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Abstract

In species with large effective population sizes, highly expressed genes tend to be encoded by codons with highly
abundant cognate tRNAs to maximize translation rate. However, there has been little evidence for a similar bias of
synonymous codons in highly expressed human genes. Here, we ask instead whether there is evidence for the selection for
codons associated with low abundance tRNAs. Rather than averaging the codon usage of complete genes, we scan the
genes for windows with deviating codon usage. We show that there is a significant over representation of human genes
that contain clusters of codons with low abundance cognate tRNAs. We name these regions, which on average have a 50%
reduction in the amount of cognate tRNA available compared to the remainder of the gene, RTS (rare tRNA score) clusters.
We observed a significant reduction in the substitution rate between the human RTS clusters and their orthologous chimp
sequence, when compared to non–RTS cluster sequences. Overall, the genes with an RTS cluster have higher tissue
specificity than the non–RTS cluster genes. Furthermore, these genes are functionally enriched for transcription regulation.
As genes that regulate transcription in lower eukaryotes are known to be involved in translation on demand, this suggests
that the mechanism of translation level expression regulation also exists within the human genome.
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Introduction

Codon usage bias is abundant in every sequenced genome and

several theories have been put forward to explain it, depending on

the genome or the gene. In many organisms, including bacteria,

yeast and Drosophila species, the strongest factor determining codon

bias is selection for maximizing translation speed and accuracy [1–

6]. Those genes that are the most highly expressed exhibit a bias

towards codons that have the most abundant cognate tRNAs. It is

not the case, however, that a maximal rate of translation always

results in optimal protein production. In a handful of cases the

synonymous mutation of a codon to the most translationally optimal

will cause a phenotype [7,8]. In bacteria and yeast there are several

well-studied mechanisms by which local variations in translation

rate are an essential regulator of protein production [9–11].

Protein secondary structure is known to be influenced by the

local rate of translation and translational pausing [see 12]. The

stalling of translating ribosomes can allow nascent proteins the

freedom to fold, or facilitate the interaction of chaperones/

regulatory proteins, without the interference from the physio-

chemical properties of the downstream protein sequence [see 8].

Furthermore, different protein secondary structures are associated

with codons with different translation rates. For example, in

Escherichia coli, beta strands are more commonly associated with

codons with low levels of cognate tRNAs, whereas alpha helices

associate with codons with abundant cognate tRNAs [12]. More

generally, rare codons are found near the boundaries of protein

domains [12–14] in E.coli.

Variable local translation rate is used in several species as an

extension of expression level regulation. This is especially so in the

case of trypanosomatids, which have little regulation of gene

transcription and instead have been suggested to rely on

mechanisms that influence the rate of translation to fine-tune

protein levels [15]. The expression of genes can be down regulated

at the translation level by a process called no-go decay (NGD). This

system is thought to be a safety mechanism to clear blocked mRNAs

and is characterized by the dissociation of the stalled ribosome from

the mRNA, followed by the degradation of both the nascent protein

product and the mRNA [see 16]. NGD allows the translation at low

levels of those genes that are highly transcribed.

The presence of NGD, in turn, opens up the possibility for

translation on demand, a mechanism thought to occur in

Saccharomyces cerevisiae to minimize the reaction time to a stress

stimulus. If, under normal conditions, translation is limited by

ribosomes that stall at a specific mRNA position, then protein

production can be rapidly up regulated in response to a stress

factor by resuming translation. Regulating a response to stress via

this path will elicit a faster response than if the control was solely at

the level of transcription [17]. The genes most commonly

regulated by translation on demand are transcription factors and

those related to gene processing [18]: genes that can go on to alter

the expression profile of other genes.

In humans, there has been much contradictory and inconclusive

evidence for the presence of selection for translation optimization

[4,19–21]. There are several reasons for this lack of certainty. It is

thought that selection for the purging of weakly deleterious
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mutations is relatively inefficient in mammals due to a limited

effective population size [22]. In addition, a large component of

codon bias in mammals can be explained by variations in the local

GC content. There may also be a conflicting effect by purifying

selection acting on exonic splicing regulatory elements, a

mechanism not as prevalent in lower eukaryotes, with the potential

ability to out compete any translation level selection [23,24]. More

recently however, strong evidence has been provided that optimal

codons (those codons with the most abundant tRNAs) associate

with conserved sites within human genes [25], prompting the

proposal that there is selection to limit errors in translation of

human genes.

