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Abstract

The relative proportion of additive and non-additive variation for complex traits is important in evolutionary biology,
medicine, and agriculture. We address a long-standing controversy and paradox about the contribution of non-additive
genetic variation, namely that knowledge about biological pathways and gene networks imply that epistasis is important.
Yet empirical data across a range of traits and species imply that most genetic variance is additive. We evaluate the evidence
from empirical studies of genetic variance components and find that additive variance typically accounts for over half, and
often close to 100%, of the total genetic variance. We present new theoretical results, based upon the distribution of allele
frequencies under neutral and other population genetic models, that show why this is the case even if there are non-
additive effects at the level of gene action. We conclude that interactions at the level of genes are not likely to generate
much interaction at the level of variance.
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Introduction

Complex phenotypes, including quantitative traits and common

diseases, are controlled by many genes and by environmental factors.

How do these genes combine to determine the phenotype of an

individual? The simplest model is to assume that genes act additively

with each other both within and between loci, but of course they may

interact to show dominance or epistasis, respectively. A long standing

controversy has existed concerning the importance of these non-

additive effects, involving both Fisher [1] and Wright [2]. Estimates

of genetic variance components within populations have indicated

that most of the variance is additive [3,4]. Increasing knowledge

about biological pathways and gene networks implies, however, that

gene-gene interactions (epistasis) are important, and some have

argued recently that much genetic variance in populations is due to

such interactions [5,6,7,8]. It is important to distinguish between the

observations of dominance or epistasis at the level of gene action at

individual loci, exemplified by a table of genotypic values, and the

observations of variance due to these components in analysis of data

from a population. For example, at a completely dominant locus

almost all the variance contributed is additive if the recessive gene is

at high frequency [3,4].

An understanding of the nature of complex trait variation is

important in evolutionary biology, medicine and agriculture and has

gained new relevance with the ability to map genes for complex traits,

as demonstrated by the recent burst of papers that report genome-

wide association studies between complex traits and thousands of

single nucleotide polymorphisms (SNPs) [9,10,11,12,13]. Here we

attempt to resolve the alternative sources of evidence on the

importance of non-additive genetic variation. We evaluate the

evidence from empirical studies of genetic variance components and

indeed find that additive variance typically accounts for over half and

often close to 100% of the total genetic variance. We then present

new theory and results that show why this is the case even if there are

non-additive effects at the level of gene action.

Empirical Evidence for Additive and Non-Additive
Genetic Variance

Estimation of Genetic Variance. The genetic variance VG

can be partitioned into additive (VA), dominance (VD), and a

combined epistatic component (VI), which itself can be partitioned

into two locus (VAA, VAD, and VDD) and multiple locus components

(VAAA, etc.) [3,4,14,15,16,17]. Estimation of additive and non-

additive variance components utilises the observed phenotypic

similarity of relatives and the expected contribution of additive and

non-additive effects to that similarity [3,4]. In addition to

resemblance due to additive or non-additive genetic factors,

relatives may resemble each other due to common environmental

effects.

In an extremely large data set with very many different kinds of

relationships present, it is possible in principle to partition

variation into many components using modern statistical methods

such as residual maximum likelihood [18] (REML) with the

animal model [4,19,20]. In practice it is never possible to estimate

many variance components with useful precision, however, not

least because there is a high degree of confounding: for example,

full sibs have a higher covariance for all single and multi-locus

genetic components than do half sibs. The coefficients of epistatic

components are small (e.g., VAA/16 for half-sibs), so estimates have
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high sampling error and there is little power to distinguish VA

from, say, VAA. Selection, assortative mating, and non-genetic

covariances also confound estimates. Consequently, there are few

accurate estimates of non-additive variance components but there

is indirect evidence. For instance, a narrow sense heritability value

(h2 = VA/VP) of one-half, typical for many traits, implies that

dominance, all the vast number of epistatic components, and the

environmental component, collectively contribute no more than

VA. Similarly if the heritability is only a little less than the

repeatability (the phenotypic correlation of repeated measures), all

non-additive genetic variances and the permanent environmental

variance together comprise this small difference. With these

caveats we summarise data of various types.

Laboratory Animals and Livestock. The extensive data on

experimental organisms show a range of heritability, higher for

morphological than fitness associated traits, averaging as follows

[21]: morphology - 0.46, physiology (e.g., oxygen consumption,

resistance to heat stress) - 0.33, behaviour - 0.30, and life history -

0.26.

There have been extensive estimates of heritability for traits of

livestock. For example, for beef cattle, these averaged: post-

weaning weight gain 0.31, market weight for age 0.41, backfat

thickness 0.44 [22]. In general for morphological traits, such as

carcass fatness, egg weight in poultry or fat and protein content of

cow’s milk, a heritability of 0.5 or so is the norm, whereas for

growth traits or milk yield 0.25–0.35 is more typical [23]. These

estimates of heritability from half-sib correlations could be biased

upwards by additive epistatic terms, but they can not account for

estimates of heritability over 25%. Furthermore, estimates of

realised heritability from response to selection [3] are not biased in

that way, because epistatic components do not contribute to long

term selection response [24], and estimates of realised heritability

range up to 0.5 for fat content of mice, for example [25].

