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Abstract

Homologous recombination is an important mechanism for the repair of DNA damage in mitotically dividing cells. Mitotic
crossovers between homologues with heterozygous alleles can produce two homozygous daughter cells (loss of
heterozygosity), whereas crossovers between repeated genes on non-homologous chromosomes can result in
translocations. Using a genetic system that allows selection of daughter cells that contain the reciprocal products of
mitotic crossing over, we mapped crossovers and gene conversion events at a resolution of about 4 kb in a 120-kb region of
chromosome V of Saccharomyces cerevisiae. The gene conversion tracts associated with mitotic crossovers are much longer
(averaging about 12 kb) than the conversion tracts associated with meiotic recombination and are non-randomly
distributed along the chromosome. In addition, about 40% of the conversion events have patterns of marker segregation
that are most simply explained as reflecting the repair of a chromosome that was broken in G1 of the cell cycle.
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Introduction

Although mitotic recombination between homologous chromo-

somes was first described in 1936 [1], our understanding of the

mechanism of spontaneous mitotic recombination is still limited

for two related reasons. First, spontaneous mitotic recombination

events are very infrequent compared to meiotic exchanges. In S.

cerevisiae, mitotic crossovers and conversions are about 104 to 105-

fold less frequent than meiotic events [2,3] and usually require a

selective system for their detection. Second, these systems, in

general, do not allow selection of both daughter cells that contain

the recombinant chromosomes generated in the mother cell.

Reciprocal crossovers (RCOs) between homologous chromosomes

that have a heterozygous marker can lead to daughter cells that

are homozygous for the marker (loss of heterozygosity, LOH). One

selective system in S. cerevisiae to detect such events uses the

heterozygous drug-resistance marker can1 (Figure 1A). Since

diploids heterozygous for this marker are sensitive to the arginine

analogue canavanine, a derivative that is homozygous for the

mutant allele arising from crossing over can be selected on

medium containing canavanine. The daughter cell homozygous

for the wild-type CAN1 allele, however, cannot be selected.

A canavanine-resistant diploid can also be derived from a

heterozygous diploid by break-induced DNA replication (BIR) [4].

As shown in Figure 1B, a double-strand DNA break (DSB) on the

CAN1-containing chromosome is repaired by copying the DNA

from the can1-containing chromosome. Since the only selectable

daughter cell in this system is identical for both RCO and BIR, these

two mechanisms cannot be distinguished by this system. Two recent

studies have examined the relative contributions of RCO and BIR

to LOH in yeast. Using a non-selective approach, McMurray and

Gottschling [5] showed that most LOH events in ‘‘young’’ cells (cells

that have not undergone many mitotic divisions) represent RCOs,

whereas LOH events in ‘‘old’’ cells often involve BIR. Using a

selective approach that will be described further below, we found

that most spontaneous LOH events are RCOs and recombination

events induced by hydroxyurea are both RCO and BIR [6].

In mitosis, as in meiosis, gene conversion events are observed

and these events are often associated with crossovers [3].

Conversion events are the non-reciprocal transfer of information

between homologous DNA sequences and, in meiosis, most

conversions reflect heteroduplex formation, followed by mismatch

repair [7]. Most studies of mitotic conversion employ strains that

are heteroallelic for an auxotrophic marker and heterozygous for a

centromere-distal marker (Figure 2). Although a reciprocal

crossover between the heteroalleles could produce a prototroph,

Roman [8] showed that most prototrophs were a consequence of a

gene conversion event. It should be noted that use of heteroalleles

for the detection of gene conversion is rather restrictive. If gene

conversion is a consequence of heteroduplex formation followed

by mismatch repair, in order to obtain a wild-type allele by

conversion, the heteroduplex must include only one of the two

alleles or the repair of the heteroduplex containing both alleles

must be ‘‘patchy’’. As described below, we found that the mitotic

conversion tracts associated with RCO in our system are usually

very long and continuous.

In numerous studies of the type diagrammed in Figure 2,

heteroallelic gene conversion is associated with LOH of a

centromere-distal heterozygous marker. The degree of association

varies between about 10% and 50% [2]. Based on the expected
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patterns of segregation following an RCO, one would expect that

only half of the RCOs would be detectable by producing cells that

have undergone LOH (Figures 1 and 2). Chua and Jinks-

Robertson [9] showed that this expectation is met for S. cerevisiae,

although in Drosophila, the crossover chromatids usually segregate

into different daughter cells [10].

Stern [1] argued that mitotic crossovers occur in G2 (as shown

in Figures 1 and 2) because a mitotic crossover between

unreplicated chromosomes would not result in LOH for

heterozygous markers (assuming that the chromosomes undergo

an equational division). In S. cerevisiae, however, two studies

demonstrated that mitotic gene conversion could be induced in G1

cells by ultraviolet light or gamma rays [11,12]. From his analysis

of crossovers associated with heteroallelic gene conversion events,

Esposito [13] suggested that spontaneous mitotic exchanges also

occur in G1. He argued that Holliday junction intermediates

formed in G1 were replicated rather than resolved by junction-

cleaving enzymes, generating G2-like crossovers. In the analysis

described below, we present evidence that at least 40% of

spontaneous RCOs are initiated in G1.

Results

Experimental Rationale
We previously described a genetic system (Figure 3) allowing for

the selection of both daughter cells containing the reciprocal

products of mitotic crossovers in the 120 kb CEN5-CAN1 interval

on chromosome V [6]. One homologue has the can1-100 allele, an

ochre mutation. On the other homologue, the CAN1 gene has

been replaced with SUP4-o, a gene encoding an ochre-suppressing

tRNA [6]. In addition, the diploid is homozygous for ade2-1, also

an ochre mutation. In the absence of a suppressor, strains with the

ade2-1 mutation require adenine, form red colonies because of the

accumulation of a red precursor to adenine, and are canavanine-

resistant. The starting diploid strain is canavanine-sensitive (CanS)

and forms white colonies. If an RCO occurs between CEN5 and

the can1-100/SUP4-o markers as the cells are plated on

canavanine, a red/white sectored CanR colony will be formed.

In our first use of this system, the two homologues were derived

from isogenic haploids, resulting in a diploid that had no

polymorphisms. In the current study, using standard methods

[14], we constructed a diploid by crossing the haploid strains

W303A and YJM789. These strains have about 0.5% sequence

divergence and, therefore, about 60,000 single-nucleotide differ-

ences [15]; S288c and W303A are closely related in sequence [16].

By comparisons of the genomic sequences, we identified 34

polymorphisms between W303A and YJM789 in the CEN5-CAN1

interval and used those polymorphisms to map crossovers and

associated gene conversion tracts as described below. The diploids

derived from crossing W303a- and YJM789-derived strains were

PSL100 and PSL101. These strains are identical except one strain

(PSL100) is homozygous for the ura3 mutation and the other

(PSL101) is heterozygous ura3/URA3; these strains yielded very

similar results.

Each red/white sectored CanR colony reflects an independent

RCO (Figure 3). We isolated genomic DNA from cells purified from

the red and white sectors and analyzed the segregation of the

polymorphisms by PCR followed by restriction enzyme treatment

(details in Materials and Methods). For example, one polymorphism

distinguishing W303A and YJM789 is located at SGD coordinate

60,163 on chromosome V. A Hpy188III site that is present at this

position in the W303A genome is absent in the YJM789 genome.

