activity at loci residing

in heterochromatin is regained in a number of mutants affecting

epigenetic regulation (see for instance [27–31]). Moreover, results

with combinations of multiple mutations in genes involved in

epigenetic regulation illustrate the very complex strategy securing

stability, robustness and, therefore, persistence of transcriptional

suppression in heterochromatin [29,30,32–34]. The reasons for

such tight transcriptional suppression are not clear, but it can be

envisaged that prevention of transcription in heterochromatin is

required for the structural stability and the function of centro-

meric, pericentromeric and telomeric regions. In addition,

transposon-derived transcription should ideally remain suppressed

to prevent their mobility. However, analyses of Arabidopsis mutants

with distorted heterochromatin structure and released transcrip-

tional suppression in heterochromatin do not fully support these

hypotheses. Two mutations that most drastically affect hetero-

chromatin structure and its transcriptional silencing, met1 and

ddm1, do not evoke chromosome losses or instantaneous

transposon movement despite their transcriptional activation

[35–40]. MET1 encodes maintenance DNA methyltransferase

and DDM1 a chromatin remodeling ATPase [41–43]. Both MET1

and DDM1 are required for propagation of DNA methylation at

cytosines in CG sequences (mCG) [41–43], which seems to be the

most stable epigenetic mark essential for transgenerational

epigenetic inheritance in Arabidopsis [32]. Interestingly, although

centromeric heterochromatin in both these mutants is decon-

densed and transcriptionally active, no obvious deficiencies in the

functions of centromeres or telomeres have been reported. It has

also been shown that transcriptional activation of transposons is

not directly related to their movement, which seems to be

controlled also at the posttranscriptional level [35,36]. Therefore,

it remains largely unclear why heterochromatin structure and

transcriptional silencing are so firmly maintained and, as a

consequence, it is also unclear whether this part of the genome is

at all able to either perceive or respond at the transcriptional level

to environmental stimuli.

Here we describe an experimental system designed to test the

influence of various environmental challenges on transcriptional

suppression in Arabidopsis heterochromatin. The system exploits

the well-documented observation that multicopy transgenic

inserts tend to acquire properties and epigenetic marks charac-

teristic of constitutive heterochromatin. Such silent transgenic

loci can be activated in mutants affecting epigenetic regulation of

endogenous targets residing in heterochromatin. We applied a

series of abiotic stresses to transgenic Arabidopsis plants and used

the activation of an originally silent transgenic locus as readout

for the destabilization of heterochromatic TGS. This approach

allowed the definition of environmental stress conditions that not

only destabilize transgene silencing but also result in genome-

wide reactivation of endogenous heterochromatic loci. However,

silencing release was mostly transient and was rapidly restored

upon return to normal growth conditions. This transient

activation of heterochromatic transcription occurred genome-

wide and was not associated with changes in DNA methylation or

repressive histone modifications that were examined at a subset of

reactivated loci. Intriguingly, mutations in common epigenetic

gene silencing regulators, including those involved in de novo DNA

methylation or H3K9me, did not prevent rapid resilencing after

stress treatments.

Results

Selection of abiotic stress conditions releasing
transcriptional gene silencing

In order to define stress conditions able to release TGS, we used

the well-characterized transgenic line L5 of Arabidopsis, which

contains a single locus consisting of 3–4 copies of a methylated and

silenced marker gene encoding b-glucuronidase (GUS) linked to

the 35S promoter of the Cauliflower Mosaic Virus [44,45].

Silencing of the GUS transgene is released in mutants deficient for

TGS maintenance [44–48].

L5 plants were exposed at differed developmental stages to salt,

osmotic and temperature stresses of gradually increasing severity

and TGS release was monitored at the transgenic GUS locus using

histochemical GUS assays. Treatments provoking salt or osmotic

stress had no influence on the stability of TGS even close to the

LD50 (not shown). In contrast, thermal stress led to destabilization

of silencing at the GUS locus, similar to a recent study using

different stress conditions [26]. The degree of silencing release was

related to a particular combination of temperature shifts. The

experiments delineating the most effective thermal stress condi-

tions for TGS release are described below.

Author Summary

In eukaryotic cells, DNA is packaged into chromatin that is
present in two different forms named euchromatin and
heterochromatin. Gene-rich euchromatin is relaxed and
permissive to transcription compared with heterochroma-
tin that essentially contains transcriptionally inert non-
coding repeated DNA. The silent state associated with
heterochromatin correlates with the presence of distinc-
tive repressive epigenetic modifications. Mutations in
genes required for maintenance of these epigenetic marks
reactivate heterochromatin transcription, which is other-
wise maintained silent in a highly stable manner. In this
paper, we defined a specific temperature stress that leads
to genome-wide transcriptional activation of sequences
located within heterochromatin of Arabidopsis thaliana.
Unexpectedly, release of silencing occurs in spite of
conservation of the repressive epigenetic marks and
independently of common epigenetic regulators. In
addition, we provide evidence that stress-induced tran-
scriptional activation is mostly transient, and silencing is
rapidly restored upon return to optimal growth conditions.
These results are important in that they disclose the
dynamics of silencing associated with heterochromatin as
well as the existence of a new level of transcriptional
control that might play a role in plant acclimation to
changing environmental conditions.