There are a number of cases where it can be shown directly that

VA contributes almost all of VG and indeed almost all of VP. For

bristle number in Drosophila melanogaster, the phenotypic correlation

between abdominal segments, which, assuming they are influ-

enced by the same genes, estimates VG/VP, is only a little higher

than the heritability, indicating that VA/VG,0.8 [26]. For finger

ridge count (in humans), estimates of heritability are close to one

and consistent from different sorts of relatives [27]. Even for lowly

heritable traits such as litter size in pigs, the repeatability is little

higher than the heritability, implying that most genetic variance is

additive [28]. Whilst there is a clear relationship between

heritability and type of trait, it should be noted that low

heritability does not imply low genetic variance: the evolvability

(!VA/mean) is higher for fitness than morphological traits [29], and

even for estimates of fitness itself or traits closely related to it,

additive genetic variance is present [30,31].

There are rarely good direct estimates of epistatic or dominance

variance because these variance components are usually estimated

from full-sibs and therefore confounded with the common

environment shared by full sibs. However, if the heritability is

high, the space for them is limited.

Experiments on inbreeding depression provide some evidence

on the importance of non-additive effects. Inbreeding depression

implies directional dominance in gene effects but, for a given rate

of inbreeding depression, as the number of loci increases and the

gene frequencies move toward 0 or 1.0, the dominance variance

decreases towards zero. Consequently, the importance of inbreed-

ing depression for traits related to fitness is not evidence that the

dominance variance is large. The observed linearity of inbreeding

depression with inbreeding co-efficient is easiest to explain with

directional dominance but not with DD or higher order epistatic

effects because these would cause non-linearity unless they

happened to exactly cancel each other out.

Twin Studies in Humans. In contrast to studies of sibs and

more distant relatives, identical twins can provide estimates of VG.

The classical twin design of samples of monozygotic (MZ) and

dizygotic (DZ) twin pairs has been used extensively to estimate

variance components for a wide range of phenotypes in human

populations. The primary statistics from these studies are the

correlations between MZ pairs (rMZ) and between DZ pairs (rDZ).

If twin resemblance due to common environmental factors is the

same for MZ and DZ twins then rMZ.rDZ implies that part of the

resemblance is due to genetic factors and rMZ.2rDZ implies the

importance of non-additive genetic effects. Conversely, rMZ,2rDZ

implies that common environmental factors cause some of the

observed twin resemblance. Sophisticated variance component

partitioning methods to estimate components of additive, non-

additive and common environmental effects are used widely [32],

but all rely on the strong assumptions that resemblance due to

common environmental effects is the same for MZ and DZ twins.

Attempts to test this hypothesis have not found any evidence to

reject it [33,34]. Nevertheless, even accepting this assumption

about common environmental variance, in the classical twin

design there are only two primary statistics and three or more

variance components cannot be estimated without making

additional assumptions.

We summarised the MZ and DZ correlations for a wide variety

of phenotypes from published twin studies from a single productive

laboratory in Australia (genepi.qimr.edu.au). The criteria were

that each study must have more than 100 MZ and more than

100 DZ pairs and that the study subjects were Australian twins.

For non-continuous traits, studies were included only if they

reported polychoric or tetrachoric correlations. In total, 86

phenotypes qualified of which 42 were clinical measures of

quantitative traits (including, for example, blood pressure,

biochemical measures in blood, body-mass-index, height, tooth

dimensions; a full list of phenotypes is available upon request). The

MZ and DZ correlations are summarised in Table 1. The

correlations were not separated according to the sex of the

individuals in all studies; but for those that did separate the sexes,

the overall MZ and DZ correlations were calculated as an average,

weighted by the total number of pairs. The distribution of

Author Summary

Genetic variation in quantitative or complex traits can be
partitioned into many components due to additive,
dominance, and interaction effects of genes. The most
important is the additive genetic variance because it
determines most of the correlation of relatives and the
opportunities for genetic change by natural or artificial
selection. From reviews of the literature and presentation
of a summary analysis of human twin data, we show that a
high proportion, typically over half, of the total genetic
variance is additive. This is surprising as there are many
potential interactions of gene effects within and between
loci, some revealed in recent QTL analyses. We demon-
strate that under the standard model of neutral mutation,
which leads to a U-shaped distribution of gene frequencies
with most near 0 or 1, a high proportion of additive
variance would be expected regardless of the amount of
dominance or epistasis at the individual loci. We also show
that the model is compatible with observations in
populations undergoing selection and results of QTL
analyses on F2 populations.

Additive Variance of Complex Traits
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rMZ22rDZ across all 86 phenotypes is shown in Figure 1. On

average the MZ correlation is about twice the DZ correlation

across a wide range of phenotypes. If we consider only clinically

measured phenotypes and ignore opposite-sex twins then the MZ

correlation is clearly less than twice the DZ correlation (Table 1).

It is possible but unlikely that the variance due to common

environmental factors, assortative mating and non-additive genetic

factors exactly cancel each other out by chance. Thus the simplest

explanation of the results is that additive variance explains most of

the observed similarity of twins and non-additive variance is

generally of small magnitude and cannot explain a large

proportion of the genetic variance.

