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Abstract

The ribosomal DNA (rDNA) genes of Saccharomyces cerevisiae are located in a tandem array of about 150 repeats. Using a
diploid with markers flanking and within the rDNA array, we showed that low levels of DNA polymerase alpha elevate
recombination between both homologues and sister chromatids, about five-fold in mitotic cells and 30-fold in meiotic cells.
This stimulation is independent of Fob1p, a protein required for the programmed replication fork block (RFB) in the rDNA.
We observed that the fob1 mutation alone significantly increased meiotic, but not mitotic, rDNA recombination, suggesting
a meiosis-specific role for this protein. We found that meiotic cells with low polymerase alpha had decreased Sir2p binding
and increased Spo11p-catalyzed double-strand DNA breaks in the rDNA. Furthermore, meiotic crossover interference in the
rDNA is absent. These results suggest that the hyper-Rec phenotypes resulting from low levels of DNA polymerase alpha in
mitosis and meiosis reflect two fundamentally different mechanisms: the increased mitotic recombination is likely due to
increased double-strand DNA breaks (DSBs) resulting from Fob1p-independent stalled replication forks, whereas the hyper-
Rec meiotic phenotype results from increased levels of Spo11-catalyzed DSBs in the rDNA.
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Introduction

The maintenance of genetic stability during DNA replication is

of critical importance. DNA polymerases can stall at DNA lesions

such as crosslinks, strand breaks, natural pause sites, and regions

that can form secondary structures [1,2]. Stalled replication forks

are a potential source of genetic instability, because they can be

processed to a double-strand break (DSB) [3,4]. Recombination

proteins form foci at stalled forks, and homologous recombination

(HR) is thought to be one mechanism by which collapsed forks are

re-initiated [5,6].

Almost 10% of the S. cerevisiae genome is within the rDNA array,

a cluster of 150–200 tandemly repeated 9 kb units on the right

arm of chromosome XII [7,8]. Each 9 kb unit has a natural

replication fork barrier (RFB) site. The RFB prevents replication

fork progression in the direction opposite 35S transcription,

presumably to prevent collisions between DNA and RNA

polymerases [9–11]. The Fob1p binds directly to the RFB

sequence and is required for replication fork blocking [12].

Double-strand breaks (DSBs) are observed near the RFB site in

logarithmically growing cells [13,14] and are a source of genetic

instability within the array, leading to high levels of unequal sister-

chromatid exchange, unequal gene conversion, and intra-chro-

matid recombination [15–18]. Cells that lack the Fob1p do not

experience fork stalling at the RFB and have reduced mitotic

rDNA recombination [14,17–19]. In these studies, the effect of the

fob1 mutation on rDNA recombination between homologues was

not examined.

In contrast to the relatively high levels of mitotic recombination

in the rDNA, meiotic recombination between rDNA arrays on

homologous chromosomes is suppressed 70- to 100-fold [8,20].

The mechanism preventing meiotic rDNA recombination between

homologs is not yet fully understood. Meiosis-specific DSBs are

undetectable in the array [21], and Spo11p, which catalyzes

meiotic DSBs, is at low levels within the array [22]. Strains that

lack Sir2p have increased Spo11p-associated DSBs in the rDNA

[22] and significantly elevated meiotic and mitotic unequal sister-

chromatid rDNA recombination [22–24].

In this study, we designed a system that allows us to measure

rDNA recombination both between homologues and between

sister chromatids. Using this system, we examined the relationship

between DNA replication and recombination by investigating

mitotic and meiotic rDNA recombination in cells with low levels of

Pol1p, the catalytic subunit of the lagging strand DNA polymerase

alpha [25]. Reduced levels of Pol1p were previously shown to

elevate the rates of translocations, chromosome loss events,

microsatellite alterations, deletions and point mutations in non-

rDNA regions [26,27]. Below, we show that low levels of Pol1p

significantly increase recombination in the rDNA array, both

between homologues and between sister chromatids. This increase
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is observed in both mitosis and meiosis. These data suggest that the

mechanisms controlling rDNA recombination are closely coordi-

nated with the replication machinery.

Results

Low Levels of Pol1p Increase Mitotic rDNA
Recombination

In order to investigate the effect of low Pol1p levels on rDNA

instability, we used a diploid strain homozygous for the GAL-POL1

allele, in which the POL1 gene is fused to the GAL1/10 promoter

[26]. Low galactose levels (0.005%) induce Pol1p expression at

,10% of the wild-type level, whereas high galactose (0.05%)

induces ,300% expression of Pol1p compared to wild-type. For

our analysis, we constructed strains containing heterozygous

markers surrounding and within the rDNA array. On one

homologue, we inserted the URA3 gene at the centromere-distal

junction of the rDNA. On the other homologue, we inserted the

HPH gene (encoding hygromycin resistance) centromere-proximal

to the rDNA, and a copy of TRP1 within the rDNA array

(Figure 1). The rDNA cluster sizes in these strains were determined

by clamped homogenous electric field (CHEF) gel electrophoresis

of genomic DNA digested with BamHI which does not cut within

the array or the TRP1 insertion. The location of TRP1 within the

array was determined by digestion with NgoMIV that cuts in TRP1

but not within the rDNA (Figure 1).

To measure the rate of mitotic rDNA recombination, we

incubated GAL-POL1 diploids in media containing high or low

galactose levels for six hours, followed by plating onto medium

with high galactose. Wild-type diploids were grown in rich growth

medium media for six hours, followed by plating on rich growth

medium. Colonies formed on the plates were replica plated to

media lacking uracil or tryptophan, or containing hygromycin.

Cells undergoing a recombination event within the rDNA at the

time of plating will appear as sectored colonies on the diagnostic

media. Using the phenotypes of the sectors, we can diagnose

reciprocal crossovers (RCOs; Figure 2A–C) as well as various

other types of recombination (Figure 2D–F). We can only detect

half of RCO events, because only one of the two possible

chromosome segregation patterns will produce a sectored colony.

Since these two patterns of segregation are equally frequent [28],

we calculate that the rate of RCO is twice the frequency of

sectored colonies. Non-reciprocal recombination events (Break-

Induced Replication [BIR] [29]) can result in a loss of one marker

(for example, URA3 as shown in Figure 2D) and duplication of

another (TRP1). Loss of the TRP1 marker by intrachromatid

‘‘pop-out’’ exchange (Figure 2E), single-strand annealing (not

depicted), or unequal sister-chromatid exchange (Figure 2F) can

also be detected.