We designed primers flanking this site (Table S2) that result in a

PCR product of about 520 bp. Thus, if we amplify genomic DNA

from a diploid that is homozygous for the W303A form of the

polymorphism, treat the amplified product with Hyp188III, and

analyze the products by agarose gel electrophoresis, we observe two

fragments of about 250 and 270 bp. A strain homozygous for the

YJM789 form of the polymorphism produces a single fragment of

520 bp, and a heterozygous diploid produces three fragments of

250, 270, and 520 bp.

The patterns of marker segregation that were expected are

shown in Figure 4. For a RCO unassociated with gene conversion

(Figure 4A), we expect that markers centromere-proximal to the

exchange will be heterozygous in both the red and white sectors.

Centromere-distal to the exchange the sectors should be

homozygous, the red sector homozygous for the W303A markers

and the white sector homozygous for the YJM789 markers. If

there is a conversion associated with the RCO (Figure 4B), there

will also be a region in which a marker is heterozygous in one

sector but homozygous in the other. Such a segregation pattern is

analogous to a 3:1 meiotic segregation event.

Rates of RCOs in PSL100/101 and Related Strains
Before mapping the crossovers and associated conversion events,

we determined the rate of RCOs. In our previous study with a

diploid (MAB6) that was constructed from a cross of two W303A-

related haploids and had no polymorphisms between CEN5 and

CAN1 [6], we observed CanR red/white sectors at a rate of

260.661025/division (695% confidence limits); this analysis was

done in cells cultured at 30uC. Since the background growth of

CanS cells on the canavanine-containing solid medium in the

W303A/YJM789 diploid used in the present study is strong at 30u,
we performed all experiments at 22u. At this temperature, the rate of

CanR red/white sectors in MAB6 was reduced to 2.960.461026/

division. The rate of CanR red/white sectors in PSL101 (the diploid

with the hybrid W303A/YJM789 background) was

3.360.261026/division, indicating that the numerous sequence

polymorphisms do not significantly affect the rate of RCOs. Since

only half of the segregation events in cells with an RCO result in loss

of heterozygosity [9], the calculated rate of RCO in PSL101 (about

761026) is twice the rate of sector formation.

We also examined the rates of CanR red/white sectors in

PG311 and MD457, MATa/MATaD and spo11/spo11 derivatives

Author Summary

Most higher organisms have two copies of several different
types of chromosomes. For example, the human female
has 23 pairs of chromosomes. Although the chromosome
pairs have very similar sequences, they are not identical.
Members of a chromosome pair can swap segments from
one chromosome to the other; these exchanges are called
‘‘recombination.’’ Most previous studies of recombination
have been done in cells undergoing meiosis, the process
that leads to the formation of eggs and sperm (gametes).
Recombination, however, can also occur in cells that are
dividing mitotically. In our study, we examine the
properties of mitotic recombination in yeast. We show
that mitotic recombination differs from meiotic recombi-
nation in two important ways. First, the sizes of the
chromosome segments that are non-reciprocally trans-
ferred during mitotic recombination are much larger than
those transferred during meiotic exchange. Second, in
meiosis, most recombination events involve the repair of a
single chromosome break, whereas in mitosis, about half
of the recombination events appear to involve the repair
of two chromosome breaks.

Mitotic Recombination in Yeast
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of PSL101, respectively. The rates of sectors were 1.160.561026/

division (PG311) and 0.860.161026/division (MD457). Since we

previously found no significant effect of heterozygosity at the MAT

locus on RCOs [6] and since Spo11p is not expressed in vegetative

cells [17], the significance of the three-fold reduction in the rate of

RCOs relative to PSL101 is unclear. As will be described below,

the patterns of segregation of polymorphisms in MD457 and

PG311 were very similar to those observed in PSL101.

Figure 1. Detection of mitotic recombination events in a diploid heterozygous for the can1 gene. The two homologues are depicted in
G2 with the duplicated chromatids held together at the centromere (shown as ovals). A) Following a reciprocal crossover (RCO), one daughter cell is
homozygous for the recessive can1 allele and is canavanine resistant, whereas the other daughter cell is homozygous for the wild-type allele and is
canavanine sensitive. Note that only one of the two possible chromosome disjunction patterns is shown; the other pattern does not lead to the
markers becoming homozygous. B) Break-induced replication (BIR) is a fundamentally non-reciprocal process. In this depiction, the black chromatid is
broken and the broken end invades the red chromatid, duplicating all the sequences to the end of the chromatid. The net result of this process is one
CanR can1/can1 cell and one CanS can1/CAN1 cell.
doi:10.1371/journal.pgen.1000410.g001

Mitotic Recombination in Yeast
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Mapping of Mitotic Crossovers and Gene Conversions in
PSL100 and PSL101

We mapped crossovers and conversions in 74 CanR red/white

sectored colonies derived from PSL100 and PSL101. The

locations of the mapped events are shown in Figure 5. Green Xs

indicate crossovers unassociated with gene conversion and the

horizontal lines indicate the extent of gene conversion tracts

associated with crossovers (red and black lines indicating markers

derived from the W303A- and YJM789-derived homologues,

respectively). Several generalizations can be made based on our

analysis. First, most (59 of 74; about 80%) of the RCOs are

associated with adjacent conversion tracts; the conversion tract is

adjacent to the crossover in 58 of the 59 tracts. For most

conversion events (exceptions to be discussed below), we cannot

determine whether the crossover occurred within the tract or at

one of the two ends of the tract. Second, most (54 of 59) of the

tracts are exclusively red or exclusively black, indicating that only

one homologue was the donor in each conversion event. Third,

the red and black conversion tracts are not usually interrupted by

markers that do not undergo conversion, demonstrating that

regions of DNA from one homologue are usually non-reciprocally

transferred as a single entity to the other homologue. Fourth, since

the numbers of red and black conversion tracts (26 and 28,

respectively) are approximately equal, the two homologues are

equally capable of donating information during a conversion

event. Fifth, although about 20% of the crossovers have no

detectable conversion tracts, it is likely that most or all of such

crossovers are associated with conversion events that could be

detected with a denser array of markers.

In addition to the ‘‘normal’’ (3:1) gene conversion events shown

as thin lines in Figure 5, we detected an unexpected type of

conversion. In this class (which we term ‘‘4:0’’ conversion), the

same form of the polymorphism was homozygous in the red and

white sectors. These conversion tracts are shown as thick lines in

Figure 5. Of the 59 conversion events observed, 35 were 3:1

conversions, 7 were 4:0 conversions, and 17 were hybrid 3:1, 4:0

tracts. The 4:0 tracts and hybrid tracts are unlikely to reflect two

independent events, since the frequency of these tracts is similar to

that observed for the 3:1 tracts. In addition, about 70% of the 4:0

tracts are contiguous with a 3:1 tract and, in 15 of the 17 hybrid

tracts, the 4:0 segment of the tract is derived from the same

chromosome as the 3:1 tract (Figure 5). Our favored interpretation

of the 4:0 conversion events (outlined in detail in the Discussion) is

that they are a consequence of a double repair event of a

chromosome that was broken in G1 and replicated to yield two

broken chromatids.