Model

Gene Frequency Distributions
In view of the apparent conflict between the observations of

high proportions of additive genetic variance (often half or more of

the phenotypic variance, and even more of the total genetic

variance) and the recent reports of epistasis at quantitative trait

loci (QTL) [8], we consider explanations beyond that of simple

sampling errors and bias of estimates. We focus particularly on the

role that the distribution of gene frequencies may play in the

relation between the genetic model and the observed genetic

variance components.

Genetic variance components depend on the mean value of

each genotype and the allele frequencies at the genes affecting the

trait [3,4,17]. Unfortunately the allele frequencies at most genes

affecting complex traits are not known, but the distribution of

allele frequencies can be predicted under a range of assumptions.

This distribution depends on the magnitude of the evolutionary

forces that create and maintain variance, including mutation,

selection, drift and migration. As the effects on fitness of genes at

many of the loci influencing most quantitative traits are likely to be

small, we can invoke theory for neutral alleles to serve as a

reference point. An important such reference is the frequency

distribution under a balance between mutation and random

genetic drift due to finite population size in the absence of

selection. If mutations are rare, the distribution of the frequency (p)

of the mutant allele is f(p)/1/p, i.e. approximately L-shaped

[2,35,36], with the high frequency at the tail being due to

mutations arising recently. The allele which increases the value of

the trait may be the mutant or ancestral allele, so its frequency has

a U-shaped distribution f(p)/1/p+1/(12p) = 1/[p(12p)]. As we

shall use it often, we define the ‘U’ distribution explicitly by this

formula. For loci at which the mutants are generally deleterious,

the frequency distribution will tend to be more concentrated near

p = 0 or 1 than for this neutral reference point. As another simple

reference point we use the uniform distribution, f(p)/1, 1/(2N) # p

# 121/(2N), with N the population size. This approximates the

steady state distribution of a neutral mutant gene which has been

segregating for a very long time [2], and also has much more

density at intermediate gene frequencies than the ‘U’ distribution.

Our third reference point is at p = 0.5, as in populations derived

from inbred crosses, and is the extreme case of central tendency of

gene frequency.

These analyses assume a gene frequency distribution which is

relevant to no selection. For a more limited range of examples we

consider the impact of selection on the partition of variance. We

consider a limited range of genetic models, some simple classical

ones and others based on published models of metabolic pathways

or results of QTL mapping experiments.

Uniform: f(p) = 1, assuming N is sufficiently large that the

discreteness of the distribution and any non-uniformity as p

approaches 1 or 0 can be ignored, i.e. integrated over 0 to 1. This

and the ‘U’ gene frequency distributions are, for simplicity,

assumed to be continuous.

Neutral mutation model (‘U’): f(p)/1/[p(12p)]. To standardise the

distribution, with population size N assumed to be large, note that

ð1{1=2N

1=2N

1

p 1{pð Þdp~2 ln 1{
1

2N

� �
{ln

1

2N

� �� �
*2ln 2Nð Þ

Thus f pð Þ~ 1
2Kp 1{pð Þ, where K,ln(2N).

Genetic variance components are obtained by integration of

expressions for the variance as a function of p for a specific model

of the gene frequency distribution. For multiple locus models the

distribution of all loci is assumed to be identical and there is no

Figure 1. Distribution of rMZ22rDZ for all traits on human twins.
Data are from published papers by N.G. Martin and colleagues of the
Queensland Institute of Medical Research, Brisbane (www.genepi.edu.
au). Across a wide variety of traits the mean difference between the
monozygotic twin correlation and twice the dizygotic twin correlation is
close to zero, which is consistent with predominantly additive genetic
variance and the absence of a large component of variance due to
common environmental effects.
doi:10.1371/journal.pgen.1000008.g001

Table 1. Meta-analysis of MZ and DZ correlations in humansa.

Group All phenotypes Clinically measured phenotypes

No. traits r No. traits r

MZ females 58 0.61 24 0.76

MZ males 48 0.65 24 0.75

DZ females 58 0.34 24 0.45

DZ males 48 0.36 24 0.43

OS pairsb 46 0.29 23 0.36

All MZ 86 0.58 42 0.67

All DZ 86 0.29 42 0.35

MZ22DZ 86 0.00 42 20.04

These show the correlations (r) of phenotypes of twins, averaged over ranges of
traits estimated in large data sets
aData from published papers by N.G. Martin and colleagues of the Queensland
Institute of Medical Research, Brisbane (www.genepi.edu.au)

bOpposite sex
doi:10.1371/journal.pgen.1000008.t001
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linkage disequilibrium. We focus on the contribution of additive

genetic variance (VA) to genotypic variance (VG).

Genotypic Values
Single Locus with Arbitrary Dominance. Consider a single

biallelic locus with genotypic values for CC, Cc and cc of +a, d and

2a, respectively (notation of [3]). Then, from [3]

VA~2p 1{pð Þ azd 1{2pð Þ½ �2, VD~4p2 1{pð Þ2d2 and VG~VAzVD:

For the uniform distribution of p

E VAð Þ~
ð1

0

2p 1{pð Þ azd 1{2pð Þ½ �2dp

Hence E(VA) = a2/3 +d2/15 and E(VD) = 2d2/15, giving E(VA)/

E(VG) = 122d2/(5a2+3d2).