Stress and Heterochromatin Transcription
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Three-day-old seedlings were exposed to a long cold period

(4uC) known to alter DNA methylation [49] and also to influence

silencing mediated by polycomb-group proteins, which is best

illustrated by the vernalization process [50–52]. Cold-exposed and

control seedlings were subsequently subjected to histochemical

GUS staining (Figure 1A–1C). Three or 6 weeks of cold treatment

did not destabilize GUS silencing (Figure 1A and 1B); however,

seedlings transferred to 4uC for 9 weeks showed weak TGS release

manifested by occasional patches of GUS staining in a proportion

of seedlings (Figure 1C). When seedlings were returned to 21uC for

24 h following the cold treatment, GUS staining was also detected

in seedlings placed in the cold for only 6 weeks, and this shift led to

increased GUS staining intensity in plants grown at 4uC for 9

weeks (Figure 1D–1F). Therefore, we concluded that, in addition

to cold treatment, a temperature shift may also contribute to the

release of TGS. To test this, we extended the range of the

temperature shifts from 21uC to 37uC (Figure 1G–1I). While no

GUS expression was observed in plants kept in the cold for only 3

weeks and then placed at 21uC for 24 h, a temperature shift to

37uC instead of 21uC resulted in very clear GUS activity

(Figure 1G). This activity remained at a similar level when longer

cold periods were applied, suggesting that the length of the cold

period preceding the temperature shift to 37uC was not a limiting

factor for the release of TGS (Figure 1H and 1I). To further

examine this, we shortened the cold period to 1 week or even

omitted it prior to the temperature shift to 37uC. For these

experiments, we used seedlings at three stages (3, 7, and 9 days

after sowing) in order to assess also whether silencing release can

be effective over a broader span of early plant development. One

week of cold treatment followed by a shift to 37uC for 24 h was

sufficient to release silencing of GUS locus at all three

developmental stages of the seedlings (Figure 1J–1L). Omission

of the cold period prior to the shift to 37uC resulted not only in less

uniform and less pronounced TGS release (Figure 1M–1O) but

also caused plant lethality (not shown). Therefore, the cold period

before the shift to high temperature increased both plant viability

and the amplitude of TGS suppression. Shortening the period at

37uC to 15 h permitted most of this treatment (12 h) to be

performed during the light phase of the applied photoperiod and

promoted plant survival. The shortening of the time at 37uC had

no influence on the degree of silencing release (Figure 1K and

Figure 2D and data not shown).

For all subsequent experiments, a standardized treatment was

used in which 1-week-old seedlings grown at 21uC were

Figure 1. A temperature shift can release transcriptional
silencing of a transgenic locus. Representative images of histo-
chemical staining for GUS activity (left) performed on seedlings grown
under the conditions defined on the right. Plants grown for 3 days at
21uC were transferred to 4uC for 3–9 weeks (a–c) and then shifted to
either 21uC (d–f) or 37uC (g–i) for 1 day. Seedlings at 3, 7, and 9 days
post-sowing were transferred at 4uC for 1 week and shifted to 37uC for 1
day (j–l), or directly shifted to 37uC for 1 day omitting the cold
treatment (m–o).
doi:10.1371/journal.pgen.1001175.g001

Figure 2. The ITS-induced release of transcriptional silencing is
transient. (a) Experimental scheme of the control and stress
treatments. (b–i) Representative images of histochemical staining for
GUS activity performed on seedlings grown under the indicated
conditions. (j) Reverse-transcription-PCR detection of GUS transcripts
from total RNA of the indicated samples. Amplification of 18S rRNA was
used to normalize the amounts of RNA template. Negative controls
lacked reverse transcriptase (RT -).
doi:10.1371/journal.pgen.1001175.g002

Stress and Heterochromatin Transcription

PLoS Genetics | www.plosgenetics.org 3 October 2010 | Volume 6 | Issue 10 | e1001175



transferred to 4uC for 1 additional week and subsequently

subjected to the shift to 37uC for 15 h (‘Inductive Temperature

Shift’ or ITS). Cold-treated plants exposed to a shift to 21uC for

15 h were used as controls (‘Control Temperature Shift’ or CTS).

Since plants placed at 4uC stopped growing almost completely, we

therefore used two ‘No Temperature Shift’ (NTS) controls in

which plants were harvested 1 week after sowing (NTS1) or 2

weeks after sowing (NTS2), i.e. after growing at 21uC for the same

period as test plants subjected to the temperature shifts. The plants

subjected to temperature shifts were harvested at three time points:

directly after treatment at 37uC or control treatment at 21uC or

after 48 h (2 days) or 7 days following the treatments, to allow

recovery during further growth at 21uC. The experimental

schemes are shown in Figure 2A.