To analyze further the type of recombination event responsible

for sectoring, we did several types of analysis. First, we purified all

sectored colonies and, in colonies with Ura+/Ura2 sectors, we

determined whether the Ura+ cells had a high rate of 5-fluoro-

orotate-resistant (5-FOAR) derivatives (indicating that the cells

were heterozygous for the URA3 insertion) or had a very low rate

of 5-FOAR derivatives (indicating that the cells were homozygous

for the insertion). In strains heterozygous for the insertion, a 5-

FOAR derivative could arise by loss of the wild-type URA3 allele

by a subsequent mitotic crossover or by chromosome loss. We also

subjected each sector side of the colony to tetrad analysis. Some

Trp+/Trp2 sectored colonies were further analyzed by Southern

analysis to determine whether sectoring arose by unequal

crossover, intrachromatid recombination, or other events; this

analysis is discussed in detail in Text S1. Based on this analysis

(summarized in Table 1), we grouped these mitotic events into two

categories: rDNA recombination between homologues and

between sister chromatids. In cells with low levels of Pol1p

(Figure 3A), we observed a four- to five-fold increase relative to

wild-type cells or cells with high levels of Pol1p in both of these

categories (p,.0001 and p = 0.0031, respectively).

Increased Mitotic rDNA Recombination in Cells with
Reduced Pol1p Is Not Fob1p-Dependent

To determine whether forks blocked at the RFB are the primary

source of rDNA instability in cells with low Pol1p, we analyzed

mitotic recombination rates in fob1 mutant derivatives of our

strains. Previous studies reported decreased extrachromosomal

rDNA circle (ERC) formation and an approximately three-fold

reduction in internal rDNA marker loss in fob1 mutants [14,17–

Figure 1. Positions of heterozygous markers used to monitor
rDNA recombination in diploids. Grey boxes indicate the rDNA
array and the black circles show the centromeres. Chromosome XII
sequences surrounding the array are not drawn to scale. Positions of
BamHI (B) and NgoMIV (N) restriction sites are indicated. BamHI has no
sites within the rDNA or within the TRP1 insertion, whereas NgoMIV has
no sites within the rDNA but a site within the TRP1 gene. Using CHEF
gel analysis of BamHI- or NgoMIV-treated DNA samples, we determined
the sizes of the rDNA clusters and the position of insertion of TRP1
within the clusters. We depict the location of the markers in the wild-
type diploid AMC45. The sizes of the HPH-containing cluster, the
positions of the TRP1 marker within the cluster (from the centromere-
proximal junction), and the sizes of the URA3-containing clusters in kb
for the other strains are, respectively: 1080, 880, 1110 (GAL-POL1 strain,
AMC20); 1170, 940, 920 (fob1 strain, AMC156); 960, 580, 1110 (GAL-POL1
fob1 strain, AMC160).
doi:10.1371/journal.pgen.1000105.g001

Author Summary

In many organisms, the genes that encode the ribosomal
RNAs are present in multiple copies arranged in tandem.
This unique section of the genome is under strict cellular
control to minimize changes in the number of ribosomal
DNA (rDNA) genes as a consequence of unequal crossover
between repeats. In addition, the rate of unequal
crossovers and gene conversion in the rDNA influence
the level of sequence divergence between repeats.
Crossovers can result from repair processes initiated at
stalled replication forks, and in this study we investigated
the effect of a low level of DNA polymerase on rDNA
stability. We found that low levels of DNA polymerase
modestly increase rDNA recombination in mitosis and
strongly elevate rDNA recombination in meiosis.

We suggest that in mitotic cells the increased recom-
bination is likely due to increased double strand DNA
breaks (DSBs) resulting from stalled replication forks.
However, in meiotic cells, we found evidence that the
high level of recombination results from increased levels of
Spo11-catalyzed DSBs in the rDNA. Our results indicate
that there are two fundamentally different mechanisms in
mitosis and meiosis for the maintenance of rDNA stability.

Hyper-Recombination in rDNA
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19], presumably due to the decrease in recombinogenic DSBs at

the RFB. We found that the fob1 mutation alone resulted in a 10-

fold reduction, relative to wild-type, in the rate of mitotic rDNA

recombination between homologs (p = 0.011), but a statistically

insignificant (p = .671) reduction in sister chromatid recombination

(Figure 3B). Surprisingly, we showed that the fob1 mutation

resulted in a significant increase in recombination between

homologues (p = 0.027) in the GAL-POL1 strain grown on low

galactose compared to the level observed in the FOB1 GAL-POL1

strain grown under the same conditions. The classes of mitotic

recombination events in strains with the fob1 mutation (Table S1)

were similar to those shown in Table 1. Thus, the hyper-Rec

Figure 2. Phenotypic classes of sectored colonies resulting from crossover between homologues and inter- or intra-sister
chromatid recombination in the rDNA array. Cells with the arrangement of markers shown in Figure 1 were plated on rich growth medium and
then replica-plated to medium lacking tryptophan or uracil or containing hygromycin. (A) Reciprocal crossover (RCO) between HPH and TRP1 results
in one Trp+, Ura2 (5-FOAR) cell and one Trp2, Ura+ (5-FOAS) cell. (B) RCO between TRP1 and URA3 results in one Ura2 (5-FOAR) and one Ura+ (5-FOAS)
cell. (C) RCO between CEN12 and HPH results in sectoring for all three markers. (D) A break-induced replication (BIR) event initiated by a DSB within
the rDNA of the URA3-containing chromosome or gene conversion will result in a Ura+/Ura2 sectored colony. Cells derived from the Ura+ part of the
sector will form 5-FOAR papillae (5-FOAPaps) as a consequence of secondary recombination events that cause loss of URA3. (E) Intra-chromatid
recombination events that span the TRP1 marker will result in a Trp+/Trp2 sectored colony, both sectors having the 5-FOAPaps phenotype. The same
pattern will be observed if the TRP1 marker is lost by gene conversion or single-strand annealing. (F). Unequal sister-chromatid exchange. As in
Figure 2E, this event will result in a Trp+/Trp2 sectored colony, both sectors having the 5-FOAPaps phenotype. The cells in the Trp+ sector, however,
have two copies of the TRP1 insertion rather than one.
doi:10.1371/journal.pgen.1000105.g002

Hyper-Recombination in rDNA
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phenotype associated with low levels of DNA polymerase alpha

does not reflect elevated levels of Fob1p-mediated stalling at the

RFB.