Further recent investigations by Kimchi-Sarfaty highlighted that

synonymous changes for ‘‘slow’’ codons can have a detrimental

effect in human genes [7]. In the specific case of MDR1 the disease

phenotype is observed when a haplotype of SNPs for rare codons

occur [7]. Kimchi-Sarfaty proposed that this is due to the effect of

the rare codons on the translation rate, which compromises the

folding of the nascent protein, thus diminishing the function of the

mature protein.

Regions of genes that may regulate the folding of mature

proteins, by means of rare codon clusters, have been identified in

two studies [26,27]. Widmann et al. assessed the usage of rare

codons in genes from two families of a/b proteins and found that

synonymous mutations in these clusters induce protein mis-folding

[27]. The protein families investigated were those most likely to

undergo co-translational protein folding, and thus, these results do

not represent the incidence of any genome-wide phenomena.

Clarke and Clark proposed a large-scale method for identifying

gene segments of highly biased codons (when compared to their

potential maximum bias) [26]. Both these studies (mentioned

above) attributed the clustering of rare codons to constraints on

protein folding. However, these two investigations may suffer from

the assumptions that they have made. Firstly, both groups assume

that the codons used most infrequently in the genome are those

that will be the least translationally optimal. There is no evidence

for this. If we take the number of cognate tRNA gene copies as a

proxy for the rate of translation of the codon, then codons with the

fewest tRNAs, and thus the lowest rate of translation, do not have

the lowest genome frequency (Figure 1). Secondly, both groups

identify codon bias within the genes relative to the whole genome

codon usage, and ignore the variations in local GC content across

the human genome. This approach may fall foul of isochore effects

in mammalian genomes.

We propose an alternate method to identify clusters of

translation rate-limiting codons that may be of functional

importance in human genes. This method is free from local

nucleotide biases and assumptions about the usage of codons

throughout the genome. Further, we assume that the largest factor

determining the rate of translation of a codon is the number of

cognate tRNA genes. With this approach we determine the

prevalence of translation rate-limiting clusters in human genes

and, without prior assumptions about their function, assess genic

properties to infer the potential role of these clusters.

Author Summary

The degeneracy of the genetic code means that many
amino acids are encoded by not one, but a range of
codons. In bacteria and yeast, it is known that the choice
of codons used can be beneficial (or detrimental) to the
gene function. As humans have a relatively small effective
population size, and the efficiency of selection to purge
mutations of mild deleterious effect decreases as popula-
tion size decreases, it has been assumed that the benefit/
cost of codons is not large enough to have a measurable
effect on codon choice. Here we show that codons with
the lowest amount of tRNA are clustered in gene
sequences more often than anticipated. The genes
containing these clusters were found to have specific
functions in gene expression. Comparisons to known
bacterial and yeast processes suggest a translation level
mechanism for the regulation of protein expression in
human genes. Thus, our investigation highlights the
potential for the presence of a novel regulatory mecha-
nism in human genes.

Figure 1. Correlation between tRNA gene copy number and genome codon usage. There is an overall trend for codons with high genome
usage to have more cognate tRNA gene copies. However, the codons with the fewest cognate tRNA genes are not the most rare within the genome.
doi:10.1371/journal.pgen.1000548.g001

Codon Usage and tRNA Abundance
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Results