Stress releases TGS only transiently
Release of silencing at the GUS locus occurred neither in control

plants without a temperature shift (NTS1 NTS2; Figure 2B and

2C) nor in plants moved from 4uC to 21uC (CTS; Figure 2G). In

contrast, the silent GUS locus became active in plants moved from

4uC to 37uC (ITS; Figure 2D). Therefore, only the ITS treatment

was able to release GUS silencing as revealed by histochemical

staining. The CTS and ITS treated plants were at the same

developmental stage, when the first pair of true leaves were

emerging, and were treated in parallel. Therefore, factors other

than ITS itself that may have contributed to the TGS release, such

as specific developmental stress responses, can be excluded.

Following ITS, GUS activity was still detected in plants grown

for an additional 48 h (ITS+2d) and even for 7 days (ITS+7d)

(Figure 2E and 2F). In contrast to a recent study showing

development of GUS-positive new leaves 1 week after a heat stress

of 48 h at 42uC [26], we found that new leaves developed in

ITS+7d plants had no GUS activity. This suggests that the

transgene was resilenced relatively rapidly and that the persistence

of GUS activity in cotyledons and leaves subjected to the ITS

results from residual GUS activity retained in these tissues. Indeed,

b-glucuronidase has been shown previously to be a rather stable

protein [53]. Additional RT-PCR analysis of GUS transcripts

further supported very rapid resilencing of the locus. Indeed, GUS

transcripts, which accumulated directly after the ITS, were already

almost undetectable 2 days after the ITS (Figure 2J). Importantly,

these transcripts were absent in CTS plants, which further

confirms that elevation of temperature to 37uC was critical for

destabilization of transcriptional gene silencing at this locus.

ITS releases transcriptional silencing of endogenous
chromosomal targets

To investigate the effect of ITS on silencing of heterochromatic

transcription at endogenous targets, we analyzed several silent loci

that are activated in mutants impaired in TGS maintenance. First,

we determined level of transcripts of a Mutator-like transposable

element related locus (MULE-F19G14, AT2G15810) previously

described as strongly transcriptionally activated in the TGS-

deficient mutants mom1 and ddm1 [54]. We examined the levels of

MULE-F19G14 transcripts in two Arabidopsis accessions Zürich and

Columbia (Figure 3). The MULE-F19G14 remained silent in NTS

and CTS in Zürich and in Columbia plants; however, it was strongly

reactivated after ITS in both ecotypes. This suggests that the ITS-

induced release of silencing is not restricted to transgenic loci and

also not to a particular accession. MULE-F19G14 RNA was not

detected by Northern blot in ITS+2d and ITS+7d plants,

indicating that plants of both accessions were equally able to

swiftly resilence this endogenous locus.

Although both the transgenic GUS locus and MULE-F19G14

are silenced by mechanisms contributing to transcriptional

suppression in pericentromeric heterochromatin [45,54], these

two targets reside outside of constitutive heterochromatin regions

and represent sequences of a single or a few copies. It has been

shown recently that a temperature stress of 48 h at 42uC induces

transcriptional reactivation of TSI sequences residing in pericen-

tromeric parts of the chromosomes [26]. Similarly, we found that

TSI transcripts accumulated in ITS-treated plants (data not

shown). To determine whether the ITS would also activate

transcription at additional silenced, multicopy sequences incorpo-

rated into constitutive heterochromatin, we examined the presence

of RNA derived from 180-bp satellite repeats, 106B long terminal-

like dispersed repeats and 5S rDNA genes. These repeats are

known to be transcriptionally silenced by various epigenetic

mechanisms and their transcription is released in mutants

impaired in epigenetic regulation of constitutive heterochromatin

[27,29,45,48,54–58]. Transcription of all three sets of repeats was

induced by ITS but not by CTS (Figure 3) and was also transient,

resembling the kinetics observed for the transgenic GUS locus and

MULE-F19G14. Therefore, we conclude that in both accessions

ITS provokes transitory destabilization of silencing of constitutive

heterochromatin associated with these various repeats.

Molecular mechanisms associated with ITS-induced
release of transcriptional suppression

To determine possible epigenetic mechanisms associated with

ITS-induced release of silencing, we first analyzed DNA

methylation levels at ITS-sensitive sequences before and after

ITS and CTS treatments (Figure 4). Southern blot analyses were

performed on genomic DNA digested with MspI (inhibited by

methylation of the outer C in the sequence CCGG), HpaII

(inhibited by methylation of either C in the sequence CCGG),

HaeIII (inhibited by methylation of the inner C in the sequence

GGCC), NlaIII (inhibited by methylation of the C in the sequence

CATG), NheI (inhibited by methylation of either C in the sequence

GCTAGC) and TaiI (reporting on CG methylation). This set of

experiments was performed with the Zürich ecotype, which

withstands ITS conditions better than the Columbia ecotype (Figure

Figure 3. Temperature shift induces transient transcriptional
activation of endogenous silent loci. RNA was purified from plants
of the Zurich (Zh) and Col-0 accessions after the indicated treatments.
Detection of MULE-F19G14 transcripts was performed by Northern blot.
Hybridization with an 18S rRNA-specific probe is shown as a loading
control. Transcripts corresponding to 106B, 5S and 180-bp repeats were
detected by reverse transcription-PCR (RT-PCR). Amplification of 18S
rRNA was used to normalize the amounts of RNA template. Negative
controls lacked reverse transcriptase (RT -).
doi:10.1371/journal.pgen.1001175.g003