There were 48 3:1 or hybrid conversion tracts that involved

sequences donated exclusively from W303A or YJM789. In

Figure 4B, we show the red chromatid (representing W303A

sequences) donating sequences to the black chromatid during the

conversion event. For this type of event, we expect that the red

sector (homozygous for can1-100) will be homozygous for the

converted marker(s) and the white sector (homozygous for SUP4-o)

will be heterozygous for these marker(s). This expected pattern was

observed in 42 of the 48 conversion events with a 3:1 or hybrid

Figure 2. Intragenic mitotic gene conversion associated with
crossing over. The two heteroalleles (a1 and a2) are shown as
rectangles with the position of the mutation indicated by a horizontal
line within the rectangle. In this diagram, wild-type genetic information
is transferred (indicated by a short horizontal arrow) from the

centromere-distal part of the a1 allele to the centromere-distal part of
the a2 allele, resulting in a wild-type A gene. The horizontal rectangle
shows the region of gene conversion (three of the chromatids having
wild-type sequences at the distal end of the gene and one having
mutant sequences). The wild-type and mutant alleles of the centro-
mere-distal marker are shown as white and black rectangles,
respectively.
doi:10.1371/journal.pgen.1000410.g002

Mitotic Recombination in Yeast

PLoS Genetics | www.plosgenetics.org 4 March 2009 | Volume 5 | Issue 3 | e1000410



3:1/4:0 tract. In three of the 48 events, the patterns of markers in

the sector were in the opposite direction (defined as the

‘‘unexpected’’ pattern) and, in three events, the patterns suggested

a crossover within the 3:1 conversion tract. These unusual patterns

of marker segregation may reflect repair of a G1-associated DSB

and are discussed further in the Supporting Information (Text S1,

Figures S1 and S2). For both meiotic and induced mitotic gene

conversion events, the chromosome with the DNA lesion that

initiates the exchange (for example, a double-strand break) is the

recipient of genetic information [3]. Our data do not address this

issue for spontaneous mitotic events.

The analysis described above can determine whether the strain

is heterozygous or homozygous for markers but does not reveal the

coupling of heterozygous markers. Our expectation was that in

sectors with heterozygous markers, the original coupling of these

markers was maintained, one chromosome containing the

W303A-derived markers and the other the YJM789-derived

markers. This expectation was checked for the red and white

sectors of nine sectored colonies. Strains derived from each sector

were sporulated and we analyzed the segregation of multiple

heterozygous markers in the four spores. For the heterozygous

markers, we found that two of the spores had markers derived

from W303A and two had markers from YJM789, indicating that

heterozygous markers usually had the same coupling relationship

as in the chromosomes before the mitotic exchange.

We classified 47 of the 59 conversion tracts in our study as

‘‘simple’’ using the following criteria: 1) the tract is continuous and

the converted sequences are derived from only one of the two

homologues, 2) the crossover is adjacent to the conversion tract,

and 3) the 3:1 conversion tract has the expected association (as

defined above) with the sector. We included 3:1, 4:0, and hybrid

tracts in our analysis. Most of these tracts spanned more than one

marker. For each conversion event, we estimated the tract size by

averaging the maximum tract size (the distance between markers

that flanked the conversion tract) and the minimum tract size (the

distance between markers that were included within the tract); for

conversion events that included one site, the minimum tract size

was taken to be one bp. The tract size averaged for the 47 events

was 11.761.6 kb (95% confidence limits); the median track size

was 7.6 kb. We also calculated the average tract lengths separately

for 3:1 events (12.662.4 kb), 4:0 events (6.860.8 kb), and hybrid

events (11.461.2 kb). These tracts are considerably longer than

those observed in meiotic cells that average about 1–4 kb [18–21].

The sizes of all conversion tracts for PSL100/PSL101 and the

other strains used in this study are in tables in the Supporting

Information section (Tables S3, S4, S5, and S6).

As discussed above, the mitotic crossovers that had no

detectable conversion event are likely to have had a conversion

tract that was restricted to the region between the assayed markers.

If we assume that these postulated conversion events had tract

sizes that were half of the distance between the markers in the

interval containing the crossover, then the average mitotic

conversion tract for PSL100/PSL101 was 9.4 kb rather than

11.7 kb, still considerably longer than meiotic conversion tracts

estimated in other studies. In summary, our analysis of mitotic

crossovers indicated two unusual features of the gene conversion

tracts associated with the RCO: the tracts were often very long,

and about 40% of the tracts were not consistent with the simplest

model of a G2-initiated recombination event.

Mapping of Mitotic Crossovers and Gene Conversions in
MD457 and PG311

To ensure that the unusual gene conversion events described

above were not a consequence of a sub-set of cells that underwent

Figure 3. A diploid strain that allows the selection of both
products of an RCO. The SUP4-o gene encodes a tRNA that
suppresses both the can1-100 and ade2-1 alleles. Strains that have
these mutations in the absence of the suppressor are canavanine
resistant, adenine auxotrophs, and form red colonies (because of the
accumulation of a pigmented precursor to adenine). In the presence of
the suppressor, the strains are canavanine sensitive, adenine proto-
trophs, and form white colonies. If there is an RCO between the
centromere and the can1-100/SUP4-o markers, two CanR cells will be
produced; subsequent divisions of these cells will result in a red/white
CanR sectored colony.
doi:10.1371/journal.pgen.1000410.g003
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meiotic levels of recombination, followed by mitotic patterns of

chromosome disjunction, we examined mitotic recombination in

MD457 (a spo11/spo11 derivative of PSL101) and PG311 (a

MATa/MATaD derivative of PSL101). These strains are incapable

of meiotic recombination. The positions of RCOs and their

associated conversion tracts (14 from MD457 and 15 from PG311)

are shown in Figure 6. The types of conversion events are similar

to each other and to those observed in PSL100/PSL101. The gene

conversion tracts were very long in the two strains, and we

observed 3:1, 4:0, and hybrid 3:1/4:0 tracts in approximately the

same proportions as in PSL101. The average conversion tract sizes

(average of all three types) were 26.265.1 kb for MD457 and

12.862.3 kb for PG311; the median track sizes for MD457 and

PG311 were 20.1 kb and 6.1 kb, respectively. The average

conversion tract size for MD457 is somewhat misleading because

one very large tract (103 kb) had a substantial effect on the

average. The average tract size for the other tracts in MD457 was

19.2 kb. These results argue that the very long conversion tracts

Figure 4. Segregation patterns of heterozygous markers after RCO. In this figure, the heterozygous markers are depicted as circles. Only
seven of the 34 heterozygous markers in the CEN5-CAN1 interval are shown. The red and black colors represent markers derived from the W303A- and
YJM789-related chromosomes, respectively. A) Following an RCO that had no associated conversion, both sectors are heterozygous for all markers
centromere-proximal to the exchange. Distal to the exchange, the white sector is homozygous for the YJM789 markers and the red sector is
homozygous for the W303A markers. B) This diagram shows a conversion event (indicated by the arrow) in which one of the black markers is lost and
one of the red markers is duplicated. For this marker (boxed with the horizontal rectangle), three of the chromatids have the red marker and one has
the black marker. Proximal to the conversion and associated crossover, the markers in both sectors are heterozygous; distal to the conversion/
crossover boundary, the markers are homozygous with the same patterns observed in Figure 4A.
doi:10.1371/journal.pgen.1000410.g004
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and 4:0 and 3:1/4:0 classes of events observed in PSL101 do not

reflect an aberrant type of meiotic recombination.

Meiotic Crossovers and Associated Gene Conversions
Using methods similar to those used to map mitotic crossovers

and conversions, we also examined the patterns of meiotic

exchanges in 21 tetrads derived from PS101. By examining the

segregation of the centromere-linked trp1 marker and the can1-

100/SUP4-o markers, we identified tetrads that had at least one

crossover in the 120 kb CEN5-CAN1 interval. The positions of

crossovers and the lengths of associated gene conversion tracts in

these tetrads are shown in Figure 6C. Eleven of the conversion

tracts were associated with crossovers and three were not. Of the

eleven tracts associated with crossovers, eight included only one

marker and three included two. None of the conversion sites

spanned more than two markers. In striking contrast, of the 47

‘‘simple’’ conversion events associated with mitotic crossovers in

the same strain, as described above, 12 included only one marker,

12 spanned two markers, and 23 involved more than two markers.