For the ‘U’-distribution, assuming N is large, and ignoring terms

of O(1/N), the integrals simplify to E(VA),(a2+d2/3)/K, E(VD),d2/

(3K) and E(VA)/E(VG) = 12d2/(3a2+2d2).

Additive 6 Additive Model without Dominance or

Interactions Including Dominance. A simple additive 6
additive epistatic model has these genotypic values:

CC Cc cc

BB 2a a 0

Bb a a a

bb 0 a 2a

Assuming the frequency of B is p and of C is q, with linkage

equilibrium:

Mean = M = 2a[pq+(12p)(12q)]

The average effect of substitution of allele B is given by [37]

aB~1=2dM
.

dp~a q{ 1{qð Þ½ �

and hence

VA = 2a2[p(12p)(122q)2+q(12q)(122p)2] = a2(Hp+Hq24HpHq),

where H is heterozygosity

The AA epistatic effect is given by (aa)BC = J d2M/dpdq = a.

Hence VAA = 4a2p(12p)q(12q)a2 = a2HpHq and

VG = a2(Hp+Hq23HpHq),

Uniform: simple integration gives E(VA) = 2a2/9, E(VAA) = a2/9,

E(VG) = a2/3

‘U’: E VAð Þ~ 2a2

4K2

Ð Ð
1

q 1{qð Þz
1

p 1{pð Þ{8
h i

dpdq~2a2 1
K

{ 2
K2

� �
Similarly E(VAA) = a2/(4K). Hence E(VA)/E(VG) = (224/K)/

(223/K) = 121/(2K23), which R 1 for large K. The residue, if

any, is VAA.

Duplicate Factor Model. A simple epistatic model involving

all epistatic components for two loci is the following:

CC Cc cc

BB a a a

Bb a a a

bb a a 0

For an arbitrary number (L) of loci (i), the genotypic value is a

except for the multiple ‘recessive’ homozygote, and for one locus it

is complete dominance.

M~a 1{P i 1{pið Þ2
h i

and VG~M a{Mð Þ

ai~a 1{pið ÞP j=i 1{pj

� �2
and VA~2a2

X
i

pi 1{pið Þ3P j=i 1{pj

� �4
h i

For pi = 0.5 at all loci: VG = a2[(K)2L2(J)2L], VA = a2L(K)4L21

and VA/VG = 2L/(22L21). For two loci, VA/VG = 4/15.

Uniform: E VGð Þ~a2 1
3

� �L
{ 1

5

� �L
h i

and E VAð Þ~ 1
2

a2L 1
5

� �L

For two loci, E(VA)/E(VG) = 9/16 and declines to 0 as L

increases.

‘U’: E VGð Þ~ a2

2L 1{ 1
K

� �L
{ 1{ 11

6K

� �L
h i

and E VAð Þ~ a2

2L{1
L

3K

1{ 11
6K

� �L{1

For two loci E VGð Þ~ 5a2

12K
1{ 17

12K

� �
, E VAð Þ~ a2

3K
1{ 11

6K

� �
and

E VAð Þ
E VGð Þ~

4 1{ 11
6Kð Þ

5 1{ 17
12Kð Þ

For large N, with two loci E(VA) /E(VG) R 4/5 and for very

many loci E(VA) /E(VG) R 0
Complementary Model. Another simple epistatic model

involving all components is the following:

CC Cc cc

BB a a 0

Bb a a 0

bb 0 0 0

which can also be defined for multiple loci. For two loci, for

example, using similar methods it can be shown that: for pi = 0.5,

VA/VG = 0.56; with the uniform distribution, E(VA)/E(VG) = 2/3;

and with the ‘U’ distribution
E VAð Þ
E VGð Þ~

4
5

1z 1
6K

� ��
1z 7

12K

� �
.

Analyses of General Models. For two-locus models in

which the genotypic values were not functions of simple

parameters, the genotypic values were entered as data, and VA

and VG calculated as functions of the gene frequencies p and q.

Bivariate numerical integration was undertaken using Simpson’s

rule by computing e.g. VA(p,q)f(p,q) over an (m+1) 6 (m+1) grid of

equally spaced p and q values, taking m = 210 or higher power of 2

as necessary for adequate convergence. Results were computed for

some models of metabolic pathways [38,39] and for some

published models obtained from QTL analysis [8].

Results/Discussion

Single Locus Model
Many general points are illustrated by two simple examples, the

single locus model with dominance and the two locus model with

AA interaction, so we consider these in more detail. For the single

locus model with genotypic values for CC, Cc and cc of +a, d and

2a, respectively, VA = 2p(12p)[a+d(122p)]2 and VD = 4p2(12p)2d2.

For d = a, i.e. complete dominance of C, VA = 8p(12p)3a2 and

VD = 4p2(12p)2a2 and thus: at p = 0.5, VA = (2/3)VG; if the

dominant allele is rare (i.e. p R 0), VG R 8p and VA/VG R 1,

and if it is common, VG R 4p2 and VA/VG R 0. Note, however,

that VG and VA are much higher when the dominant allele is at

low frequency, e.g. 0.1, than are VG and VD when the recessive is

at low frequency, e.g. p = 0.9. Even for an overdominant locus

(a = 0), all genetic variance becomes additive at extreme gene

frequencies. Considering now expectations (E) over the frequency

distributions, let g2 = E(VA)/E(VG), an equivalent to narrow sense

heritability if VE = 0. For the ‘U’ distribution, g2 = 12d2/(3a2+2d2)

and for the uniform distribution, g2 = 122d2/(5a2+3d2). Hence,

Additive Variance of Complex Traits
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for a completely dominant locus, g2 = 0.8 and g2 = 0.75

respectively; whereas VA/VG = 0.67 for p = 0.5. In summary, the

fraction of the genetic variance that is additive genetic decreases as

the proportion of genes at extreme frequencies decreases (Table 2).