Stress and Heterochromatin Transcription

PLoS Genetics | www.plosgenetics.org 4 October 2010 | Volume 6 | Issue 10 | e1001175



S1). The DNA methylation-deficient mutant ddm1-5 available in

this ecotype was used as a control. DNA methylation analyses

revealed that ITS had no significant influence on methylation

levels of cytosines located in either symmetrical (CG or CHG) or

asymmetrical (CHH) contexts at the single-copy MULE-F19G14

(Figure 4B). This is in agreement with a recent finding that a

treatment of 48 h at 42uC reactivates transcription of the L5

transgene and of a LINE element without significant changes in

DNA methylation [26]. Importantly, DNA methylation status was

also maintained at 106B, 5S and 180-bp multicopy targets all

residing in constitutive heterochromatin (Figure 4A).

Next, we used chromatin immunoprecipitation (ChIP) to

determine the levels of various histone modifications associated

with either repressed (histone H3 dimethylation at lysine 9 -

H3K9me2, H3K27me2 and H3K27me3) or active transcription

(H3K4me3 and H3K9ac-K14ac) at 5S rDNA and 106B repeats

and at MULE-F19G14. Compared with CTS and NTS plants,

levels of H3K9me2, H3K27me2 and H3K27me3 were unaffected

by the ITS, suggesting that activation of transcription following

ITS occurred without alteration of the repressive chromatin

environment associated with these targets (Figure S2). Levels of

H3K4me3 also remained unchanged. However, we detected a

slight increase in H3K9ac-K14ac upon ITS similar to previous

studies using different stress conditions [26,59]. Importantly, levels

of H3K9ac-K14ac at all examined targets rapidly reverted to the

initial level after 2 days of recovery (ITS+2d) (Figure S2).

Figure 4. ITS-induced transcriptional activation occurs without detectable changes in the levels of DNA methylation at endogenous
loci. (A) Southern blot analysis of DNA methylation at 106B, 5S and 180-bp repeats using the indicated methylation-sensitive restriction
endonucleases. (B) Southern blot analysis of DNA methylation at MULE F19G14 was performed by digesting genomic DNAs with SspI (methylation
insensitive), followed by digestion with the indicated methylation-sensitive restriction endonucleases.
doi:10.1371/journal.pgen.1001175.g004

Stress and Heterochromatin Transcription
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Since transcriptional activation and swift resilencing of

heterochromatin-associated targets following ITS occurred with-

out detectable changes in repressive epigenetic marks (i.e. DNA

methylation and histone modifications), we anticipated that factors

required for the maintenance of these marks would not be

involved in stress-induced transcriptional changes. To test this

hypothesis, a ddm1 mutant was exposed to the ITS conditions.

Mutants of the DDM1 SWI2/SNF2 chromatin-remodeling factor

show both decreased levels of DNA methylation and alteration of

histone H3K9me2 distribution [60,61]. In agreement with

previous reports [29,54], transcription of MULE-F19G14, 5S

rDNA and 106B repeats was induced by the ddm1 mutation, as

revealed by Northern blot and RT-PCR (Figure 5A). The high

level of transcripts from 106B repeats in ddm1 did not significantly

increase when mutant plants were stressed, probably because

transcriptional reactivation of these sequences had already reached

its maximum. However, transcripts originating from MULE-

F19G14 and 5S rDNA over-accumulated in ddm1 plants exposed

to ITS compared with ddm1 NTS plants. Transcript levels

returned to the initial state after 2 days (ITS+2d). Together, these

results indicate that the transcriptional changes occurring at these

targets upon stress are at least in part occurring independently of

the DDM1 activity.

The epigenetic regulator MOM1 is required for the mainte-

nance of silencing at loci mostly clustered around centromeric

heterochromatin regions [28,30]. Activation of transcription in

mom1 mutants in these genomic regions takes place with very

subtle or no changes in levels and distribution of DNA methylation

and histone modifications [28–30,34,46,54,58], resembling release

of silencing upon ITS. Therefore, we assessed the possible

involvement of MOM1 in stress-induced transcriptional changes.

Similar to ddm1, 106B repeats transcripts over-accumulated in

mom1 and the transcript level did not further increase when mom1

plants were subjected to ITS. Transcription of MULE-F19G14

and 5S rDNA repeats was transiently stimulated by ITS in the

mom1 mutant background (Figure 5A), indicating that, like in the

DDM1 case, the stress-mediated reactivation of transcription is at

least partly independent of MOM1 activity and MOM1 does not

participate in subsequent resilencing at these loci.