This difference in the sizes of meiotic and mitotic tracts is very

significant (p value of 0.001 by Fisher exact test). In addition, using

the same methods to estimate conversion tract length that we used

for mitotic tracts, we calculated the average meiotic conversion

tract length in PSL101 as 4.760.6 kb, significantly (p,0.05) less

than that observed in mitosis. If we assume that the crossovers with

no detectable conversions had tracts that were half of the size of

the interval between the markers containing the crossovers, the

average conversion tract was 3.2 kb. In summary, these results

demonstrate that the long mitotic conversion tracts in PSL101 and

related strains are not an artifact generated by the high level of

polymorphisms in PSL101 and related diploids, but reflect

differences in the mechanisms of meiotic and mitotic recombina-

tion.

As expected from many previous studies [3,7], most of the

meiotic conversion events are 3:1 events (three spores with one

form of the polymorphism, one with the alternative form), but one

tetrad had a conversion tract with a ‘‘4:0’’ segment adjacent to a

3:1 segment, similar to some of the mitotic conversion tracts

described previously. Meiotic conversion events with 4:0 segrega-

tion have been seen previously at meiotic recombination hotspots

[22] and occur at the frequency expected for two independent

conversion events.

In 21 tetrads, we observed 26 crossovers; about 40% (11) were

associated with conversion tracts and 60% (15) were not. This

Figure 5. Mapping of RCOs and associated gene conversion tracts in the CEN5-CAN1 interval. Thirty-four markers were used to map
events in 74 independent red/white CanR colonies; both sectors were analyzed by methods described in the text. The positions of the markers are
shown by circles and X’s on the two chromosomes, with the circle indicating that the diagnostic restriction site exists and the X indicating that the
site does not exist. The numbers associated with the markers represent approximate SGD coordinates in kb. CEN5 is located at about SGD coordinate
152,000, and CAN1 is located at about position 33,000. Green X’s show the positions of RCOs that are not associated with a gene conversion tract.
Thin horizontal lines show the extent of ‘‘normal’’ 3:1 gene conversion tracts and thick lines show 4:0 conversions. The color indicates whether the
markers donated in the conversion event were derived from the homologue with the YJM789 (black) or W303A (red) markers. For example, a thin red
line indicates that one sector was homozygous for the markers derived from W303A and the other sector was heterozygous for these markers. For
most of the conversion tracts, the crossover maps adjacent to the tract. For those tracts with an arrow above the tract, the crossover occurred within
the conversion tract. The tracts in brackets have markers in the unexpected association as discussed in the text. In addition, for two of the tracts, the
position of the crossover was separated from the conversion tract; these events are shown with a dotted line connecting the tract and the crossover.
doi:10.1371/journal.pgen.1000410.g005
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association between meiotic crossovers and conversion is signifi-

cantly less (p value#0.001 by Fisher exact test) than observed for

mitotic crossovers and conversion in PSL100/101 where 59 of 74

crossovers were associated with a conversion tract. A simple

interpretation of this result is that the longer conversion tracts

associated with mitotic crossovers make it more likely that an

associated conversion event will be detectable in mitotic cells than

in meiotic cells.

Discussion

In this study, we show that most spontaneous reciprocal

crossovers are associated with long gene conversion tracts. In

addition, we found that about 40% of the conversion tracts had an

unusual pattern in which one form of the polymorphism became

homozygous in both sectors (4:0 conversion); as described below,

we interpret such conversion tracts as representing the repair of a

G1-initiated DNA lesion. Below, we discuss: 1) the distribution of

mitotic gene conversion events in the CEN5-CAN1 interval, 2) a

comparison of the lengths of mitotic and meiotic conversion tracts,

and 3) mechanisms of mitotic recombination.

Distribution of Mitotic Recombination Events
Meiotic recombination events in S. cerevisiae are distributed non-

randomly. Certain chromosomal domains have low levels of

exchange (for example, near the centromeres and telomeres) and

there are intergenic regions with very elevated rates of recombi-

nation (hotspots) correlated with high levels of local meiosis-

specific double-strand DNA breaks [23,24]. Although no high-

resolution mitotic recombination maps have been constructed

previously, several DNA sequence motifs or conditions have been

associated with elevated rates of mitotic recombination in yeast

including: elevated rates of transcription, replication fork pausing/

stalling, and DNA sequences capable of forming secondary

structures such as poly CCG or inverted repeats [25]. Most of

the assays of the recombination-stimulating sequences involve

recombination between direct or inverted repeats rather than

recombination between homologous chromosomes.

From the patterns of the spontaneous recombination events

shown in Figures 5 and 6, it is clear that crossovers and

conversions are initiated at many sites within the CEN5-CAN1

interval, although there appear to be more conversion tracts near

CAN1 than near the centromere. This impression is conveyed

more clearly in Figure 7A. In this figure, we show the number of

times each marker was involved in a conversion event in the strains

PSL100/101, MD457, and PG311. If we divide the region into

four intervals of approximately the same size and sum the number

of events/marker over all markers in each quadrant, we find 124

(Quadrant 1, markers 35 to 55), 112 (Quadrant 2, markers 56–87),

99 (Quadrant 3, markers 92–117), and 43 (Quadrant 4, markers

119–151) events in each quandrant, moving from CAN1 to CEN5.

This distribution of events is very significantly different

Figure 6. Mapping of mitotic crossovers in meiosis-deficient derivatives of PSL101 (MD457 and PG311) and meiotic crossovers and
conversions in PSL101. The depictions of crossovers and conversions are the same as in Figure 5. A) Analysis of crossovers and conversions in 14
sectored colonies derived from MD457, an isogenic spo11/spo11 derivative of PSL101. B) Analysis of crossovers and conversions in 15 sectored
colonies derived from PG311, an isogenic MATa/MATaD::NAT derivative of PSL101. C) Meiotic crossovers and conversion in PSL101. The diploid was
sporulated and the segregation of markers in the spores was examined. Conversion tracts that were unassociated with crossovers are indicated by a
horizontal line with a superimposed oval. Multiple events within one tetrad are shown with a connecting dotted line. Two conversion events that
include the can1-100/SUP4-o marker are not shown.
doi:10.1371/journal.pgen.1000410.g006
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(p = ,0.0001 by chi-square test) from random. In addition, the

number of events in Intervals 1 and 4 are significantly greater and

less, respectively, than that expected from a random distribution.

We confirmed this conclusion using two other types of analysis.

First, we determined the number of conversion tracts within each

quadrant. Only tracts that did not span two different quadrants were

Figure 7. Distribution of mitotic recombination events in the CEN5-CAN1 interval. This figure is a summary of the distribution of mitotic
recombination events in the strains PSL100, PS101, MD457, and PG311. A) For each marker, we summed the conversion events that include the
marker over all of the strains. Both simple and complex conversion events were used in this analysis. B) For each interval, we summed the conversion
tracts that end in the interval and the crossovers within the interval. We then divided that sum by the length of the interval in kb.
doi:10.1371/journal.pgen.1000410.g007
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included. We found 28, 16, 18, and 4 tracts within the Quadrants 1–

4, respectively. This distribution was significantly different from

random (p = 0.0005). One difficulty in localizing a mitotic recombi-

nation hotspot is that the conversion tracts are long and

heterogeneous in length. In meiosis, although the initiating DNA

lesion stimulates gene conversion tracts bidirectionally, individual

gene conversion tracts are propagated unidirectionally from the

initiating DNA lesion [26]. In an analysis of HO-induced mitotic

gene conversion tracts [27], about 80% of the tracts were

bidirectional from the DSB site, although the length of DNA

transferred was often much greater on one side of the DSB site than

the other. If we assume that individual spontaneous conversion events

are propagated predominately in a single direction from the initiating

lesion, one of the endpoints of the conversion tract will be near the

initiating DNA lesion. Thus, we determined the number of

conversion tracts that ended in each of the 35 intervals defined by

the polymorphic markers; we also included in this analysis the

crossovers within each interval. When these events were summed

within each quadrant, we found 65, 54, 38, and 31 events,

respectively, in Intervals 1–4. This distribution of events is

significantly (p = 0.0006) different from random. In Figure 7B, we

show the number of events (termini of conversion tracts and

crossovers) within each of the 35 intervals, normalized for the size of

the interval. A peak between markers 43 (SGD coordinates 43078)

and 44 (SGD coordinates 44403) is evident. The observed number of

events (8) in this 1.3 kb interval is significantly (p,0.0001 by chi-

square analysis) in excess of that expected based on a random

distribution of 188 events in the 119 kb CAN1-CEN5 interval.