Clusters of codons with low tRNA gene copy numbers
are common in human genes

To identify regions of genes that have the greatest potential to

minimize the translation rate, we devised a measurement of

corresponding tRNA abundance (the anti-codon abundance

score). This score assumes that there is a direct correlation

between tRNA abundance and the number of tRNA genes; an

assumption that previous investigations have shown is justified

[2,28,29]. This scoring method allows us to directly compare the

different amino acids within the same gene. We employed a sliding

window analysis across 13,793 human genes and calculated the

average anti-codon abundance score (ACA score) for each window

(see Methods and Figure 2). The region of the gene with the lowest

score was deemed to have the greatest putative role in the

reduction of translation rate. This classification differs from other

methods that found the regions of the greatest codon bias when

compared to the codon usage of the whole genome, a method that

does not guarantee that the region identified limits the translation

rate. Our method identifies the absolute rate-limiting position

within the gene, the region most likely to cause translation related

regulatory effects. To test if the window with the lowest ACA score

was expected given the underlying nucleotide content of the gene,

Figure 2. The sliding window profile of FOXF2: a lung and placenta specific transcription factor. Although there is large variation across
the gene, the ACA score at the 59 region is very unlikely to have occurred by chance (P,0.001).
doi:10.1371/journal.pgen.1000548.g002

Figure 3. The difference between the true ACA scores and the randomized ACA scores. The difference between the randomized ACA
score (hollow circles) and true ACA scores (plus sign) is displayed for all p-values. The true ACA score was deemed significantly different to the
randomized ACA score if the p-value, = 0.05.
doi:10.1371/journal.pgen.1000548.g003

Codon Usage and tRNA Abundance
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or whether it occurred due to factors other than chance alone, we

implemented a randomization analysis. For each gene, the existing

codons were shuffled 1,000 times, maintaining the underlying gene

codon usage and nucleotide biases, and the sliding window

analysis was repeated. We identified 1703 genes with an original

ACA score that was lower than at least 95% of the randomizations

for that gene and 148 genes with an ACA score that was lower

than 99.9% of the randomizations (Figure 3).

Of course, in any large dataset of genes one would expect to find

a number of genes with a low ACA score. To determine our false

discovery rate, we employed the QVALUE software [30,31].

Provided with the distribution of p-values for all the genes,

whether they were deemed significant or not, QVALUE will

calculate the proportion of false positives that would be expected if

a p-value was to be used as the significance cut-off. At our chosen

significance threshold p-value of 5%, we had a false discovery rate

of 23%. Thus, of our initial 1703 clusters that were found to have

significantly low scores, 391 may have been falsely identified.

Nevertheless, this leaves 1306 genes that are likely to be true

positives. Thus, we find that up to 10% of the genes in the entire

human gene set contain a region with a significantly low score. To

the regions of the genes that we found to have significantly low

scores we allocate the term RTS (Rare tRNA Score) clusters.

Putative pause sites are not due to the encoded protein
sequence

It is possible that some amino acids are encoded by a set of

synonymous codons that all have a relatively low number of tRNA

genes. If these amino acids occur together in a protein domain, we

could see significant RTS clusters due to constraints at the protein

level. To evaluate the impact of protein level interference, we

employed a second randomization. In order to control for local

nucleotide biases and isochore effects, we binned the genes into

138 groups of 100 genes of similar G/C content at third codon

positions (GC3). For each randomized iteration the amino acid

sequence of the RTS cluster was maintained and the codons were

randomly selected, weighted by the synonymous codon usage

within the GC-bin. The new ACA score was calculated and

compared to the original. The cluster was deemed free of protein

level interference if less than 5% of the randomizations produced a

lower score, indicating that the RTS clusters are not the result of

the amino acid sequence. Under these criteria, 601 genes were

further purged, leaving 1102 putative translation pausing sites with

a false discovery rate of 2.6% [31]. It is these genes that have a

significantly low ACA score, after controlling for local nucleotide

biases and interference from the amino acid sequence, for which

we implemented the remaining analyses.

RTS clusters show reduced substitution rates
If the RTS clusters we have identified are functionally

important, we expect that there should be conservation of the

cluster region. To this end, we calculated the number of

synonymous substitutions between human and chimp orthologues.