Our ChIP analysis revealed a modest enrichment in H3K9ac-

K14ac at MULE-F19G14, 5S rDNA and 106B repeats following

ITS (Figure S2). Previous studies associated the HDA6 histone

deacetylase to silencing [45,47,62–64], and demonstrated that

knockdown of this gene, in rts1-1 mutant, leads to higher levels of

H3K9 and H3K14 acetylation [65]. However, Northern blot and

RT-PCR assays showed that transcripts from MULE-F19G14 and

5S rDNA over-accumulated in rts1-1 plants exposed to ITS

relative to the NTS control (Figure 5A); after 2 days of recovery,

RNA levels of these targets reverted to the non-stressed mutant

level. This indicates that HDA6 activity at these targets is not

necessary for the transcriptional switches occurring upon stress,

resembling DDM1 and MOM1. Similar to ddm1 and mom1

mutants, transcripts of 106B repeats over-accumulated in rts1-1

mutant plants and RT-PCR did not detect further increases when

rts1-1 plants were subjected to ITS.

Next, we examined ITS-triggered transcriptional induction and

resilencing in additional mutants deficient in RNA-mediated gene

silencing, such as strains deficient in the DRM2 de novo DNA

Figure 5. Impact of mutations in epigenetic regulators on ITS-induced transcriptional switches. (A) RNA was extracted from ddm1, mom1
and rts1 mutant plants and the corresponding wild types (WT) after the indicated treatments. Detection of MULE-F19G14 transcripts was performed
by Northern blot. Hybridization with an 18S rRNA-specific probe is shown as a loading control. Transcripts corresponding to 106B, 5S and 180-bp
repeats were detected by reverse transcription-PCR (RT-PCR). Amplification of 18S rRNA was used to normalize the amounts of RNA template.
Negative controls lacked reverse transcriptase (RT-). (B) RT-PCR analysis of transcripts from 106B repeats in the indicated mutant backgrounds and
corresponding WT. Amplification of ACTIN2 (ACT2) RNA was used to normalize the amounts of RNA template. Negative controls lacked reverse
transcriptase (RT -).
doi:10.1371/journal.pgen.1001175.g005

Stress and Heterochromatin Transcription
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methyltransferase, the NRPE2 common subunit of Pol IV and Pol

V, the DCL3 endonuclease or the Argonaute protein AGO4. We

also tested the impact of mutations in the CMT3 DNA

methyltransferase and the KYP/SUVH4 histone H3K9 methyl-

transferase. All these mutations had no or little effect on

transcriptional silencing of 106B repeats (Figure 5B) and showed

a stress response similar to their corresponding wild types, in which

106B transcripts accumulated over the levels of the non-stressed

plants upon ITS and returned to the initial level in ITS+2d plants

(Figure 5B). This shows that none of these silencing effectors are

required for either ITS-induced release of transcriptional suppres-

sion or the subsequent resilencing.

Genome-wide analysis of transcriptional changes
induced by ITS

To extend the analysis in an unbiased manner to other ITS-

responding chromosomal targets, we determined ITS impact on

the whole genome transcriptome with an Arabidopsis tiling array.

We compared the RNA profiles of wild-type plants exposed to

CTS and ITS treatments (Figure 6A). The chromosomal regions

with constitutive heterochromatin highly enriched for repeats and

DNA methylation, including centromeric, pericentromeric DNA

and the heterochromatic knob on chromosome 4, became

transcriptionally active following ITS. In contrast, transcription

along gene-rich euchromatic parts of the chromosomes was not

only stimulated but also often repressed. Overall, we detected

differential accumulation of transcripts in ITS plants relative to

CTS plants (greater than twofold, P,0.01) originating from a total

of 6,788 unique annotated genes (TAIR7), with a similar number

of genes being either up- (2,890, Table S2) or down-regulated

(3,898, Table S3). The number of genes affected by ITS was in the

same range as that reported in a previous study using the

Arabidopsis ATH1 array and plants subjected to various stress

conditions [16]. Our tiling array data identified MULE-F19G14

as ITS reactivated and several new targets were further validated

using RT-PCR (Figure S3).

As previously described [30], we also included in the analysis

TAIR8-annotated transposon sequences. The majority of trans-

Figure 6. Genome-wide analysis of ITS-induced transcriptional changes. The relative densities of repeats and 5-methylcytosines (mC) along
the 5 chromosomes of Arabidopsis are shown at the top. (A) Top graphs show chromosome-wide changes in transcript abundance in ITS versus CTS
plants in a sliding 100-kb window. Middle and lower graphs represent distribution and variation in transcript accumulation from gypsy- and copia-
type LTR retrotransposons, respectively, in ITS plants compared with CTS plants. (B) Upper graphs represent chromosome-wide changes in transcript
accumulation in ITS+2d versus CTS+2d plants in a sliding 100-kb window. Lower graphs indicate distribution and enrichment in gypsy- and copia-type
LTR retroelement transcript in ITS+2d plants compared with CTS+2d plants.
doi:10.1371/journal.pgen.1001175.g006
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poson transcripts over-accumulating upon ITS (greater than

fourfold, P,0.01, Table S4) correspond to elements residing in

constitutive heterochromatin of centromeric and pericentromeric

regions, whereas transposons with downregulated transcript levels

(less than fourfold, P,0.01; Table S5) tend to reside along

euchromatic chromosome arms (Figure 6A and Figure S4).