The interval between markers 43 and 44 includes part of the PCM1

gene and the SOM1-PCM1 intergenic region. As discussed above,

elevated levels of mitotic recombination have been associated with

certain types of DNA structures (inverted repeats), microsatellite

sequences, or high levels of transcription. There are no obvious

structure/sequence elements in the 1.3 kb region, and SOM1 and

PCM1 are not among the most abundant transcripts in the yeast

genome [28]. We also compared the level of mitotic recombination

for each marker (measured as in Figure 7A) with the level of gene

expression of the ORF closest to the marker [28] by a linear

regression analysis; no significant correlation was observed

(r2 = 0.004; p = 0.74). An understanding of the nature of mitotic

recombination hotspots will probably require identification and

analysis of many hotspots.

Several other points should be made concerning the distribution

of mitotic events. First, the frequency of gene conversion events

near the CAN1 gene is somewhat underestimated, since a

conversion event extending through the can1-100/SUP4-o markers

would not result in a CanR red/white sectored colony. Second, in

our previous study of mitotic recombination [6], we did not

observe a reduction of exchange in the 35 kb URA3-CEN5

interval. In this previous study, however, our estimate of crossovers

was based on a relatively small number of events and was

insensitive to a small degree of suppression. From our current

study, it is possible that mitotic recombination, like meiotic

recombination, is reduced close (within 20 kb) to the centromere.

This conclusion, however, is tentative until studies of mitotic

recombination have been extended to multiple chromosomes. In

addition, although mitotic recombination is reduced near CEN5,

gene conversion events can extend through the centromere [29].

In summary, our analysis of the distribution of mitotic recombi-

nation events demonstrates that these events can be initiated at

many locations in the CAN1-CEN5 interval, although we have

preliminary evidence of one mitotic recombination hotspot.

By a variety of microarray-based procedures, we and others

have measured the distribution of meiosis-specific DSBs through-

out the yeast genome [30–34]. We compared the number of

mitotic conversion events involving each polymorphic site

(Figure 7) with the meiotic recombination activity of the nearest

ORF (derived from Table S2) [32] by a linear correlation and

regression analysis. No significant correlation was observed

(r2 = 0.021; p = 0.41 by two-tailed test). Since meiotic recombino-

genic lesions are generated by Spo11p which is not expressed in

mitotic cells, this result is not unexpected.

A Comparison of the Lengths of Mitotic and Meiotic
Conversion Tracts

Before comparing mitotic and meiotic conversion events, we

will briefly compare previous studies of mitotic conversions in yeast

with our study. In our study, only mitotic conversion tracts

associated with crossovers were examined. In a number of studies

[35], it was shown that mitotic conversion tracts associated with

crossovers are longer than conversion tracts unassociated with

crossovers. Most previous studies of mitotic conversion and

crossovers were done using systems in which the length of the

conversion was constrained in one of two ways. First, in studies

involving inverted or direct repeats, the sizes of the conversion

tracts are limited by the size of the repeats. Second, in experiments

involving selection of a prototroph from a heteroallelic diploid, the

system is biased against long continuous conversion tracts, the type

of tract that is most common in our study.

Nickoloff et al. [27] analyzed gene conversion events between

homologous chromosomes in which an HO-induced DSB within

the URA3 gene was the initiating lesion. The diploid strain was

also heterozygous for markers flanking the HO cleavage site,

approximately two kb to one side and 1 kb to the other. Most of

the tracts were continuous, and 60% extended outside of the

markers on one side or the other; 30% were beyond all of the

markers, a minimal distance of 3.4 kb. In an analysis of 51

spontaneous mitotic conversion events unassociated with crossovers,

Judd and Petes [19] found 49 that were greater than two kb, and

19 of these 49 were greater than four kb (end points extending

beyond the markers). 50 of the 51 tracts in this study were

continuous. Using a different approach, Golin and Esposito [36]

examined co-conversion of heteroalleles located about 30 kb apart

on chromosome VII. Although the rate of co-conversion events

was 50-fold less than the rates of conversion at one locus or the

other, these co-events were 1000-fold more frequent than expected

for independent events, arguing the possibility of rare very long

mitotic conversion tracts. Although very long conversion tracts

could reflect BIR [4], co-conversion of two pairs of heteroalleles is

unlikely to be a consequence of BIR.

With the exception of the current study, there is only one

analysis of meiotic and mitotic conversion events in the same

genomic region of the same strain [19]. Of ten meiotic conversion

tracts, eight had two defined endpoints (compared to 11 of 51

mitotic events). The average size of these eight tracts was 2.1 kb,

clearly shorter than the mitotic tracts. In two other meiotic studies

using similar methods, average conversion tract lengths of 3.4 kb

[18] and 1.5 kb [20] were observed. Because Borts and Haber

[20] calculated the minimal tract lengths rather than the average

of the minimal and maximal lengths, these two estimates are not

significantly different.

The most accurate estimates of meiotic conversion tracts can be

obtained in strains with the maximum density of markers with the

caveat that the markers themselves could influence the pattern of

gene conversion [37]. In a genetic background very similar to one

used in our study, Mancera et al. [21] used high-density

microarrays to map meiotic crossovers and gene conversions with

markers that had a median spacing of about 80 bp. In analyzing
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several thousand conversion events, Mancera et al. found an

average tract length of 2.0 kb for conversions associated with

crossovers and 1.8 kb for conversions unassociated with cross-

overs. In summary, our analysis, as well as those of others,

demonstrates that meiotic conversion tracts are considerably

shorter than mitotic conversion tracts.

Mechanisms of Mitotic Recombination
We will discuss three related aspects of the mechanism of mitotic

recombination: 1) the timing of the initiating DNA lesion in the cell

cycle, 2) the nature of the initiating DNA lesion, and 3) mechanisms

of generating long continuous mitotic conversion tracts.

Timing of the initiating DNA lesion in the cell cycle. One

very striking feature of our data is the high frequency (about 40%)

of crossover-associated conversion tracts in which a marker

derived from one homologue in the original diploid has become

homozygous in both sectors (4:0 events). Our favored model to

explain these tracts is shown in Figure 8. We suggest that one of

the two homologues is broken in G1, and the broken chromosome

is replicated. As expected from the repair of HO-induced DSBs

[3], the broken chromosome would be the recipient of information

during a conversion event. In Figure 8, the first DSB is repaired

using the homologue as a template and this conversion event is

associated with crossing-over. The second DSB could also be

repaired either by using the other homologue or the newly-

repaired sister-chromatid as the template to produce the 4:0 tract.