We also directly investigated the level of DSBs at the RFB in our

cells by Southern analysis (Figure 3C). In BglII-treated DNA from

wild-type cells, the DSB associated with RFB (indicated by an

arrow) is observed as a 2.2 kb fragment hybridizing to an rDNA

probe (lane 1, Figure 3C), as reported previously [13,14]. The

amount of this fragment (normalized to the 4.6 kb unbroken BglII

fragment) was about the same in the GAL-POL1 strain with low

levels of DNA polymerase alpha (lane 2, Figure 3C) as in the wild-

type strain. The fob1 mutation, as expected, reduced the amount of

the 2.2 kb fragment (lane 3, Figure 3C). The pair of 3.0–3.5 kb

bands observed in all samples have been observed previously

[13,14] and represent either a Fob1p-independent DSB in the

rDNA or junction fragments of non-rDNA with rDNA.

Alteration in the Size of the rDNA Gene Cluster Induced
in Cells with Low Pol1p

Unequal sister-chromatid recombination will result in loss of the

TRP1 marker only if the crossover occurs between the misaligned

insertions (Figure 2F). In contrast, all unequal crossovers or

intrachromatid crossovers that alter the size of the rDNA array by

50 kb or more can be detected by CHEF gel electrophoresis of

BamHI-treated DNA samples. To determine whether low DNA

polymerase alpha resulted in increased size variability of the

rDNA, we examined the sizes of rDNA clusters in sub-cultured

isolates of the GAL-POL1 diploid grown on plates containing high

or low levels of galactose (Figure 4). The rDNA clusters in the

initial GAL-POL1 diploid colony were about 1100 kb and 855 kb.

We observed slight size variation following two cycles of high

galactose subculturing (lanes 3–7). The size variation in cultures

sub-cultured in low galactose (lanes 9–13) was considerably

greater, and two of the five colonies had three rDNA clusters,

reflecting either chromosome XII trisomy or the presence of sub-

populations within the culture with varying array sizes.

The rDNA bands derived from strains subcultured on low

galactose were blurry in comparison to those subcultured in high

galactose. It is likely that this blurring reflects a very high rate of

recombination resulting in small changes in cluster size. We also

observed that, in DNA samples isolated from the GAL-POL1 cells

in exponential phase, most of the chromosome XII DNA

molecules were retained in the well of the gel rather than

migrating in the normal position (Figure S1). Since branched DNA

molecules remain in the well of CHEF gels, it is likely that the

observation indicates that GAL-POL1 strains have increased levels

of DNA replication and/or recombination intermediates. Using

two-dimensional gel electrophoresis, Zou and Rothstein [30]

showed that certain mutants of DNA polymerases alpha and delta

resulted in increased levels of an rDNA structure (termed

‘‘xDNA’’) that had the properties expected for a recombination

intermediate.

Low Pol1p Dramatically Increases Meiotic rDNA
Recombination

Meiotic recombination between rDNA clusters on homologous

chromosomes is greatly suppressed. Although the rDNA is about

10% of the genome and the yeast genome has a genetic length of

about 4200 cM, the rDNA cluster is only 2.5 cM in length [8,20].

Unequal sister chromatid meiotic recombination is less suppressed,

with loss of an internal marker occurring in up to 10% of tetrads

[31]. To evaluate the effect of Pol1p levels on meiotic rDNA

recombination, we sporulated the wild-type and GAL-POL1 strains
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on plates containing either high or low galactose. Tetrads were

dissected and scored for parental ditype (PD), non-parental ditype

(NPD) and tetratype (T) for three intervals: HPH-TRP1, TRP1-

URA3, and HPH-URA3. The genetic distances between markers

were calculated by standard procedures [32] and are shown in

Table 2. As expected, recombination in the rDNA in wild-type

cells was extremely low, 1 cM for the entire cluster (HPH-URA3

interval). Since the difference in recombination rates between the

wild-type cells sporulated in high and low levels of galactose was

not significant, the data were combined.

In contrast, the genetic distance between HPH and URA3 was

increased to 28 cM in cells with low Pol1p (p,.0001). In the

equation used to calculate map distances, in two-point crosses,

NPD events are assumed to reflect four-strand double meiotic

crossovers between markers [32]. For a two-point cross, however,

an NPD event could also be a consequence of a mitotic crossover

prior to meiosis. In general, the frequency of mitotic crossovers

was lower than the observed frequency of meiotic NPD events,

suggesting that at least some of the NPD tetrads reflect double

meiotic crossovers. For example, in the strain with low levels of

alpha DNA polymerase for the HPH-TRP1 interval, we observed a

rate of mitotic crossovers of 1% (Table 1), whereas the rate of

NPDs for the same interval was 6% (Table 2). In addition, as will

be discussed further below, in analyzing the HPH-URA3 interval,

we detected NPD tetrads that had one crossover in the HPH-TRP1

interval and a second crossover in the TRP1-URA3 interval,

demonstrating that some NPD tetrads reflect meiotic exchanges.

Nonetheless, we also calculated map distances for the three

intervals excluding all of the NPD tetrads that could represent

mitotic crossovers (values shown in parentheses in Table 2). Even

with this conservative assumption, the genetic distance in the

rDNA cluster is more than 10-fold elevated in the strain with low

levels of alpha polymerase compared to the wild-type (p,.0001).

The genetic distances in the rDNA in cells with low Pol1p were

not additive since the HPH-TRP1 distance is 30 cM, the TRP1-

URA3 is 12 cM, and the HPH-URA3 distance is only 28 cM.

There are two likely interpretations of this non-additivity. First, as

described above, some of the NPD tetrads used in calculated the

HPH-TRP1 and TRP1-URA3 distances may reflect mitotic

crossover events. Second, since the equation used to calculate

map distance [32] is based on the assumption that the interval

examined has two or fewer crossovers, map distances for intervals

that have more than two crossovers are underestimated. We

observed four tetrads from low Pol1p cells that had marker

segregation patterns consistent with triple crossovers surrounding

TRP1; no such tetrads were found in wild-type cells or in GAL-

POL1 cells sporulated on high galactose.

We also noted a significant increase in the HPH-URA3 distance

in GAL-POL1 cells sporulated on high galactose relative to the

wild-type strain, 11 and 1 cM, respectively (p,.0001). Pol1p is

overexpressed about three-fold relative to wild-type under these

conditions [26]. It is possible that the overexpression of this single

unit of DNA polymerase alpha complex perturbs its assembly. We

previously observed that overexpression of Pol1p resulted in

elevated levels of chromosome rearrangements and chromosome

loss [26].