Compared with other transposons, in particular transcripts of

long terminal repeat (LTR) retrotransposons of the gypsy and copia

groups accumulated after ITS (Figure 6A, Figure S4). Altogether,

these results indicate that ITS induces a global release of

heterochromatin-associated silencing.

Next, we examined the persistence of ITS-induced transcription

on a genome wide scale. For this purpose, we searched among

ITS-stimulated transcripts for those that significantly over-

accumulated also 2 days post ITS (ITS+2d) in comparison to

CTS+2d (greater than twofold for genes and fourfold for

transposons, P,0.01). In agreement with the analyses of selected

targets described above, the vast majority of transcripts originating

from either genes or transposons showed no significant difference

in their accumulation at ITS+2d compared with CTS+2d plants

(Figure 6B), confirming that silencing was globally restored within

2 days of recovery to the initial level prior to ITS. However, there

were exceptions to this general rule. For example, a stretch of

heterochromatin of chromosome 2 appeared to retain moderate

transcriptional activity in ITS+2d plants (Figure 6B). This region

corresponds to a probably recent insertion of mitochondrial DNA

into the genetically defined centromere of chromosome 2 [66]. In

addition, although transcript levels from most transposons

diminished, showing no difference in abundance between ITS+2d

and CTS+2d plants, some exceptions were detected corresponding

to copia type LTR retrotransposons with a high level of transcripts

persisting 2 days after ITS (Figure 6B, Table S4). Noticeably, these

levels were similar to those observed for transcript profiles of plants

compared directly after ITS and CTS. This shows that for some

transposable elements the kinetics of resilencing after ITS may

differ from the general trend.

Discussion

Early observations on transgenic Petunia plants grown in

laboratory conditions or in the field suggested that environmental

factors could modulate epigenetic regulation of gene silencing

[67]. In general, however, silencing restricting the transcription of

sequences within constitutive heterochromatin appears to be

highly stable and, so far, its release was observed only in mutants

affected in genes encoding epigenetic regulators or in cells

subjected to prolonged culture in vitro [58,68]. Although recent

studies have reported that transcription of a few pseudogenes,

transposons and transposon-derived sequences, in addition to

many protein-encoding genes, can be stimulated by abiotic stresses

(drought, cold, heat, ABA treatment) [16,18,26], here we selected

and optimized environmental stress conditions that provoke global

release of heterochromatic silencing affecting transcriptional

suppression at a high number of targets residing in constitutive

heterochromatin.

Following a particular stress treatment involving temperature

shifts, alleviation of silencing occurred at many types of sequences

residing in pericentromeric and centromeric heterochromatic

environment, including tandem-repeat 180-bp satellite sequences,

5S ribosomal DNA arrays, 106B interspersed repeats and

transposable elements. The variety of target loci affected by ITS

suggests that a particular chromatin context (e.g. association with a

specific histone modification/nucleosome density), rather than the

primary DNA sequence, determines ITS susceptibility. In this

regard, it is of note that stress-induced release of transcriptional

silencing is not restricted to loci associated with intermediate

heterochromatin (MULE F19G14 and 5S rDNA), which is

characteristic of MOM1-regulated targets [28,29,54]. This is

consistent with the observation that mom1 mutants can respond to

ITS in a similar way to wild-type plants.

It is long known that position effect variegation (PEV) in Drosophila

can be modulated by ambient temperature changes, with elevated

temperatures leading to reduced variegation [69]. In S. pombe,

silencing of genes located within centromeric regions and of

centromeric repeats seems to be temperature sensitive. It has been

postulated that this is due to the inhibition of RNA interference

(RNAi) that silences transcription at high temperatures [70,71].

Inhibition of RNAi results in loss of H3K9 methylation associated

with heterochromatic silent loci in both Drosophila and fission yeast

[72,73]. In Arabidopsis, mutations in factors required for RNA-

mediated gene silencing also lead to alteration in H3K9 methylation,

in addition to a reduction in DNA methylation, showing that DNA

and H3K9 methylation are tightly interwoven [60,74,75]. We have

found that at the examined activated loci the pattern of repressive

epigenetic marks typically associated with sequences located in

constitutive heterochromatin (dense DNA methylation and H3

methylation at K9 and K27) is not affected by ITS, albeit silencing

was efficiently released. Additionally, our analyses revealed that

transient induction of transcription still occurs in ddm1, hda6, kyp/

suvh4, cmt3, drm2, ago4, dcl3, nrpe2 and mom1 mutant plants following

ITS treatments. Together, our results strongly suggest that ITS-

stimulated transcriptional activity in heterochromatin bypasses the

presence of common repressive epigenetic marks and does not

depend on known epigenetic regulators. Therefore, ITS possibly

counteracts a novel as yet unknown silencing pathway.