This same mechanism would produce a hybrid 3:1/4:0 tract if the

length of the first conversion tract is longer than that of the second.

For example, if the first tract was 15 kb and the second tract was

5 kb, we would detect a hybrid tract with a 5 kb 4:0 portion and a

10 kb 3:1 portion. The location of the 4:0 region in the hybrid

tract would depend on whether the conversion event was

unidirectional or bidirectional from the initiating DSBs.

As discussed in the Introduction, two studies showed that mitotic

recombination events could be induced in G1-arrested cells by UV

damage or X-rays [11,12], although these findings are not directly

relevant to the issue of the timing of spontaneous mitotic

recombination events. Based on a complex genetic analysis

(described in detail in the Supporting Information), Esposito [13]

concluded that a substantial fraction of spontaneous mitotic

recombination was initiated in G1. His model to explain these

results involves formation of a single Holliday junction between

unduplicated chromosomes and resolution of this junction by DNA

replication rather than the action of resolvase (Figure S3). In S.

cerevisiae, repair of meiotic DSBs is associated with two adjacent

Holliday junctions [38,39], although in S. pombe, crossovers result

from resolution of a single Holliday junction [40]. In our view, the

model shown in Figure 8 is a more plausible explanation of the data.

A number of experiments demonstrate that the repair of a DSB

generated in G1 has different properties from one induced in S or

G2. In haploid yeast cells, DSBs induced by the HO endonuclease

Figure 8. Mechanism to generate a 4:0 conversion event. The
recombination event initiates by a DSB in G1 on the black chromosome.
The broken chromosome is replicated to yield two broken black
chromatids. In gene conversion events initiated by a DSB, the broken
chromatid is the recipient of information [3]. Repair of the first broken
chromosome is associated with a conversion event in which the red
marker is duplicated, and there is an associated crossover. Repair of the
second broken chromatid could occur by an interaction with the sister
chromatid (as shown) or with one of the two non-sister chromatids. This
repair event would produce a second gene conversion, resulting in the
4:0 class of event. If the first repair event had a longer conversion tract
than the second, a hybrid 4:0/3:1 conversion tract would be formed.
doi:10.1371/journal.pgen.1000410.g008
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in G1 have very reduced levels of resection [41–43] and are often

repaired by non-homologous end-joining events [44]. Rad53p is

not activated in response to an HO-induced DSB in G1 [45], and

Rad52p is not recruited to the broken DNA ends [46]. In contrast,

broken DNA ends resulting from ionizing radiation treatment of

G1 haploids are resected [47], although this resection does not

result in phosphorylation of Rad53p except at very high doses of

radiation [48]. As observed for the HO-induced DSBs, Rad52p is

not recruited to the broken DNA ends [47]. These results, taken

together, suggest that DSBs formed in G1 are unlikely to be

repaired by homologous recombination in G1. In addition, since

non-homologous end joining of broken ends is suppressed in

MATa/MATa strains [44,49,50], a chromosome with a spontane-

ous DSB in G1 would be likely to be replicated rather than be

repaired.

It is quite likely that recombinogenic DNA lesions occur

throughout the cell cycle. In our study, although we interpret the

4:0 events and 4:0/3:1 hybrid events as representing G1-initiated

DNA lesions, 60% of the conversion tracts had the 3:1 pattern

expected for S- or G2-initiated DNA lesions. In addition, our

system was designed to detect mitotic crossovers between

homologous chromosomes. Repair events between sister-chroma-

tids, a preferred pathway for X-ray-induced DNA damage in G2

cells [51] are undetectable by our analysis. Thus, a simple

interpretation of our data is that many of the recombination events

involving homologues are initiated in G1, since DNA lesions

occurring in G2 are usually repaired using the sister chromatid as

the template. It should be emphasized that we cannot determine

the relative frequency of recombinogenic lesions in various

portions of the cell cycle, since we cannot assay sister-chromatid

exchanges with our system.

Nature of the DNA lesion that initiates mitotic

recombination. Because of the low rate of spontaneous

mitotic recombination events, there is no direct physical

evidence of the nature of the recombinogenic lesion. As

described above, the existence of 4:0 and 3:1/4:0 tracts are most

consistent with a G1-associated DSB. The 3:1 tracts could reflect a

G2-initiated DSB, replication of a G1-initiated nick to generate a

DSB on one chromatid following DNA replication [52], or repair

of a DNA molecule with a single-stranded gap [53,54].

It is clear that DSBs, induced by X-rays or by site-specific

endonucleases, stimulate both mitotic gene conversion and

crossovers [55]. One argument that spontaneous mitotic recom-

bination events are initiated by DSBs is that certain mutants that

are incapable of DSB repair (such as rad52) are hypo-Rec [56].

Arguments in favor of other types of DNA lesions such as single-

stranded nicks as recombinogenic include: 1) agents (such as UV)

that result in DNA nicks, but not DSBs, are recombinogenic [55];

2) a nick-inducing enzyme stimulates mitotic gene conversion [57];

3) yeast strains with mutations that eliminate DSB repair grow

normally [53]; 4) certain rad52 mutants have a strong DSB repair

defect, but normal rates of heteroallelic mitotic recombination

[58]. The first two lines of evidence in favor of nick-initiated

recombination events are not definitive since the duplication of a

nicked chromosome would result in a DSB. Galli and Schiestl [52]

showed that cells treated with ionizing radiation in G1 could

complete mitotic recombination between direct repeats in G1,

whereas G1 cells treated with ultraviolet radiation required

transition through the S-period in order to complete the

recombination event.

One possibility is that different types of spontaneous DNA

lesions initiate different types of mitotic recombination. For

example, our studies argue that spontaneous crossovers are likely

to involve a DSB. In contrast, Lettier et al. [58] find that

heteroallelic gene conversion and direct repeat recombination

occur at a wild-type frequency in strains that are incapable of DSB

repair. This discrepancy could be resolved by testing the effect of

the rad52 alleles used by Lettier et al. in our system. In addition,

from an analysis of the effects of rad51, rad55, and rad57 mutants

on sister and interhomologue recombination, Mozlin et al. [54]

argue that most sister-strand recombination reflects the repair of

single-strand gaps rather than the repair of DSBs.

Mechanisms of generating long continuous mitotic

conversion tracts. In our study, as in previous studies, most

of the conversion tracts are continuous (sites involved in

conversion are not separated by sites not involved in

conversion). In one version of the DSB repair model (Figure 9A),

one broken end invades the other homologue, priming DNA

synthesis that displaces one strand of the invaded duplex. The

displaced strand forms a heteroduplex with the other resected end.

Mismatches within the heteroduplex are corrected to generate the

gene conversion event. One strong argument that most meiotic

gene conversions reflect heteroduplex formation followed by

mismatch repair is that mutants that inactivate mismatch repair

reduce the frequency of gene conversion almost ten-fold and

elevate the frequency of post-meiotic segregation [2]. Similar

studies of the effects of mismatch repair mutants on mitotic gene

conversion also demonstrate that most mitotic events are a

consequence of heteroduplex formation and mismatch repair [59].

If a heteroduplex involves multiple mismatches, these mis-

matches must be corrected in the same direction (excision of the

mismatches from the same strand) in order to observe a

continuous conversion tract. Since the lengths of excision tracts

in yeast are about the same as the lengths of meiotic conversion

tracts (1 to 2 kb) [60], continuous conversion tracts are expected

for most events. Some meiotic conversion tracts, however, are

greater than 5 kb in length [18]. To explain the existence of long

continuous conversion tracts, we suggested that either excision

repair is targeted to one strand by some undefined mechanism or

the long conversion tracts reflect a different mechanism (for

example, repair of a double-stranded DNA gap) than the short

tracts [60]. The same issue is raised by the very long continuous

mitotic conversion tracts. One possible explanation is that mitotic

gene conversion involves very long excision tracts. This possibility

is unlikely based on studies of plasmids with mismatches

transformed into yeast cells, demonstrating that most mitotic

excision tracts are less than 1 kb [61].