As synonymous substitutions between human and chimp ortho-

logues are not common, the number of substitutions in

concatenated RTS cluster regions were compared to those of

concatenated non-cluster regions of the genes, after controlling for

the potential influence of splicing effects. Since the evolution rate

near splice sites is reduced due to the conservation of exonic

splicing enhancer elements [24,32,33], we need to control for this

within gene variation in the rate of evolution. We therefore

focused our analysis on sequences distal to intron-exon boundar-

ies. The orthologous human-chimp sequences were purged to

contain only coding sequence that fell outside 70 nucleotides of a

splice site. This cut-off has been used previously in the literature

and it has been shown to contain the large majority of the

regulatory elements; thus we assume that analyzing sequence

outside this cut-off will control for a large amount of confounding

effects [24,34]. The expected values of synonymous substitutions

between RTS clusters and non-cluster regions were calculated

under the assumption that within the splice site distal sequence the

substitutions should be evenly distributed. Fisher’s exact test of

these expected values against the number of observed substitutions

reveals that RTS cluster regions show a significant decrease in the

number of synonymous substitutions (57% of the expected value,

24 observed versus 42 expected synonymous substitutions,

p = 0.01), indicating that the RTS clusters are conserved and are

likely to be functionally important.

A mechanistic role of a local reduction in translation rate
The distribution of RTS clusters is skewed toward genic

extremities. Although the degradation of mRNA and the

nascent protein associated with stalled ribosomes has been linked

to the regulation of protein expression in bacteria, this ‘‘No-go

decay’’ theory presents a major pitfall, since it would incur a large

waste of resources [35–37]. However, if this mechanism were in

place, one might expect that selection would limit such a waste. If

our RTS clusters were present to facilitate NGD, we could predict

that these RTS clusters would localize to the 59 end of the gene,

thus minimizing the use of resources and the size of the protein

product to be degraded. To allow the comparison of genes of

differing lengths, we determined in which 20th of the gene the

RTS cluster was located (Figure 4). We observed that there was a

highly significant skew in the position of clusters towards the

beginning and the end of genes (p,0.001, Chi-squared analysis),

even in the most significant clusters (Figure 4). Those genes with

RTS clusters skewed toward the 59 region of the gene could be

explained by the above scenario. However, selection to limit the

waste of resources involved in NGD would not explain the

remainder of the distribution we observe.

RTS cluster–containing genes have increased tissue

specific expression. Recent investigations by Lavner et al.

revealed that codon usage bias was high in highly expressed

human genes; however, codon bias was higher still in genes with

low expression. This is a relationship that cannot be explained by

any currently known mechanisms or phenomena applied to

human genomes. Lavner proposed that this finding could be due

to selection for least optimal codons in those genes that have low

expression to ensure low protein production [28].

To test whether our RTS cluster genes have contrasting

expression profiles to the remainder of the genes, or more

specifically if RTS cluster genes were expressed at unusually low

levels, we compiled a dataset of mRNA expression levels across a

comprehensive range of tissues (see Methods) and determined the

median and maximum expression as well as the tissue specificity

(TSI) of each gene (see Methods). We compared the expression

profiles of RTS cluster containing genes with randomly generated

gene sets of equal size from the whole gene set to discern any

differences in mRNA levels. Between RTS cluster genes and

random gene sets, one main difference was apparent. The tissue

specificity, measured by TSI, was significantly higher in RTS

cluster containing genes (p,0.001, obtained by comparison to

1,000 randomly generated gene sets), indicating that tissue specific

expression is more likely in RTS cluster genes. In order to

determine if this increase in tissue specificity was particular to a

tissue, we developed a method to find the tissue (or few tissues) for

which the expression of the gene was specific. We cannot assume

that the expression levels are normally distributed, thus we

Codon Usage and tRNA Abundance
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determined the median and the inter-quartile range (IQR) of the

expression for each gene in the whole dataset with obtainable

expression data (3,133 genes). Tissues were accepted as specific for

a gene if they exhibited expression greater than or equal to the

median expression plus 7.5 IQRs. This method allows us to

capture multiple tissues in which expression is relatively high,

irrespective of overall expression level, as well as controlling for the

distribution of expression values (e.g. taking as a cut-off value a

multiple of the average will suffer from genes with large IQR). We

compared the expected values to the observed number of RTS

and non-RTS cluster genes specific for each tissue group, revealing

one tissue group to be enriched in the RTS-cluster gene set. We

observed a 3-fold increase in the number of RTS cluster genes

specific to the brain relative to that expected by chance (p = 0.045,

Fisher’s exact test).