We detected an elevation of the frequency of tetrads with one

Trp+ and three Trp2 spores (instead of the expected 2:2 marker

segregation) in the GAL-POL1 strain. Loss of the TRP1 insertion

can occur by unequal crossing-over between sister chromatids,

intra-chromatid recombination, and gene conversion (either

between homologues, or unequally between sister chromatids).

Of the 280 four-spore tetrads from GAL-POL1 cells sporulated on

high galactose, 20 had one Trp+ to three Trp2 spores (7%). In

GAL-POL1 cells sporulated on low galactose, this level was 25%

(51 out of 204 tetrads). We observed only one tetrad that had three

Trp+ to one Trp2 spore, and this tetrad was from GAL-POL1 cells

sporulated on low galactose. This bias toward TRP1 marker loss

indicates that the majority of these events are intrachromatid

events (for example, unequal crossovers between sisters), rather

Figure 3. Comparison of mitotic rDNA recombination rates and DSBs near the RFB. (A) Rates of mitotic rDNA recombination between
homologues and sister chromatids in wild-type cells (rich growth medium), and GAL-POL1 cells grown on media with either high or low galactose
levels. Recombination between homologues is the sum of all RCO and BIR categories (Table 1). 95% confidence intervals are shown. (B) Rates of
mitotic rDNA recombination in fob1 cells (rich growth medium) and GAL-POL1 fob1 cells grown on media with either high or low galactose levels. (C)
DSBs near the RFB in wild-type cells (lane 1), GAL-POL1 cells grown in low galactose (lane 2), and fob1 cells (lane 3). In the diagram, the key is: 35S
rRNA (large gray arrows), 5S rRNA (small grey arrow), RFB (black double triangles), replication origins (open circles), and BglII sites (B). DNA was
isolated, and treated with BglII. The resulting fragments were examined by Southern analysis, using rDNA probe #1 (shown as short horizontal bar).
The 2.2 kb fragment representing the DSB at the RFB (marked with a black arrow) is evident in lanes 1 and 2, but not in 3.
doi:10.1371/journal.pgen.1000105.g003
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than ‘‘classic’’ gene conversion events. We did not observe TRP1

marker loss in any tetrads from wild-type cells (total of 362 four-

spore tetrads). This result differs from an earlier report in which an

internal rDNA marker was lost in ,10% of wild-type tetrads [31].

This variance may be due to differences in strain background or in

the location of the inserted marker.

To clarify whether reduced Pol1p resulted in elevated meiotic

crossovers in non-rDNA regions of the genome, we also

investigated meiotic crossovers in a non-rDNA interval on

chromosome II, between LYS2 and TYR1. The LYS2-TYR1

genetic distance in our wild-type strain is 32 cM, in agreement

with the 35 cM average distance between these loci reported in the

Saccharomyces Genome Database. In cells with low Pol1p, the

distance between these markers was 41 cM (Table 2). Although

this increase relative to wild-type was statistically significant

(p = 0.02 by a Chi-square test), it is far less dramatic than that

observed within the rDNA.

Cells with Reduced Pol1p Have No Crossover
Interference in the rDNA

In S. cerevisiae, as in most other eukaryotes, crossovers in one

region reduce the probability of a nearby crossover [33]. In

organisms in which tetrad analysis is possible, interference can be

calculated in two-point crosses by analyzing the relative frequen-

cies of PD, NPD, and T tetrads ([34]; modifications introduced by

Stahl [35]; also, http://molbio.uoregon.edu/,fstahl/). For most

genetic intervals in S. cerevisiae, NPD tetrads (representing four-

strand double crossovers) are significantly less frequent than

expected on the basis of the number of T tetrads (representing

single crossovers as well as certain types of double crossovers). We

used two procedures to calculate the expected number of NPD

tetrads. First, using our observed numbers of PD, T, and NPD

tetrads, we calculated the expected number of NPD tetrads by a

direct application of the equation described in the Stahl Web site

(NPD exp in Table 2). We then used a chi-square analysis to

compare the observed and expected numbers of tetrads in all three

classes, converting the chi square value to a p value (p in Table 2).

We also calculated the degree of interference as 12(NPDobserved/

NPDexpected). For all three intervals in the strain with low levels of

alpha DNA polymerase, interference was negative, suggesting that

a crossover in one region of the rDNA increases the probability of

a second crossover in the rDNA. This effect is specific to the

rDNA, as a non-rDNA LYS2-TYR1 interval on chromosome II has

significant crossover interference in both the wild-type and GAL-

POL1 strains (Table 2).

Because (as discussed above), NPD tetrads in two-point crosses

can reflect a mitotic exchange rather than two meiotic crossovers,

we also examined interference in a more traditional way. From

Table 2, we calculated that the frequency of tetratype tetrads

(mostly representing single crossovers) in the HPH-TRP1 interval

in the GAL-POL1 strain with low levels of DNA polymerase is

about 0.25 (32 of 126 tetrads, excluding NPD tetrads from the

total). The frequency of tetratype tetrads in the TRP1-URA3

interval is 0.15. Thus, the expected frequency of tetrads with

crossovers in both intervals (assuming no interference) is 0.04. In a

sample of 134 tetrads examined in the GAL-POL1 strain, we expect

five DCOs in the HPH-URA3 interval. We observed ten (Table

S2). This calculation confirms that the crossovers observed in the

rDNA in the GAL-POL1 strain with low levels of alpha polymerase

have no interference or negative interference.

Increased Meiotic rDNA Recombination in Strains with
Low Alpha DNA Polymerase Is Independent of the
Fob1p-Dependent Replication Block

If the increased meiotic rDNA recombination in cells with low

Pol1p is initiated from DSBs at the RFB site, we would expect the

fob1 mutation to reduce this recombination. Instead, we observed

the opposite: the rate of recombination in cells that lack Fob1p and

that have low Pol1p is significantly greater than observed in cells

with only low Pol1p (Table 3), with a total HPH-URA3 genetic

distance of 50 cM (p = .04). We also found that fob1 mutation alone

significantly increased recombination relative to that observed in

the wild-type strain (p = .0006). This finding is unexpected

because, in mitosis, the fob1 deletion reduces the rate of rDNA

recombination [14,17–19]. This difference in phenotype indicates

that Fob1p has a unique role in meiosis separate from its role in

mitosis.