A recent study has shown that nucleosomes containing the

histone variant H2A.Z are involved in the thermal regulation of

transcription [76]. As temperature rises, H2A.Z-carrying nucleo-

somes are evicted from genes allowing the increase or decrease in

their transcriptional activities. Here we observed that the affected

chromosomal regions retained high DNA methylation levels

despite global alleviation of silencing at heterochromatic sequences

following temperature shifts. Given that methylation and the

presence of H2A.Z-containing nucleosomes are mutually exclusive

[77], we presume that ITS-induced transcriptional activation of

heterochromatic sequences most probably occurs independently of

H2A.Z deposition/removal.

Plants are sessile, therefore their acclimation to adverse

environmental conditions requires swift adaptation by the modu-

lation of gene expression, thereby altering their physiology and

ensuring survival. In agreement with previous reports using various

stress conditions [16,18,78], we have shown that several thousand

genes respond at the transcriptional level to the stress we applied. In

addition, our particular stress regime released silencing of

heterochromatic sequences and transposable elements. In the

process of defining optimal stress conditions that destabilize

heterochromatin-associated silencing, we observed high lethality

when plants were directly shifted from 21uC to 37uC without an

intervening period of growth at 4uC. This is reminiscent of the

phenomena of cold/heat acclimation required for thermotolerance

to extreme temperatures [79–82]. Interestingly, we also observed

that release of silencing was less efficient when the period at 4uC was

omitted. This raises the interesting possibility that efficient release of

TGS at specific loci may somehow contribute to thermotolerance.

We observed a drastic impact of ITS on transposon silencing.

Although most reactivated sequences were swiftly resilenced 2 days

after ITS, elevated transcript levels of some copia-type retro-

transposons were still detected 48 h after ITS. Previous studies in
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snapdragon (Antirrhinum majus) revealed that a temperature shift

induced transposition of the Tam3 DNA transposon [83,84].

However, transposition was induced by a shift to a lower

temperature and was associated with decreased DNA methylation

at Tam3, suggesting involvement of a particular epigenetic

mechanism in the regulation of Tam3 activity. This seems not

to be the case in the transcriptional responses to ITS. For the loci

examined in detail that were reactivated by ITS, the transient

release of silencing and its re-establishment was independent of

changes in DNA methylation levels and classical factors required

for small RNA-mediated de novo silencing (DRM2, Pol IV/V,

DCL3, AGO4). The fact that these factors act through a small

RNA guided silencing mechanism also suggests that restoration of

silencing following stress occurs independently of small RNA

accumulation.

In general, our observations imply that stress-induced destabi-

lization of heterochromatic TGS and its re-establishment use

unorthodox and potentially new mechanisms that can now be

revealed by forward genetics.

Materials and Methods

Plant material and growth conditions
The mom1-1 [46] and ddm1-5 [85] strains in the Zurich

background, the ago4-1 [86] and cmt3-7 [56] strains in the Ler

background and the drm2-2 [87], kyp-7 [32], nrpd2a-2/nrpe2 [88],

dcl3-1 [75] and rts1-1 [62] strains in the Col-0 background have

been described previously. The transgenic L5 line [44] was kindly

provided by H. Vaucheret.

Seeds were surface sterilized in 0.4% sodium-hypochlorite/80%

ethanol for 10 min, washed 3 times with 100% ethanol and dried

under a laminar-flow hood. Seeds were then plated on Murashige

and Skoog (K MS) medium (Duchefa) containing 0.6% agar and

stratified at 6uC for 2 days. Plates were incubated in growth

chambers at 21uC with 12 h light/ 12h dark. For cold treatment,

plates were incubated at 4uC for the indicated times with the same

photoperiod. For the ITS treatment, plates were incubated in a

growth chamber at 37uC for 15 h (12 h light/3 h dark).

Histochemical GUS staining
Staining was performed on whole-seedlings with 5-bromo-4-

chloro-3-indolyl-b-glucuronic acid, 0.5 mM potassium ferricya-

nide, 0.5 mM potassium ferrocyanide, 10 mM EDTA and 50 mM

sodium phosphate buffer pH 7.2 [53].

Chromatin immunoprecipitation
ChIP was performed as described previously [57]. The histone-

DNA complexes were immunoprecipitated with a-dimethyl H3K9

(abcam, ab1220), a-dimethyl H3K27 (Millipore, 07-322), a-

trimethyl-H3K27 (a kind gift from T. Jenuwein), a-trimethyl-

H3K4 (Millipore, 07-473), or a-acetyl-H3K9-K14 (Millipore, 06-

599). Subsequent PCR reactions were performed in 20 ml final

volume, starting with 5 min at 95uC and followed by 18–34 cycles

(depending on the region being amplified) of 95uC, 60uC (54uC for

5S rDNA; 55uC for 106B repeats), and 72uC (30 s each) with a

final elongation of 5 min at 72uC. PCR products were scanned

with a Molecular Imager FX (Bio-Rad) after electrophoretic

separation and quantified using the Quantity One software (Bio-

Rad). Primers are described in Table S1.

Southern blot, Northern blot, and Reverse Transcription
PCR

Southern blot analyses were performed as described previously

[29]. Total RNA was extracted from whole seedlings using TRI

reagent (Sigma). For Northern blots, 10 mg of total RNA per lane

was used. Probes were labeled with [a-32P]dCTP using random

hexamer priming (Megaprime DNA labeling system, GE Health-

care). RT-PCR analyses were performed as described previously

[29]. Primers are listed in Table S1.