Two Locus Additive 6Additive Model
The genotypic values (see Theory section) for the simple AA

model for double homozygotes BBCC and bbcc are +2a and for

bbCC and BBcc are 0, and all single or double heterozygotes are

intermediate (+a). With linkage equilibrium, VA/VG = 12HpHq/

[Hp+Hq23HpHq], where the heterozygosities are Hp and Hq at loci

B and C. Thus VA/VG R 1 if either locus is at extreme frequency

(i.e. p or q R 0 or 1), and equals 0 when p = q = 0.5. If p = q, for

gene frequencies 0.1, 0.2, 0.3 and 0.4, VA/VG = 0.88, 0.69, 0.43

and 0.14. For the uniform distribution g2 = 2/3, and for the ‘U’

distribution, the variances are a function of the population size,

because more extreme frequencies are possible at larger

population sizes. Thus g2 = (224/K)/(223/K), where K = ln(2N),

so g2 R 1 for large K. Any residue is VAA.

These two examples, the single locus and A 6 A model,

illustrate what turns out to be the fundamental point in

considering the impact of the gene frequency distribution. When

an allele (say C) is rare, so most individuals have genotype Cc or

cc, the allelic substitution or average effect of C vs. c accounts for

essentially all the differences found in genotypic values; or in other

words the linear regression of genotypic value on number of C

genes accounts for the genotypic differences (see [3], p 117).

Hence almost all VG is accounted for by VA.

Other Epistatic Models
With the ‘U’ distribution, most genes have one rare allele and so

most variance is additive. Further examples (Table 2) illustrate this

point, including the duplicate factor and complementary models

where there is substantial dominance and epistasis. These models

show mostly VA for the ‘U’ distribution for a few loci but the

proportion of the variance which is additive genetic declines as the

number increases. With many loci, however, such extreme models

do not explain the covariance of sibs (i.e. any heritability) or the

approximate linearity of inbreeding depression with inbreeding

coefficient, F, found in experiments [3,4,40,41,42], or the linearity

in response to artificial selection [43].

We also analysed a well-studied systems biology model of flux in

metabolic pathways [38,39,44] and found again that the expected

proportion of VG that is accounted for by VA is large (Table 3).

Examples of Models from Highly Epistatic Published QTL
Analyses

A number of QTL analyses using crosses between populations

(some inbred, some selected) have been published in which

particular pairs (or more) of loci have been identified to have

Table 2. Summary of expected proportion of VG that is VA for different modelsa.

Genetic model
Distribution of allele frequencies

p = K Uniform ‘U’ (N = 100)b ‘U’ (N = 1000)

Dominance without epistasis d = Ka 0.89 0.91 0.93 0.93

Dominance without epistasis d = a 0.67 0.75 0.80 0.80

Dominance without epistasis a = 0 0.00 0.33 0.50 0.50

A 6A without dominance 0.00 0.67 0.87 0.92

Duplicate factor 2 loci 0.27 0.56 0.71 0.75

Duplicate factor 100 loci 0.00 0.00 0.00 0.00

Complementary 2 loci 0.57 0.67 0.74 0.76

aModels defined in Methods section
bPopulation size
doi:10.1371/journal.pgen.1000008.t002

Table 3. Examples of expected proportion of VG that is VA in models of flux in linear metabolic pathways with a model flux
J/[Si(1/Ei)]

21 for a system with 10 loci in which 8 are invariant wild type and two (B, C) are mutants.

Activities Flux relative to wildtype, JBBCC = 1 E(VA)/E(VG)

Ebb Ecc JBbCc JbbCC JBBcc Jbbcc Distribution of allele frequencies

0.5 Unia U100b U1000c

1 0.1 0.92 1 0.53 0.53 0.81 0.86 0.88 0.88

0.5 0.1 0.90 0.91 0.53 0.50 0.81 0.85 0.88 0.88

0.1 0.1 0.86 0.53 0.53 0.36 0.77 0.82 0.86 0.87

0.1 0.01 0.85 0.53 0.09 0.09 0.72 0.79 0.83 0.84

Enzyme activities are Ei = 1 for loci 3 to 8, EBB = ECC = 1, values of Ebb and Ecc are listed, and heterozygotes are intermediate, e.g. ECc = K(1+Ecc), assuming gene frequency
distributions as in Table 2. Flux modelled as [39].
aUniform
bU-shaped with population size of 100
cU-shaped with population size of 1000
doi:10.1371/journal.pgen.1000008.t003
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substantial epistatic effects [8]. We consider examples of the more

extreme cases of epistasis found, obtaining variance components

by numerical integration. Results are shown in Table 4, for

examples from [8] deliberately chosen as extreme. Even so, the

proportion of the genetic variance that is additive is high with the

‘U’ distribution, except in the dominance 6 dominance example.