The frequencies of tetrads segregating one Trp+ to three Trp2

spores (indicating unequal sister chromatid or intrachromatid

recombination) were 0.23 (fob1 GAL-POL1 strain in low galactose),

0.12 (fob1 GAL-POL1 strain in high galactose), and 0.014 (fob1

strain). We also examined interference in these strains and, in the

GAL-POL1 fob1 cells, the observed number of NPDs was usually

equal to or more than the expected number, indicating a lack of

crossover interference (Table 3). In addition, in the GAL-POL1 fob1

strain sporulated in low galactose, the expected frequency of

double crossovers calculated from the frequencies of single

crossovers in the HPH-TRP1 interval (0.22) and the TRP1-URA3

interval (0.26) is 0.06. Since the expected number of DCO tetrads

Figure 4. CHEF gel analysis of the size of rDNA arrays in cells
with high and low levels of polymerase alpha. Individual colonies
of a GAL-POL1 strain were sub-cultured twice (about 50 cell divisions) in
media with high or low levels of galactose. We subsequently isolated
DNA from these derivatives in agarose plugs, treated the plugs with
BamHI (which does not cleave in the rDNA), and separated the resulting
fragments by CHEF gel electrophoresis. The separated DNA molecules
were transferred to membranes and hybridized to an rDNA-specific
probe. The derivatives in each lane were: 1 (GAL-POL1 strain before sub-
culturing), 2 (GAL-POL1 derivative sub-cultured once on high galactose),
3–7 (five individual derivatives sub-cultured twice on high galactose), 8
(GAL-POL1 strain sub-cultured once on low galactose), 9–13 (five
individual isolates sub-cultured twice on low galactose).
doi:10.1371/journal.pgen.1000105.g004
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is 10 (0.066164 tetrads) and observed number is 11, there is no

detectable crossover interference. Summing the data from the

GAL-POL1 and fob1 GAL-POL1 strains sporulated in high or low

galactose, we found 7 two-strand DCOs, 14 three-strand DCOs,

and 9 four-strand double crossovers (Table S2). These numbers

are close to the ratio predicted (1:2:1) if there is no chromatid

interference.

Increased Spo11p-Mediated Cleavage and Decreased
Sir2p Binding of rDNA in Meiotic Cells with Low Pol1p

Meiotic recombination is initiated in S. cerevisiae by Spo11p-

dependent DSBs [29]. The number of Spo11p-dependent DSBs in

the rDNA is low, as expected based on the genetic data [22]. The

hyper-Rec phenotype associated with low DNA polymerase could

reflect either Spo11p-independent DSBs (perhaps generated

during the meiotic S-period) or increased Spo11p-dependent

DSBs. To distinguish between these two possibilities, we

sporulated our strains under low-galactose conditions and used

chromatin immunoprecipitation to purify Spo11p-associated

DNA, followed by quantitative real-time PCR analysis. Since the

chromatin immunoprecipitation experiments were done without

formaldehyde treatment of the chromatin, these experiments

monitor the covalent attachment of Spo11p to target DNA,

reflecting Spo11p catalyzed DSBs. In both POL1 and GAL-POL1

cells, Spo11p-catalyzed DSBs were at same level at HIS4, a

previously identified hotspot for Spo11p-mediated DSBs [36], with

Table 3. Meiotic segregation patterns in strains with the fob1 mutation.

Interval Strain PD T NPD cM NPD exp p Int

HPH-TRP1 POL1 fob1 460 22 0 2 0 nd nd

GAL-POL1 fob1, High Gal 218 22 0 5 0 nd nd

GAL-POL1 fob1, Low Gal 125 36 3 17 (11) 1.4 0.15 21.1

TRP1-URA3 POL1 fob1 463 19 0 2 0 nd nd

GAL-POL1 fob1, High Gal 203 35 2 10 (7) 0.8 0.17 21.5

GAL-POL1 fob1, Low Gal 113 43 8 28 (13) 2.8 .001 21.9

HPH-URA3 POL1 fob1 445 37 0 4 0 nd nd

GAL-POL1 fob1, High Gal 192 45 3 13 (11) 1.4 0.15 21.1

GAL-POL1 fob1, Low Gal 86 61 17 50 (30) 7.8 ,.0001 21.2

Tetrads were examined from AMC156 (POL1 fob1) and AMC160 (GAL-POL1 fob1) sporulated on plates containing either high or low galactose levels. Column headings,
abbreviations, and methods of analysis are identical to those in Table 2.
doi:10.1371/journal.pgen.1000105.t003

Table 2. Meiotic segregation patterns in wild-type and GAL-POL1 strains.

Interval Strain PD T NPD cM NPD exp* p{ Int{

HPH-TRP1 wild-type1 343 3 0 0.4 0 nd nd

GAL-POL1, High Gal 201 17 1 5 (4) 0 nd nd

GAL-POL1, Low Gal 94 32 8 30 (12) 2.3 ,.0001 22.5

TRP1-URA3 wild-type1 342 4 0 1 0 nd nd

GAL-POL1, High Gal 207 10 2 5 (2) 0 nd nd

GAL-POL1, Low Gal 112 20 2 12 (8) 1 0.04 22.3

HPH-URA3 wild-type1 339 7 0 1 0 nd nd

GAL-POL1, High Gal 190 25 4 11 (7) 1 ,.0001 25.7

GAL-POL1, Low Gal 85 44 5 28 (19) 2.9 0.17 20.72

LYS2-TYR1 wild-type1 163 250 3 32 22 ,.0001 0.87

GAL-POL1, High Gal 74 160 4 39 17 ,.0001 0.77

GAL-POL1, Low Gal 63 149 3 41 16 ,.0001 0.82

Tetrads were examined from AMC45 (wild-type) and AMC20 (GAL-POL1). Cells from the two strains were sporulated under identical conditions on plates containing
either high or low levels of galactose. CentiMorgan distances in parentheses for the HPH–TRP1 and TRP1–URA3 intervals are calculated without NPDs [32]; in the HPH–
URA3 interval, distances in parentheses are calculated using only those NPDs that are the result of a 4-strand double crossovers around TRP1 (see text for details). Spore
viability was 93% (wild-type, high galactose), 82% (GAL-POL1, high galactose), 90% (wild-type, low galactose), and 62% (GAL-POL1, low galactose). Sporulation efficiency
was 17% (wild-type, high galactose), 19% (GAL-POL1, high galactose), 18% (wild-type, low galactose), and 17% (GAL-POL1, low galactose). PD, parental ditype; T,
tetratype; NPD, nonparental ditype; cM, centiMorgans; nd, not determined because the expected value was 0.
*Expected NPD tetrads if there is no interference, calculated using Stahl Lab Online Tools ‘‘A Better Way’’ (http://molbio.uoregon.edu/,fstahl/ and [35]).
{Chi-square test, one degree of freedom.
{Degree of interference, calculated as 1 2 (NPDobs/NPDexp).
1Since there was no significant difference in the proportion of tetrad classes in cells sporulated on high and low galactose media for the wild-type cells, these data were
combined.

doi:10.1371/journal.pgen.1000105.t002
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no significant difference between these strains (p = .487). There is

an approximately 4-fold increase in Spo11p-associated rDNA in

cells with low Pol1p compared to wild-type cells (p = .0003) (Figure

S2 A–C). Thus, low levels of Polp1 disrupt mechanisms required

for suppression of Spo11p entry into the rDNA array, leading to

increased Spo11p-catalyzed DSBs.