A second explanation for long continuous gene conversion

tracts is that they reflect repair of a double-stranded DNA gap

(Figure 9B). Such gaps could arise from a processed DSB or two

DSBs on the same chromosome. Although processing of DSBs

occurs primarily by 59 to 39 degradation of one of the two strands

[3], we suggest that loss of both strands, forming a gap, may occur

under certain conditions (for example, a G1-induced DSB in a

diploid). Orr-Weaver and Szostak [62] showed that gapped DNA

molecules could be efficiently repaired, resulting in a gene

conversion event. Inbar and Kupiec [63] showed that gene

conversion of an HO-induced DSB was efficient even if the DSB

occurred in a large heterologous insertion. One explanation of this

result is that the broken ends are processed into a gap, although

mechanisms that do not involve a gapped intermediate are also

possible (for example, as shown in Figure 4 of Inbar and Kupiec).

Finally, Zierhut and Diffley [64] have recently shown that broken

DNA ends that persist into the S-period undergo degradation of

both 59 and 39 ends, resulting in a gap.

Another mechanism in which gene conversion does not involve

extensive heteroduplex formation is BIR [3,4]. Since these events

extend from the initiating DSB to the end of the chromosome, single
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Figure 9. Generation of long conversion tracts by repair of mismatches within a heteroduplex or by gap repair. A) Conversion by
mismatch repair. Conversion is initiated by a DSB, followed by 59 to 39 resection of the broken ends (step 1). The 39 strand on one of the broken ends
invades the other homologue and the invading strand is used as a primer for DNA synthesis (step 2); the newly-synthesized strand is shown as a
dashed line. The broken end that is not used in the initial interaction undergoes more extensive resection. The single strand displaced by DNA
synthesis pairs with the extensively-resected end, resulting in a long heteroduplex (step 3). The mismatches within the heteroduplex are converted in
the same direction (excision of the black strand) to generate a long continuous conversion tract (step 4). The intermediate with double Holliday
junctions is cleaved (cleavage sites indicated by arrows) to generate a conversion event associated with a crossover (step 5). B) Conversion by gap
repair. Both strands of the broken ends resulting from the DSB are degraded to yield a gapped molecule (step 1). One of the ends invades the
homologous chromosome and initiates DNA synthesis (step 2). The strand displaced by DNA synthesis pairs with the other broken end (step 3), and
there is a second round of DNA synthesis (step 4). The intermediate is processed by cleaving the Holliday junctions as in Figure 9A (step 5).
doi:10.1371/journal.pgen.1000410.g009
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BIR events will not lead to reciprocal exchange of a centromere-

distal marker and will not produce a CanR red/white sectored

colony (Figure 1B). A model in which two separate BIR events can

produce a long conversion tract associated with a crossover is shown

in Figure S4. This process is different than the template switching

described previously [65] in which a single end undergoes more

than one cycle of strand invasion. Although the model shown in

Figure S4 results in a long 3:1 continuous conversion tract, this

model does not explain the 4:0 or 4:0/3:1 hybrid events.

One interpretation of our observations is that there are two

types of mitotic gene conversion tracts, long tracts that reflect

repair of a double-stranded DNA gap and shorter tracts that

involve the repair of mismatches in heteroduplex DNA. Our

analysis of crossover-associated conversions might be biased

toward the first class, whereas studies of heteroallelic recombina-

tion might be biased to the second class of conversion. Although

more than 90% of the conversion tracts were less than 30 kb in

length, six exceeded this size. It is possible that these very long

conversion tracts reflect a third mechanism of mitotic conversion.

Summary
Our analysis of spontaneous mitotic crossing-over in a 120 kb

CEN5-CAN1 interval of yeast chromosome V demonstrates that

most crossovers are associated with long continuous gene

conversion tracts. Crossovers and conversions occur throughout

the whole interval, although these events are reduced in frequency

near the centromere and there is one modest hotspot for

conversion located near CAN1. About 40% of the recombination

events have properties indicative of a DSB on one homologue in

G1, replication of the broken chromosome, and subsequent repair

of the two broken chromatids.

Materials and Methods

Construction of Yeast Strains
Most of our analysis was done with two very closely related

diploid strains PSL100 and PSL101; the only difference between

these strains is that PSL100 is homozygous for the ura3-1 mutation

and PSL101 is heterozygous ura3-1/URA3. Isogenic diploids that

were hemizygous for the mating type locus (PG311) or lacked

SPO11 (MD457) were also analyzed. These diploids are identical

except for changes introduced by transformation. Their construc-

tions are described in Supp. Information and Table S1. All

diploids were homozygous for ade2-1, heterozygous for can1-100,

and heterozygous for an insertion of SUP4-o at a position on

chromosome V allelic to can1-100. As explained in Results,

reciprocal crossovers between CEN5 and CAN1 can be selected in

strains of this genotype. In addition, each diploid was derived by

crossing two sequence-diverged haploids (isogenic derivatives of

W303A and YJM789), resulting in a diploid with many single-

nucleotide polymorphisms [15]. The homologue with the can1-100

gene had the markers contributed by W303A and the one with the

SUP4-o marker had the markers contributed by YJM789. As

described below, we used these markers to construct a high-

resolution genetic map of the CEN5-CAN1 region.

Genetic Analysis and Media
Standard yeast procedures were used for mating, sporulation,

and tetrad dissection [14]. Rich growth medium (yeast extract,

peptone, dextrose; YPD) and omission media were also made

following standard recipes [14] except the medium contained 10

micrograms/ml of adenine. The solid medium used to select

mitotic crossovers lacked arginine (SD-arg) and contained 120

micrograms/ml canavanine.

The diploid strains PSL100, PSL101, MD457, and PG311 were

used to analyze mitotic crossovers. These strains were streaked for

single colonies on YPD and incubated at 30uC. for 2 days.

Individual colonies (about 20/experiment) were resuspended in 400

microliters of water. Each sample was diluted (usually by a factor of

105) and plated onto solid medium lacking arginine in order to

measure the number of cells per colony; colonies on the control

plates were counted after the plates were incubated two days at 30u.
100 microliters of the undiluted samples were plated onto SD-arg

medium containing canavanine. These plates were incubated at

room temperature for four days, followed by one day of storage at 4u
to minimize the background growth of canavanine-sensitive cells

and accentuate the red color of colonies that lack the SUP4-o gene.

We then counted the number of red/white sectored colonies, only

counting colonies in which the smallest sector was at least one-

eighth of the size of the total colony. Each sector was purified on

solid YPD medium for the subsequent analysis described below.

Physical Analysis of Markers in Sectored Colonies
We isolated yeast DNA from purified red (can1-100/can1-100)

and white (SUP4-o/SUP4-o) sectors by standard procedures [14].

The numbers of sectored colonies analyzed for PSL100/101,

MD457, and PG311 were 74, 14, and 14, respectively.