Further, as these examples were selected by Carlborg and Haley

and us as cases of extreme epistasis, it is not unreasonable to

assume that the real epistatic effects are smaller than their

estimates.

Relaxation of Assumptions
Expectation of a Ratio of Variance Components. The

formulae we have given have been for the quantities E(VA), E(VG)

and the ratio E(VA)/E(VG). The quantity actually observed is VA/

VG = SiVAi/SVGi where the expression denotes the sums over loci

(i) of the additive and total genetic variance contributed by each in

the absence of epistasis or linkage disequilibrium, or in the

presence of these, sums over relevant sets of loci. As, for any locus,

or for their sum, in general E(VA/VG) ? E(VA)/E(VG), we need to

consider the relevance of the quantities calculated. Whilst it would

be possible to obtain approximations using statistical

differentiation [4], formulae are complicated and invoke an

assumption of small coefficients of variation of the quantities which

does not always hold. Hence we used Monte Carlo simulation and

some examples are given in Table 5. It is seen that, except with

very few loci, the bias is not great in using the ratio of expectations.

In real situations where many loci of differing effects and

frequencies are likely to be involved, the bias is likely to be

trivial unless a single locus contributes almost all the variance.

Influence of Linkage Disequilibrium (LD). In this analysis

we have assumed there is Hardy-Weinberg equilibrium (HWE)

and linkage equilibrium among the loci. As departures from HWE

are transient with random mating, they can be ignored, but LD

can persist, and hence the estimated effects at locus C depend on

those fitted at B and vice versa. The effect of LD is to reduce the

number of haplotypes that segregate in the population so what

would be epistatic variance becomes additive or dominance

variance. For example, consider the A 6 A model and complete

LD, i.e. equal frequencies at B and C loci and both loci segregating

but with only two haplotypes present. Then only Bc and bC

haplotypes are present, and genotypic values are 0 for homozygous

classes and a for heterozygotes (‘pure’ overdominance), or only BC

and bc haplotypes, with genotypic values 2a for homozygotes and

a for heterozygotes (‘pure’ underdominance). In either case

variances are the same as for the dominance case with a = 0.

Thus LD would lead to attribution of real epistatic variance to

additive or dominance variance, and would exacerbate the results

obtained from discussions of gene frequency distribution.

Consequences of Multiple Alleles. In these models we have

considered solely biallelic loci, appropriate for low mutation rates.

Multiallelic loci, in terms of their effects on the trait, can arise from

mutations at different structural or control sites. Predictions are

complicated by the need to consider k(k21)/2 genotypic values at

a k allelic locus, and many further epistatic terms, so we consider

two extreme cases. If the alleles all have similar effects, for example

due to a knock-out, the effective mutation rate is increased, but it

would require very many such sites for the distribution of

frequencies of the trait alleles to differ greatly from

proportionality to 1/[p(12p)]. Such segregation of multiple

alleles will be more common in large populations, where in any

case the frequency distribution is most extreme, and so the impact

is unlikely to be large. A second case is where all alleles have

Table 4. Examples of expected proportion of VG that is VA in highly epistatic published QTL analyses assuming gene frequency
distributions as in Table 2.

Model
a

Genotypic values E(VA)/E(VG)

BBCC BbCC bbCC BBCc BbCc bbCc BBcc Bbcc bbcc Distribution of allele frequencies

0.5 Unib U100c U1000d

DomEp 4 10 15 11 8 7 10 8 7 0.05 0.52 0.73 0.78

Co-ad 39.0 38.7 35.7 37.6 38.9 37.7 36.8 39.6 40.4 0.11 0.62 0.81 0.85

D 6D 4 13 6 13 7 11 5 13 6 0.00 0.15 0.37 0.42

aValues obtained from tables or by interpolation from Box 1c–e of Carlborg and Haley [8]: key to their nomenclature: DomEp: Dominant epistasis (complex); Co-ad: Co-
adaptive epistasis; D 6D: dominance 6dominance epistasis.

bUniform.
cU-shaped with population size of 100.
dU-shaped with population size of 1000.
doi:10.1371/journal.pgen.1000008.t004

Table 5. Bias in use of E(VA)/E(VG) rather than E(VA/VG) for
some models in Table 2 as a function of Numbers of Loci.

Uniform distribution

E(VA)/E(VG) E(VA/VG) from simulation

Locia 64 16 4 1

a = 1, d = 1 0.750 0.749 0.747 0.734 0.609

a = 0, d = 1 0.333 0.335 0.337 0.348 0.430

A 6A 0.667 0.667 0.666 0.660 0.646

Dupl. factor 0.562 0.559 0.549 b b

‘U’ distribution with N = 1000

E(VA)/E(VG) E(VA/VG) from simulation

Loci* 64 16 4 1

a = 1, d = 1 0.800 0.798 0.796 0.773 0.561

a = 0, d = 1 0.500 0.502 0.516 0.585 0.800

A 6A 0.918 0.918 0.919 0.925 0.945

Dupl. factor 0.746 0.743 0.733 b b

aNumber of loci for non-epistatic cases (complete dominance a = 1, d = 1, and
overdominance a = 0, d = 1), numbers of pairs of loci for two-locus epistatic
models (A 6A and duplicate factor.

bNot computed as VG = 0 in some replicates.
doi:10.1371/journal.pgen.1000008.t005

Additive Variance of Complex Traits

PLoS Genetics | www.plosgenetics.org 6 2008 | Volume 4 | Issue 2 | e1000008



different effects and dominance interactions. Any allelic

substitution then produces a change in the mean and so additive

variance is present and for example, contributes more VA than

does the overdominance model at p = 0.5.