Loss of the histone deacetylase Sir2p results in elevated rates of

unequal meiotic [23] and mitotic unequal crossing over in the

rDNA, and increased levels of Spo11p cleavage in the rDNA in

meiotic cells [22]. We used quantitative real-time PCR of

immunoprecipitated meiotic DNA to measure Sir2p in the GAL-

POL1 strain sporulated in low levels of galactose. In logarithmi-

cally-growing cells, there are two sites of Sir2p binding in each

rDNA unit, one near the RFB site, and the other at the 59 end of

the 35S transcript [37]. We found that there is a significant

decrease in Sir2p bound near the RFB site in GAL-POL1 meiotic

cells as compared to wild-type meiotic cells (p = .022) (Figure S2D).

We also investigated Sir2p binding in logarithmically-growing cells

with low Pol1p; we did not find a significant decrease in the level of

Sir2p (data not shown). Lastly, by chromatin immunoprecipita-

tion, we looked for an alteration in the binding of the cohesin

subunit Mcd1p in vegetative wild-type cells and in cells with low

Pol1p. We found no significant difference (data not shown).

Discussion

We show that reduced levels of DNA polymerase alpha result in

elevated mitotic recombination and greatly elevated meiotic

recombination within the yeast rDNA. Unlike most previous

studies of rDNA recombination, we used markers within and

flanking the rDNA, allowing us to quantitate both sister-chromatid

and homologue recombination. As described below, we suggest

that the hyper-Rec phenotypes resulting from low alpha DNA

polymerase in mitosis and meiosis reflect two fundamentally

different mechanisms.

Mitotic rDNA Recombination
The rate of reciprocal mitotic crossovers (RCOs) between

homologues in the 120 kb CEN5–CAN1 interval of chromosome V

is about 461025 per cell division [38]. Assuming this rate is

representative of mitotic recombination throughout the genome,

we would expect the rate of RCOs in the rDNA, which is about

ten times larger than the CEN5–CAN1 interval, to be approx-

imately 461024 per cell division. Since we observe a rate of RCOs

of about 361023 per cell division in the wild-type strain, mitotic

crossovers in the rDNA are not suppressed and, in fact, appear

somewhat elevated relative to non-rDNA sequences. In cells with

low Pol1p, rDNA recombination between both clusters on

homologues and clusters on sister chromatids was increased about

five-fold. To determine whether stalling of replication forks at the

RFB site is responsible for the elevated rDNA recombination, we

examined strains that lacked the RFB-binding Fob1p. Although

loss of Fob1p reduces the hyper-Rec rDNA phenotype associated

with sgs1 and dna2 helicase mutants [13,39–41], the fob1 mutation

did not decrease mitotic recombination in our strains with low

polymerase. We also directly compared the level of DSBs at the

RFB in wild-type and low Pol1p strains, and found no difference.

In previous studies, an elevated level of unequal sister-strand

mitotic recombination in the rDNA was observed in strains lacking

Sir2p [14,23]. It is unlikely that the hyper-Rec effect of low alpha

polymerase in mitotic cells reflects a reduction in the level of Sir2p

for several reasons. First, loss of Sir2p specifically elevates rDNA

recombination [23] but, as discussed below, loss of alpha

polymerase elevates recombination in other regions of the genome.

Second, the hyper-Rec phenotype caused by the sir2 mutation is

dependent on Fob1p [14], unlike the hyper-Rec phenotype

resulting from low DNA polymerase alpha. Third, Kobayashi et

al. [14] showed that intragenic recombination within a single

rDNA gene was not elevated in sir2 strains, although unequal

sister-strand recombination was elevated. These researchers also

found a defect in the level of the cohesin subunit Mcd1p in sir2

strains and suggested that the loss of sister-strand cohesion in sir2

strains led to elevated levels of unequal sister-strand recombination

without an elevated level of recombinogenic lesions. Finally, we

failed to see any effect of low alpha polymerase on the level of

Sir2p binding in the rDNA in mitotic cells by chromatin

immunoprecipitation experiments.

Although the hyper-Rec phenotype in our experiments is not

correlated with elevated DSBs at the RFB, we suggest that the

hyper-Rec phenotype is likely to reflect elevated DNA lesions

(perhaps distributed randomly) based on several arguments. First,

we found an elevated rate of RCO in an interval of chromosome

XII (CEN12-HPH, Table 1) that does not contain rDNA, although

only a small number of events were detected. Second, strains with

low levels of alpha polymerase are hyper-Rec in non-rDNA regions;

mitotic recombination in the CEN5-CAN1 interval is elevated about

twenty-fold by low alpha DNA polymerase [26]. A general hyper-

Rec phenotype is associated with mutations affecting many

components of the DNA replication system (reviewed by [42]).

Third, an elevated level of DSBs in strains with low alpha DNA

polymerase was physically demonstrated at a fragile site on

chromosome III [26]. Fourth, increased levels of Holliday junctions,

presumably representing repair of DNA lesions, are observed in the

rDNA of polymerase alpha mutants [30]. Fifth, in analyzing intact

chromosomal DNA samples by CHEF gels, chromosome XII was

often trapped in the wells, characteristic of the behavior of branched

DNA molecules. Strains that lack Rrm3 also have elevated levels of

rDNA recombination and chromosome XII molecules that are

trapped in the gel wells [43,44].