If the presence of the RTS clusters was a result of selection on

genes with low expression, we would expect the average gene

expression to be reduced in RTS cluster genes. As we observed no

difference between the average levels of expression for RTS cluster

and non-cluster genes, it is unlikely that the cause of the RTS

clusters is the mechanism proposed by Lavner.

The RTS cluster genes show distinct transcription related

GO profiles. We performed Gene Ontology analysis on those

genes that contained RTS clusters to determine whether they were

over-represented for any function or protein localization. This was

achieved using the web-application Babelomics [38]. Comparing

all genes containing RTS clusters to cluster-free genes showed an

over-abundance of many linked functions that strongly suggest

that our observations are biologically relevant. The strongest

enrichments were observed for chromatin binding (3.15-fold

increase, adjusted-p = 0.02), sequence-specific DNA binding (2-

fold, adjusted-p = 0.002), transcription factor activity (1.7-fold,

adjusted-p = 0.002) and RNA binding (1.65- fold, adjusted-

p = 0.04). These functions are similar to those described in

bacterial and lower eukaryote genes that undergo translation on

demand [18].

There is no link between RTS clusters and protein

domains. The regulation of protein folding by local variations

in translation rate is the most widely researched mechanism by

which translation can influence protein function in lower

eukaryotes and bacteria. If there is also a link between protein

folding and translation rate in human genes, we may expect a

correlation between Pfam domain positions and the position of the

RTS clusters, similar to those found in E.coli. For instance, we can

speculate that it would be beneficial for translation to pause

between protein domains in order for them to fold independently

[13,14,39,40]. To this end, we identified Pfam domains from the

Ensembl database for each gene containing an RTS cluster. We

classified the RTS clusters depending on whether their midpoint

occurred within a Pfam domain, a flanking domain or a spacer

region (see Methods). As a null, we expected the RTS clusters to

be distributed evenly throughout these regions and, after Chi-

squared analysis, we were unable to reject this hypothesis. There

was no observable skew between the position of RTS clusters and

the position of either Pfam domains or their immediate flanking

regions, and thus we found no evidence for a link between protein

domains and cluster presence. This observation is in agreement

with that of Widmann et al. [27] who identified regions of rare

codons within genes but found no consistency in their distribution

relative to protein structure.

The effects of slow translation seem to be selected against

in genes that undergo co-translational protein folding. It

could be asked whether the above test is appropriate to assess the

link between protein folding and translation rate. Recent work has

argued that co-translational protein folding mainly occurs in the

a/b class of proteins [41]. We would expect that if the regions of

putatively low translation rate were due to a pre-requisite for

protein folding regulation, then a/b proteins should be over-

represented in our RTS cluster containing genes. This however

was not observed. In fact, there was a significant trend for RTS

clusters to be avoided in a/b proteins (p,0.05, Fisher’s exact test).

Thus, there is no evidence to suggest that translational pausing is

necessary for the correct folding of human proteins.

RTS clusters are not due to other confounding factors
RTS clusters are not due to codon usage biases near

splice sites. Recent investigations into mammalian genes have

revealed strong codon usage bias due to the presence of splicing

regulatory elements in the exonic sequence near splice sites

[23,33]. Is it possible that the presence of these exonic splicing

enhancer (ESE) sequences can cause the RTS clusters? If this were

the case, we would expect to find a high density of RTS clusters

within close proximity to splice sites. We examined the observed

distribution of clusters in the vicinity of splice sites and the

remaining gene sequence. RTS clusters are not enriched but

avoided (data not shown) near splice sites, indicating that the

abundance of RTS clusters is not an artifact of skewed codon

usage near splice sites.