Alternative Models. The analysis we have given for

estimating effects of dominance and epistasis is for the classical

method using simple averages over genotypes weighted by their

frequencies, which are the least squares estimates in the balanced

case and the basis for the analysis of variance [14,15,16]. There

are alternative parameterisations aimed at exemplifying more

clearly the nature of the interactions, including that of

‘physiological epistasis’ [45]. Whilst such alternatives may be of

use in the analysis and interpretation of gene or QTL mapping

experiments where individual genotypes can be identified or

predicted from linked markers, such alternative parameterizations

are not feasible in analysis of populations using data solely on the

quantitative traits, from which the estimates of genetic variance

components and heritability are obtained. Further, as has been

pointed out [46], although the estimated effects may differ, the

variances explained by different models are generally the same in

segregating populations.

Effects of Selection on Gene Frequency Distributions and

Partition of Variance. The ‘U’ and indeed uniform gene

frequency distributions are limiting cases applying in the absence

of selection on loci affecting the quantitative trait. The results for a

wide range of models can be summarised as follows: gene

frequencies that cause VA/VG to be small also cause VG to be

small. Consequently, when VA and VG are summed over a full

range of frequencies, VA/VG is large. This conclusion is dependent

on the distribution of gene frequencies being symmetrical, so that

cases with large VG and large VA/VG are as common as cases with

small VG and small VA/VG. The impact of selection will depend on

how it acts on the trait or traits analysed and also on other aspects

of fitness, so we need to consider whether the findings are robust to

selection.

Stabilising selection on the trait, such that individuals with

phenotype closest to an optimum are most fit, leads to

maintenance of the population mean at or close to the optimum,

so that mutants are at a disadvantage if they increase or decrease

trait values. Consequently the gene frequency distribution is still

broadly U-shaped, but with much more concentration near 0 or 1

[47]. Hence such selection is likely to increase proportions of

additive variance. This conclusion would be wrong if there was

widespread overdominance at the level of individual genes because

this would push gene frequencies to intermediate values. However,

the observed inbreeding depression is incompatible with wide-

spread overdominance [48].

Under the neutral mutation or stabilising selection models

where gene frequency distributions have extreme U shape,

subsequent directional selection will lead to either rapid fixation

or increase to intermediate frequency of genes affecting the trait.

Even if the distribution of allele frequencies is initially symmetric, a

net increase in variance over generations might thus be expected

[49] (Chapter 6). Accelerated responses to artificial selection have

not been seen, however, in lines founded from natural populations

[50]. Calculations show that if genes are analysed independently

such an increase in variance with artificial selection can in theory

occur following the neutral model only if most gene effects are

large (unpublished) or with more extreme frequency distributions

following stabilising selection [51]. These ignore the build up of

negative gametic disequilibrium through the Bulmer effect [52],

however, whereas in simulated multi-locus models of Drosophila

no increase in variance was found [51]. Linkage effects would be

weaker in species with more chromosomes, but selection lines in

these have typically not been founded directly from natural

populations.

Other types of selection do lead to an asymmetrical distribution

of allele frequencies because the unfavourable allele will typically

be at a low frequency. We have considered the case of genes whose

effect on both the trait measured and on fitness shows complete

dominance. Thus recessive and dominant favourable and

unfavourable mutants were considered, and their expected

contribution to variance computed during their lifetime to fixation

or loss, using transition matrix methods. Results are given in

Table 6 for population size (N) 100 and selective values (s) of the

homozygote of 0.05 (Ns = 5), but the qualitative result is not

affected by using weaker or stronger selection. Deleterious,

recessive mutations show the lowest VA/VG but even here it is

0.44 and these cases also show the lowest total variance.

Consequently, in a trait affected by a mix of genes with varying

types of gene action, VA/VG is likely to be well above 0.5.

Thus if the highest and lowest genotypic values correspond to

multiple homozygous classes, it is clear that a high proportion of

the variance is expected to be additive genetic even with selection.

The potential exceptions occur when there is a maximum at

intermediate frequencies, such as with an overdominant locus or

some of the cases shown in Table 4. Nevertheless, few confirmed

cases of clear overdominance/heterozygote superiority have been

found (other than sickle cell anaemia) and the patterns in Table 4

are somewhat erratic.

Effect of Population Size and Bottlenecks. The theoretical

analysis has been undertaken for large populations but much of

the experimental data comes from livestock, laboratory animals

and humans, all of which have experienced bottlenecks of reduced

effective population size. As has been much explored, bottlenecks

of population size are likely to change the proportion of variation

that is additive, and for example to increase levels of VA for

recessives at low frequency [53] and to ‘convert’ epistatic into

additive variation [54,55,56,57,58], thereby increasing the ratio

VA/VG. For example, for the additive 6additive two locus model,

the ratio of variances at inbreeding level F in terms of values at

F = 0 is VA(F)/VG(F) = (VA+4FVAA)/(VA+VAA+3FVAA) for any gene

frequency (using results of [54], but for loci with dominance or

dominance interactions, VA(F)/VG(F) depends on gene frequency.