Transcription profiling
Plants of the Zürich accession were grown under conditions

described above and RNA was extracted from whole seedlings

using the Ambion mirVana miRNA isolation kit as described

previously [89]. Subsequent steps were performed as described

previously, using the GeneChip Arabidopsis Tiling 1.0R array from

Affymetrix [30]. Chip data have been submitted to Gene

Expression Omnibus (GEO, GSE23243) and can be visualized

using the EpiExpress browser at http://gbrowse.vital-it.ch/cgi-

bin/gbrowse/epiexpress/.

Note added in proof
Parts of this work are consistent with data described in a parallel

publication (Pecinka A., Dinh H. Q., Baubec T., Rosa M., Lettner

N., and Mittelsten Scheid O. [2010] Epigenetic regulation of

repetitive elements is attenuated by prolonged heat stress in

Arabidopsis. Plant Cell, online).

Supporting Information

Figure S1 Plants of the Zürich ecotype display a better fitness

following ITS than plants of the Columbia ecotype. (a) Wild-type

seedlings of the Columbia (WT-Col-0, left) and the Zürich

ecotypes (WT-Zh, right) grown in vitro under the indicated

conditions. (b) Enlargement of plates shown in (a). Unlike WT-

Zh, some WT-Col-0 seedlings did not survive the ITS treatment

(white seedlings; compare WT-Col-0 ITS+2d and WT-Zh

ITS+2d).

Found at: doi:10.1371/journal.pgen.1001175.s001 (0.26 MB PDF)

Figure S2 Impact of ITS on histone post-translational modifi-

cations. (a) Input and mock controls of ChIP analysis of MULE

F19G14, 106B repeats and 5S repeats using antibodies specific for

(b) H3K4me3 and H3K9ac-K14ac , which are associated with

active transcription, and for (c) H3K9me2, H3K27me3 and

H3K27me2, which are associated with repressed transcription.

Representative gels are shown. The TUBULIN8 (TUB8) was used

to normalize the amount of DNA. MULE F19G14, 106B repeats

and 5S repeats reproducibly show a slight enrichment in H3K9ac-

K14ac upon ITS (b). (d) The met1-3 mutant (Col-0 genetic

background) was used as a control for the ChIP procedure and

showed expected enrichment in H3K4me3 and concomitant

decrease in H3K9me2 at 106B and 5S repeats relative to wild-type

(WT) plants.

Found at: doi:10.1371/journal.pgen.1001175.s002 (0.30 MB PDF)

Figure S3 Tiling Array data and RT-PCR validation. (a)

Relative accumulation transcripts from selected loci (MULE

F19G14, ROS1, DML2 and SDC) comparing ITS and CTS from

the tiling array data. (b) RT-PCR validation of the tiling data of

the slightly differentially expressed targets, ROS1, DML2 and SDC,

after ITS compared with CTS; amplification of 18S rRNA was

used to normalize the amounts of RNA template, and the negative

control lacked reverse transcriptase (RT -).

Found at: doi:10.1371/journal.pgen.1001175.s003 (0.17 MB PDF)

Figure S4 Genome-wide analysis of ITS-induced transcriptional

changes at transposons. The upper plots show the relative densities

of repeats (blue lines) and DNA methylation (green lines) along the

5 chromosomes of Arabidopsis. Graphs show the chromosome-wide
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distribution and variation in transcript abundance (Log2 scale) of

transposons (grouped by superfamilies) after ITS versus CTS.

Found at: doi:10.1371/journal.pgen.1001175.s004 (0.32 MB PDF)

Table S1 List of primers used for RT-PCR and/or chromatin

immunoprecipitation analysis.

Found at: doi:10.1371/journal.pgen.1001175.s005 (0.03 MB

DOC)

Table S2 List of genes significantly upregulated (greater than

twofold, P,0.01) in ITS versus CTS. The comparison of

transcript levels between ITS+2d and CTS+2d for the corre-

sponding genes is also presented.

Found at: doi:10.1371/journal.pgen.1001175.s006 (0.38 MB

XLS)

Table S3 List of genes significantly downregulated (greater than

twofold, P,0.01) in ITS versus CTS. The comparison of

transcript levels between ITS+2d and CTS+2d for the corre-

sponding genes is also presented.

Found at: doi:10.1371/journal.pgen.1001175.s007 (0.50 MB

XLS)

Table S4 List of transposable elements significantly upregulated

(greater than fourfold, P,0.01) in ITS versus CTS. Transposons

for which transcripts still over-accumulate in ITS+2d compared

with CTS+2d, are listed at the end of the Table.

Found at: doi:10.1371/journal.pgen.1001175.s008 (0.11 MB

XLS)

Table S5 List of transposable elements significantly downregu-

lated (greater than fourfold, P,0.01) in ITS versus CTS.

Found at: doi:10.1371/journal.pgen.1001175.s009 (0.04 MB

XLS)
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