Figure 4. The positions of the mid-point of RTS clusters across
genes. Each gene was split into 20 bins so that genes of different
lengths can be compared. The positions of RTS clusters are determined
by the gene fraction in which the cluster arises. The frequency of RTS
clusters was not evenly distributed across genes, but skewed toward
the 59 end and the 39 end (p,0.001). The distribution of RTS clusters
defined by p,0.05 is shown by hollow circles, while those highly
significant RTS clusters, defined by p,0.01, are shown by crosses.
doi:10.1371/journal.pgen.1000548.g004
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Genes containing RTS clusters are not associated with

CpG islands. It is important to consider the potential presence

of CpG islands as a source of RTS clusters, as these features are

known not only to associate strongly with the 59 region of genes,

but also to encroach into the coding sequence of genes and

interfere with codon usage. We assessed a dataset of 1222 CpG

islands [42] to determine the observed and expected association of

CpG islands with RTS cluster genes. We found no association

between CpG islands and the genes that contain clusters of low

score codons (data not shown).

Discussion

Due to the relatively small effective population size of

mammalian species, in addition to a lack of evidence for selection

to purge weakly deleterious mutations in higher eukaryotes, it has

been assumed that selection for a mechanism of gene regulation

programmed within the coding sequence of mammals does not

occur [43,44].

In this investigation, we show that clusters of codons with low

cognate tRNA gene copy numbers are more common than

expected given local codon usage and constraints from the amino

acid sequence. The potential importance of these RTS clusters is

highlighted by the significant reduction in synonymous substitu-

tions in chimp orthologues at the RTS cluster regions. Further,

these observations cannot be explained by confounding factors

such as CpG islands or the presence of splicing regulatory

elements.

Opposed to observations in other species that beta sheet

structures and the boundaries of protein domains are associated

with the use of codons with low abundance cognate tRNAs [see

12,13,14 and also 8], we observed no evidence to suggest that this

occurs in humans. In fact, our RTS cluster genes are significantly

underrepresented for a/b proteins, which evidence suggests are

those most likely to undergo co-translational protein folding [41].

This may indicate that reduced translation rate has a negative

impact on protein folding in humans, as observed in the case of

MDR1 [7].

Intriguingly, we observed two skews in RTS cluster positions

within the gene: those skewed to the 59 region and those skewed to

the 39 gene region. We also found that RTS cluster genes have

higher tissue specific expression profiles than the remaining RTS

cluster–free genes. Additional evidence from the Gene Ontology

analysis revealed a strong over-representation of genes involved in

transcription, in-keeping with those known to undergo translation

on demand in prokaryotes [18].

When we take these results together, it is feasible that RTS

cluster genes are subject to a process similar to NGD, a

mechanism that limits the level of protein production. This

potential is indicated by the fact that some clusters are skewed

toward the 59 region [see 16], a feature used to minimize the cost

of employing NGD.

One alternative theory explaining the clustering of codons

corresponding to rare tRNAs is one we refer to as the ‘‘recruitment

delay minimization’’ hypothesis. The theory posits that if one rare

codon is used then subsequent synonymous codons will be biased

towards this codon. The reasoning is that once the tRNA has been

recruited to the mRNA it will be in position to translate the

proximal cognate codons without imposing a recruitment delay,

and thus any impact on translation rate is minimized. As this

mechanism acts to maximize the translation rate of a restricted

sequence, we would expect that this bias would only be necessary

in a handful of cases. If a reduction in the translation rate is costly

to fitness, then selection should favor the use of synonymous

codons with abundant tRNAs. The only instance where the

clustering of the same slow codon to minimize recruitment delay

would occur is if all the synonymous codons for an amino acid are

rare. Our results are independent of this phenomenon as those

RTS clusters due to amino acids with only low scoring codons

were purged from our analyses. In addition, this selective force

should be restricted to highly transcribed genes; a feature not

enriched in our RTS cluster genes.

For the most significant RTS clusters (Table S1), site directed

mutagenesis studies, which modify the nucleotide sequence to

maximize translation rate, may reveal in which capacity these

RTS clusters are necessary.