Meiotic rDNA Recombination
Low levels of Pol1p very substantially increase meiotic

recombination in the rDNA between homologues and sister-

chromatids. We also observe a small, but significant, elevation of

recombination in the LYS2-TYR1 interval (Table 1). The much

greater stimulation of recombination in the rDNA and the

observed increase in Spo11p-mediated DSBs in the rDNA in

strains with low levels of DNA polymerase argue that the

stimulation is not primarily a consequence of DSBs associated

with problems with DNA replication. The stimulation is also

independent of Fob1p. In contrast to its effect in mitosis, loss of

Fob1p results in increased rather than decreased meiotic

recombination in the rDNA. Fob1p is involved in the recruitment

of Sir2p to the rDNA [45]. Since we found that strains with low

alpha DNA polymerase have somewhat reduced meiotic levels of

Sir2p in the rDNA, two different methods of reducing the

concentration of Sir2p in the nucleolus result in a hyper-Rec

meiotic phenotype.

Based on our observations and those of others, a relatively

simple model can be proposed. A reduction in the level of Sir2p in

the rDNA results in a reduction in the level of the Pch2p. San-

Segundo and Roeder [24] showed that Sir2p was required for the

localization of Pch2p to the nucleolus and pch2 mutants had

elevated rates of meiotic recombination. These researchers also

showed that Pch2p excludes Hop1p from the nucleolus. Since hop1

strains have reduced levels of Spo11p-catalyzed DSBs [46],

increased entry of Hop1p into the nucleolus would be expected

to elevate Spo11p-induced DSBs.
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There are several alternative explanations of our data. First,

breaks in the rDNA of cells with low Pol1p during meiotic S-phase

may be re-located outside the nucleolus for repair, and during this

time of re-location, Spo11-induced DSBs could be formed [47].

Second, DNA lesions (for example, single-strand nicks) in the

rDNA in cells with low polymerase may recruit the Mre11p/

Rad50p/Xrs2p complex that subsequently associates with Spo11p

[48], resulting in an increased level of Spo11p-catalyzed DSBs.

Finally, we cannot rule out the possibility that some of the meiotic

recombinogenic lesions are a consequence of DNA lesions

resulting from low DNA polymerase during meiotic recombination

that are independent of Spo11p.

In summary, we suggest that fob1 mutations have different

recombination phenotypes in mitosis (hypo-Rec) and meiosis

(hyper-Rec) because of the different effects of Sir2p. In mitosis, the

primary recombination-related role of Sir2p is to help maintain

sister-chromatid cohesion and loss of Sir2p results in elevated

unequal sister-strand recombination. In meiotic recombination,

Sir2p acts to prevent recombination-stimulating proteins such as

Hop1p and Spo11p from entering the nucleolus and, consequent-

ly, loss of Sir2p elevates meiotic recombination.

These explanations leave two important questions unanswered.

First, why does a low level of alpha DNA polymerase reduce Sir2p

binding in the rDNA of meiotic cells? Second, why does low alpha

DNA polymerase reduce Sir2p binding in meiotic, but not mitotic

cells? Although we cannot provide definitive answers to either of

these questions, it is possible that the role of Pol1p in chromatin

assembly is relevant. Pol1p interacts with Spt16p-Pob3p (compo-

nents of the nucleosome reorganization complex) and Ctf4p, a

protein involved in sister-chromatid cohesion [49]. Consequently,

a severe reduction in the level of alpha DNA polymerase might

affect the replication-associated assembly of DNA-interacting

proteins, including Sir2p, within the rDNA. Although it is not

clear why this effect would be observed in meiotic, but not mitotic

cells, there are a substantial number of differences between the

meiotic and mitotic S-phases including the length of the S-phase

and the proteins required for S (reviewed by [50]).

Meiotic crossovers in the rDNA in strains with low levels of

alpha DNA polymerase exhibit no chiasma interference. Low

alpha polymerase does not result in a general loss of interference,

since we still observed interference between LYS2 and TYR1. Since

it has been argued that crossovers that occur outside of the context

of the synaptonemal complex show no interference (reviewed by

[51]) and no distinct synaptonemal complex is present in the

nucleolus [52], this result is not unexpected. More recent

observations, however, suggest that crossover interference can

occur in the absence of synaptonemal complex formation [53,54].

Whatever the mechanism by which one crossover reduces the

probability of a local second crossover, this mechanism does not

operate for crossovers in the rDNA. One final important point is

that we do not know whether low levels of alpha DNA polymerase

alter interference in the rDNA. In wild-type strains, the frequency

of single crossovers in the rDNA is so low (about 1% of the tetrads)

that it is difficult to determine whether the double crossovers are

less than expected. Finally, Hsueh et al. [55] recently reported that

crossovers flanking the mating-type locus in Cryptoccus show

negative interference.

In summary, we show that the rDNA array is destabilized by

high levels of recombination under conditions of low levels of

DNA polymerase alpha. The hyper-Rec phenotype is not due to

increased breaks at the RFB, and cannot be rescued by deletion of

fob1. The hyper-Rec phenotypes observed in mitosis and meiosis

appear to reflect two different mechanisms: a general hyper-Rec

phenotype in mitotic cells (possibly resulting from increased levels

of DSBs throughout the genome) and a more specific hyper-Rec

phenotype in meiotic cells (reflecting increased entry of Spo11p

into the nucleolus). Our analysis shows that the coordination of

replication and recombination is critical for the maintenance of

rDNA stability both in mitosis and in meiosis.

Materials and Methods

Strain Constructions
The strains in this study were isogenic with MS71, a LEU2

derivative of AMY125 (a ade5-1 leu2-3 trp1-289 ura3-52 his7-2)

[56], except for changes introduced by transformation. The

diploids used for most of our analysis (all having the markers

shown in Figure 1) were: AMC45 (wild-type), AMC20 (GAL-

POL1), AMC156 (fob1), and AMC160 (GAL-POL1 fob1). Strain

constructions and complete genotypes for all strains are in Tables

S3 and S4.

Genetic Methods and Media
Methods of transformation, mating, and tetrad dissection were

standard. Strains were grown at 30u and sporulated at 25uC. High-

galactose media contained 0.05% galactose and low-galactose

media contained 0.005% galactose, as well as 3% raffinose, plus

the standard supplements of yeast extract and peptone; dextrose

was omitted. Selective media and sporulation media were

standard, except for the addition of high or low galactose, and

the substitution of dextrose with raffinose [57].

CHEF Analysis and Southern Analysis of DSBs at the RFB
Genomic DNA was extracted and treated with restriction

enzymes in agarose plugs to avoid shearing; further descriptions of

plug preparation and restriction-enzyme digestion are included in

Text S1. For CHEF analysis, DNA was subjected to electropho-

resis at 14uC in a 1.0% gel, 0.56 TBE buffer, using a BioRad

CHEF Mapper XA, with switch times starting at 47 sec. and

extending to 2 min. 49 sec. at 5 V/cm for 33 hr. For analysis of

DSBs at the RFB, DNA was subjected to horizontal gel

electrophoresis at room temperature in a 1.0% gel, 16 TBE

buffer, for 16 hr at 1.3 V/cm. Gels were stained with ethidium

bromide, photographed, and then used for Southern analysis.