As described above, the diploids used in our study were

heterozygous for many markers. By comparing the W303A sequence

(http://www.sanger.ac.uk/gbrowse/gbrowse/cere_dmc/) and the

YJM789 sequence [15], we identified 34 polymorphisms that

changed restriction enzyme recognition sites that were located

between CEN5 (SGD coordinate of 152,000) and can-100/SUP4-o

(SGD coordinate of about 32,000). The positions of these

polymorphisms (SGD coordinates) are shown in Table S2. For each

polymorphism analyzed for individual sectors, we PCR-amplified the

genomic DNA using the primers that flanked the polymorphism

(Table S2) and treated the resulting DNA fragment with the relevant

restriction enzyme. The products were analyzed by standard agarose

gel electrophoresis. This analysis allowed us to determine whether the

strain representing the red or white portion of the sectored colony was

homozygous for the YJM789 polymorphism, homozygous for the

W303A polymorphism, or heterozygous for the polymorphism.

Additional details of our analysis are given in Supp. Information.

Physical Analysis of Markers in Meiotic Products
The meiotic segregation of markers in the diploid PSL101 was

examined in 21 tetrads. All four spores of each tetrad were

examined. All 34 markers were analyzed in six of the tetrads; the

analysis of the remaining 15 was done by the same approach used

for most of the mitotic sectors. In each tetrad, the crossovers and

gene conversion events were mapped to the highest degree of

resolution possible with the 34 markers.

Statistical Analysis
Statistical analyses (Fisher exact test, Chi-square tests, and linear

correlation analysis) were done using the VassarStats Website

(http://faculty.vassar.edu/lowry/VassarStats.html).

Supporting Information

Figure S1 Patterns of conversion and crossing over that generate

one of the exceptional classes of sectored colonies. In this diagram,

the W303A markers are shown as red circles and the YJM789

markers are shown as black circles; the centromere is shown as a

white circle or oval. The direction of conversion is indicated by the

small arrow. As explained in the text and as shown in Figure 4B, if

the W303A-derived chromosome is the donor in a conversion
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event, at the site of conversion, we expect that the red sector will

be homozygous for the W303A-derived marker and the white

sector will be heterozygous. About 5% of the sectored colonies had

the reverse arrangement (shown at the bottom of this figure). This

configuration can be explained by the following sequence of

events. One chromosome is broken in G1, and replicated to yield

two broken chromatids. The DSB on chromatid 2 is repaired by

an interaction with chromatid 3, resulting in a crossover, but no

conversion (Step 1). The DSB on chromatid 1 is repaired using

sequences derived from chromatid 3 (as shown) or 4; this repair

event is associated with a conversion of one marker, but no

crossover (Step 2). Chromatids 1 and 3 segregate to one daughter

cell, and chromatids 2 and 4 segregate to the other, generating the

red/white sectored colony (Step 3).

Found at: doi:10.1371/journal.pgen.1000410.s001 (0.17 MB TIF)

Figure S2 Patterns of conversion and crossing over required to

generate a conversion tract with a crossover in the middle of the

tract. As in Figure S1, a broken chromosome is replicated to yield

two broken chromatids. Chromatid 2 is repaired by an interaction

with chromatid 3 associated with a conversion of a centromere-

distal marker and a crossover (Step 1). Chromatid 1 is repaired by

an interaction with chromatid 3 (as shown) or 4. This repair event

is associated with a conversion of a centromere-proximal marker,

but no crossover (Step 2). Chromatids 1 and 3 co-segregate, as do

chromatids 2 and 4 (Step 3).

Found at: doi:10.1371/journal.pgen.1000410.s002 (0.18 MB TIF)

Figure S3 Model proposed by Esposito [7] to explain G1-

initiated mitotic recombination. Dotted lines in this figure

represent single strands of a DNA duplex. Derived from a strain

with trp5 heteroalleles and a distal heterozygous marker, Esposito

[7] observed Trp+ colonies that had homozygous sectors for the

distal marker. To explain such sectors, he suggested that an

asymmetric heteroduplex is formed in G1 that includes both of the

heteroallelic markers. Repair of both resulting mismatches using

wild-type information would result in a wild type allele. The

resulting intermediate with an unresolved Holliday junction would

be replicated to produce the RCO. Resolution of the Holliday

junction in G1 would not produce a reciprocal crossover.

Found at: doi:10.1371/journal.pgen.1000410.s003 (0.07 MB TIF)

Figure S4 Mitotic conversion tracts with associated crossover

generated by a double BIR event. The broken DNA in the black

chromatid invades and begins to replicate the red chromatid (step

1). After region B of the chromosome has been replicated, the

replication fork breaks (step 2), and the broken end invades the

black chromatid (step 3). Completion of DNA synthesis results in a

long conversion tract with a flanking RCO (step 4). The acentric

chromatid fragment with the B and C regions is lost.

Found at: doi:10.1371/journal.pgen.1000410.s004 (0.07 MB TIF)

Table S1 Primers used in strain constructions.

Found at: doi:10.1371/journal.pgen.1000410.s005 (0.05 MB

DOC)

Table S2 Primers used in analysis of polymorphic markers. 1As

described in the text, we identified sequence differences between

two yeast strains (W303a and YJM789) that altered restriction sites

in the region between CEN5 and CAN1. We examined the

segregation of these sites by generating short PCR fragments that

included the sites, and treating the resulting fragments with

restriction enzymes that cut the DNA derived from one strain, but

not the other. 2The position of the polymorphism is indicated in

coordinates based on the Stanford Genome Database. The

numbers in parentheses represent the abbreviations of the

coordinates used in the figures. 3This column indicates the

enzymes used to diagnose the polymorphism. The enzyme written

in boldface has a recognition site at the diagnostic position in

YJM789, but not in W303a. The enzyme written in plain face has

a recognition site in W303a, but not in YJM789.

Found at: doi:10.1371/journal.pgen.1000410.s006 (0.16 MB

DOC)

Table S3 Lengths of mitotic conversion tracts in PSL100/

PSL101. 1The maximum, minimum, and average lengths of

mitotic gene conversion tracts were calculated as described in the

text. The table is ordered by the average length of the conversion

events, beginning with the shortest. 2In this column, we indicate

whether the conversion tract was a 3:1 tract (1), a 4:0 tract (2), or a

hybrid 3:1, 4:0 tract (3).

Found at: doi:10.1371/journal.pgen.1000410.s007 (0.10 MB

DOC)

Table S4 Lengths of mitotic conversion tracts in MD457. 1The

maximum, minimum, and average lengths of mitotic gene

conversion tracts were calculated as described in the text. The

table is ordered by the average length of the conversion events,

beginning with the shortest. 2In this column, we indicate whether

the conversion tract was a 3:1 tract (1), a 4:0 tract (2), or a hybrid

3:1, 4:0 tract (3).

Found at: doi:10.1371/journal.pgen.1000410.s008 (0.05 MB

DOC)

Table S5 Lengths of mitotic conversion tracts in PG311. 1The

maximum, minimum, and average lengths of mitotic gene

conversion tracts were calculated as described in the text. The

table is ordered by the average length of the conversion events,

beginning with the shortest. 2In this column, we indicate whether

the conversion tract was a 3:1 tract (1), a 4:0 tract (2), or a hybrid

3:1, 4:0 tract (3).

Found at: doi:10.1371/journal.pgen.1000410.s009 (0.05 MB

DOC)

Table S6 Lengths of meiotic conversion tracts in PSL101. 1The

maximum, minimum, and average lengths of meiotic gene

conversion tracts were calculated as described in the text. The

table is ordered by the average length of the conversion events,

beginning with the shortest.

Found at: doi:10.1371/journal.pgen.1000410.s010 (0.04 MB

DOC)

Text S1 A fine-structure map of spontaneous mitotic crossovers

in the yeast Saccharomyces cerevisiae.

Found at: doi:10.1371/journal.pgen.1000410.s011 (0.05 MB

DOC)
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