Methods

Datasets
Gene sequences and alignments. The human coding

sequences were extracted from the refMrna.fasta file from the

UCSC Genome Browser http://hgdownload.cse.ucsc.edu/

goldenPath/hg18/bigZips/ [45] and orthologous chimp coding

sequences were extracted from the NCBI database. In addition,

the exonic boundaries were determined from the NCBI RefSeq

entries for the human dataset only. The orthologous human and

chimp genes were aligned at the amino acid level using muscle

v3.6 [46].

Protein classification. For each gene, we determined

whether it was classified as an a/b protein or another class by

cross reference with SCOP 1.73 protein classification release [47].

Pfam domain mapping. The mapping of the Pfam domains

to proteins was done using the database interface of the Ensembl

genome browser (release 47) [48]. From this data we were able to

classify RTS clusters with respect to their position in the protein

structure. If the mid-point of the cluster fell within the bounds of a

Pfam domain, then we assigned the cluster as a Pfam cluster. If the

mid-point fell within the flanking 30 nucleotides (as long as no

further Pfam domain occurred in this region) then the cluster was

defined as flanking. Any remaining cluster positions were classified

as spacer region clusters.

Expression data. The mRNA levels for human genes across

73 non-cancerous tissues were obtained from GNF Genome

Informatics Applications & Datasets as Human U133A+GNF1H

(gcRMA-condensed) [49], which can be accessed to see the range

of tissues analyzed. Rather than use an arbitrary cut-off value to

determine whether a gene was expressed in a tissue, we used the

database presence/absence calls from the file GNF1h AP calls.

The maximum expression level was defined as the highest

observed level of mRNA measured in a tissue where the gene

expression is found to be present. The median gene expression

values were only calculated from those tissues where gene

expression was also deemed present from these data. We

assessed the tissue specificity of the expression profile of genes by

employing a Tissue Specificity Index [50]. It is calculated as

follows:

TSI~

Pn
i~1 1{ Si

Smax

h i

n{1

Where Si is the expression level of the ith tissue, Smax is the

maximum expression value and n is the total number of tissues. If

the gene is expressed at a similar rate across a broad array of

tissues then we should observe a TSI close to 0. On the other

hand, if there is very high expression in only a small number of

tissues then the TSI should be close to 1.

Codon Usage and tRNA Abundance
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Sliding window analysis and the Anti-Codon Abundance

Score. A sliding window analysis was implemented on all genes.

Each window was 27 codons long and was applied to every 9th codon

to allow ample coverage of the data, but with a conservative time

constraint. To show that the results are not an artifact of this window

size, the randomization was applied to the genes under varying

window sizes (Figure 5). Each codon was ascribed a numerical value,

calculated by dividing the number of cognate tRNA genes by the total

number of tRNA genes. The tRNA gene copy numbers for human

were obtained from http://lowelab.ucsc.edu/GtRNAdb/ [51]. This

analysis makes the assumption that the number of tRNA genes is a

true representation of the tRNA abundance within the cell. Previous

studies have shown that this assumption is not unfounded [2,28,29].

The ACA score for each window is calculated as the mean of the

codon values within that window. The window within the gene with

the lowest ACA score is then defined as the potential translational

pause site. Even though this definition is very crude, it is also very

stringent, as only one large signal per gene will be identified.

Therefore, we can be confident in our prediction of the most likely

pause sites. However, multiple local reductions in translation rate

within the same gene were not covered by this analysis.
Gene ontology analyses. Gene ontology analyses were

performed using the web application BABELOMICS (http://

www.babelomics.org/), using the FatiGO functional enrichment

program [38]. All of the gene ontology analyses considered

biological function, molecular function, cellular component and

transcription factors. The classification was considered significant

if the p-value (adjusted for multiple testing) was less than 0.05.

Supporting Information

Table S1 This table contains the RefSeqs of the human genes

with the most significant RTS clusters (p#0.001). The starting

position (in codons) of the cluster (27 codons in length) are shown

in column 2.

Found at: doi:10.1371/journal.pgen.1000548.s001 (0.04 MB PDF)
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