To analyze the CHEF gels, we used an rDNA-specific probe

prepared by treating the pY1rG12 rDNA plasmid [58] with

EcoRI. For Southern analysis of DSBs at the RFB (rDNA probe

#1), we performed PCR of genomic DNA with the primer pair: 59

GTTAAGCACTCCATTATG 39 and 59 TAGTTAACAGGA-

CATGCC 39. Probes were labeled by random-prime labeling

using Ready-To-Go DNA Labeling Beads (GE Healthcare).

Southern hybridization and washing were standard. Membranes

were exposed to a PhosphoImager screen for one to three days.

Images were captured with a Typhoon imager (GE Healthcare)

and quantification was performed using Quantity One analysis

software (BioRad).

Chromatin Immunoprecipitation
Immunoprecipitation and real-time PCR experiments were

standard, and are described in Text S1.

Statistical Analyses
Calculations of 95% confidence intervals and p-values using Chi

Square and Fisher’s Exact tests were done using VassarStats

(http://faculty.vassar.edu/lowry/VassarStats.html). The number

of NPDs expected in each interval was calculated using the Stahl

Lab Online Tools ‘‘Better Way’’ calculator (http://www.molbio.

uoregon.edu/,fstahl/ and also [35]). This calculation was used
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instead of the traditional NPD = 1/2[12T2(1–3T/2)2/3] [34],

because in the Papazian equation, the expected number of NPDs

cannot be calculated when T exceeds 2/3. In the LYS2-TYR1

interval, T in some strains exceeds 2/3. The ‘‘Better Way’’

calculator is better for all values of T and can be applied when

T.2/3.

Supporting Information

Figure S1 Under-representation of chromosome XII in a strain

with low levels of DNA polymerase alpha. (A) Analysis of

chromosome migration by CHEF gel separation of genomic

DNA from early log-phase cultures of wild-type cells in YPD (lane

1) and GAL-POL1 cells in YPR with low galactose (lane 2). (B)

Southern blot of the gel shown in (A) with an rDNA-specific probe.

Found at: doi:10.1371/journal.pgen.1000105.s001 (0.45 MB TIF)

Figure S2 ChIP analysis of Sir2p- and Spo11p-associated DNA

in a wild-type strain and a strain with low levels of Pol1p. (A)

Location of primer sets within the rDNA used for real-time PCR

analysis of chromatin immunoprecipitations; primers used to

generate the PCR products are in Supp. Table 5. A single rDNA

unit is shown; PCR products are a selection of those published by

Huang and Moazed [5] and are indicated by black horizontal

bars. (B) and (C) Spo11p-associated DNA immunoprecipitated

from wild-type (POL1) and GAL-POL1 strains sporulated in low

galactose was quantified by real-time PCR. Spo11p binding at

HIS4 (a known hotspot for Spo11p binding) and at rDNA location

19 were quantified relative to Spo11p binding at the CUP1 locus.

Error bars represent the 95% confidence intervals. (D) Sir2p-

associated DNA was immunoprecipitated from wild-type (POL1)

and GAL-POL1 strains sporulated in low galactose. The binding

was quantified by real-time PCR, relative to binding at rDNA

location 3-3. Error bars represent the 95% confidence intervals.

Found at: doi:10.1371/journal.pgen.1000105.s002 (0.33 MB TIF)

Table S1 Frequencies of sectored colonies of various phenotypes

reflecting mitotic recombination in a fob1 strain and in fob1 strains

with high and low levels of DNA polymerase alpha. Colonies of

AMC156 (fob1) and AMC157 (fob1 GAL-POL1), grown on rich

medium, were replica-plated to medium lacking uracil or

tryptophan, or containing hygromycin. As in Table 1, the patterns

of sectoring and other types of analysis (primarily tetrad analysis of

the sectors) were used to classify the different types of

recombination events. A full discussion of this classification is in

the Table 1 legend.

Found at: doi:10.1371/journal.pgen.1000105.s003 (0.03 MB

DOC)

Table S2 Numbers of two-, three-, and four-strand meiotic

double crossovers (DCOs) in tetrads with a crossover in the HPH-

TRP1 and TRP1-URA3 intervals.

Found at: doi:10.1371/journal.pgen.1000105.s004 (0.03 MB

DOC)

Table S3 Haploid strain genotypes and constructions. *All

strains were derived from MS71 (a ade5-1 his7-2 ura3-52 trp1-289)

by transformation or crosses with isogenic strains. Only those

markers that differ from the genotype of MS71 are shown. Some

of our strains contain insertion of drug-resistant markers at

genomic locations that are not within genes. For such markers, we

indicate the chromosome containing the insertion and the SGD

coordinate at the position of the insertion. For example, the

marker XII451250::HPH represents an insertion of the hygro-

mycin-resistance gene on chromosome XII next to base 451250.

**Strains constructed by transformation were made using PCR

fragments to the targeted location. The template for PCR

amplification is indicated. Primer sequences used in strain

construction are shown with upper case letters corresponding to

the targeted genomic regions and lower case letters corresponding

to the selectable marker on the plasmid.

Found at: doi:10.1371/journal.pgen.1000105.s005 (0.08 MB

DOC)

Table S4 Diploid strain genotypes and constructions. *All strains

were derived by crosses of haploids that are isogenic with MS71

(described in Supp. Table 4). Only those markers that differ from

the genotype of MS71 are shown. An illustration of the

nomenclature for a diploid heterozygous for an insertion of a

drug-resistant marker is: XII451250::HPH/ XII451250. In this

strain, one chromosome had an insertion of the HPH gene on

chromosome XII at base 451250 (SGD coordinates) and the other

chromosome did not.

Found at: doi:10.1371/journal.pgen.1000105.s006 (0.03 MB

DOC)

Table S5 Primers for real-time PCR.

Found at: doi:10.1371/journal.pgen.1000105.s007 (0.04 MB

DOC)

Text S1 Low levels of DNA polymerase alpha induce mitotic

and meiotic instability in the ribosomal DNA gene cluster of

Saccharomyces cerevisiae.

Found at: doi:10.1371/journal.pgen.1000105.s008 (0.05 MB

DOC)
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