Table 6. Expected variance contributed by mutant genes
before fixation for population size 100, specified dominance
on the quantitative trait (a vs d) and selective (dis)advantage
(s in heterozygote and homozygote)a.

Model s(het) s(hom) a d E(VG) E(VA)/E(VG)

Neutral dominant 0 0 1 1 0.388 0.86

Neutral recessive 0 0 1 21 0.166 0.66

Neutral randomb 0 0 1 1 or 21 0.277 0.80

Deleterious dominant 20.05 20.05 1 1 0.145 0.97

Deleterious recessive 0 20.05 1 21 0.052 0.44

Advantageous
dominant

0.05 0.05 1 1 0.375 0.74

Advantageous
recessive

0 0.05 1 21 0.151 0.71

ae.g., if the mutant gene is completely recessive for the trait and for fitness,
d = 2a and s(hom) = 0.

bEqually likely to be completely dominant or recessive mutants, hence values as
in Table 2.

doi:10.1371/journal.pgen.1000008.t006
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This occurs because the bottleneck leads to the dispersal of gene

frequencies and the reduction in mean heterozygosity, so for the

AA model, if frequencies are initially intermediate (e.g. 0.5) there is

a substantial increase in VA/VG, whereas if frequencies initially

follow the ‘U’ distribution, there is little VAA initially, total variance

falls and the level of dispersion and VA/VG do not increase

appreciably. Indeed, for a population that starts with the gene

frequency distribution U-shaped, the loss of heterozygosity is due

to fixation. Among the genes that remain segregating the

distribution of gene frequencies flattens considerably, and in the

absence of new mutation approaches the uniform distribution

which has a lower ratio of VA/VG than the ‘U’ distribution.

However, despite this, VAA declines faster than VA because, as loci

become fixed, the number of pairs of segregating loci declines

faster than the number of segregating loci. Thus it is not obvious

what effect the bottlenecks in livestock, laboratory or human

populations have had on the ratio VA/VG. We suspect it has not

been large because, if a large reduction in heterozygosity had

occurred, these populations would show low genetic variance and

there is no indication that this is the case. In any case, the results

show that the conclusion that most genetic variance is additive is

fairly robust to assumptions about the distribution of gene

frequencies, for instance the ‘U’ and uniform distributions both

lead to qualitatively the same conclusion.

Evidence for the Effect of Gene Frequency on Variance
Components

A test of the hypothesis that the lack of non-additive variance

observed in populations of humans or animals is because gene

frequencies near 0.5 are much less common than those more

extreme, not because non-additive effects are absent, is to compare

variance components among populations with different gene

frequency profiles. For crops such as maize and for laboratory

animals, estimates can be got both from outbreds and from

populations with gene frequencies of one-half derived from crosses

of inbred lines. There are a limited number of possible contrasts

and linkage confounds comparisons of variation in F2 and later

inter se generations, however, so it is difficult to partition variation

between single locus and epistatic components (e.g. [17] ch. 7).

The most extensive data are on yield traits in maize. The

magnitudes of heritability and of dominance relative to additive

variance estimated for different kinds of populations in a

substantial number of studies (including 24 on F2 and 27 on

open-pollinated, i.e. outbreds) have been summarised [59].

Average estimates of h2 were 0.19 for open-pollinated populations,

0.23 for synthetics from recombination of many lines, 0.24 for F2

populations, 0.13 for variety crosses and 0.14 for composites.

Estimates of VA/VG (from tabulated values of VD/VA [59]) were

0.57, 0.55, 0.50, 0.42 and 0.43, respectively, which are

inconclusive but indicate relatively more dominance variance at

frequencies of 0.5. Analyses of the magnitude of epistasis at the

level of effects, rather than variance, do not provide consistent

patterns. For example, in two recent analyses of substantial data

sets of F2 populations of maize, one found substantial epistasis [60]

and the other almost none [61]. In an analysis of a range of traits

in recombinant inbred lines, F2 and triple test crosses [62] in

Arabidopsis thaliana, there was substantial additive genetic and

dominance variance for all traits, with most estimates of VD/VA in

the range 0.3 to 0.5, essentially no significant additive 6 additive

epistatic effects, but several cases of epistasis involving dominance

[63].

Although there does appear to be more dominance variance in

populations with gene frequencies of one-half than with dispersed

frequencies, from these results we cannot reject or accept the

hypothesis that there is relatively much more epistatic variance in

such populations. One explanation is indeed that there is not a vast

amount of epistatic variance in populations at whatever frequency,

although another is that maize has unusually small amounts of

epistasis. Many additive QTL were identified in an analysis of a

line derived from the F2 of highly divergent high and low oil

content lines from the long term Illinois maize selection

experiment, but with almost no evidence of epistasis or indeed

dominance effects [64]. In contrast, an F2 of divergent lines of

long-term selected poultry and an F2 from inbred lines of mice

showed evidence of highly epistatic QTL effects for body weight

[65,66]. We do not claim to understand these different results, but

as has been pointed out [67,68], QTL with significant epistatic

interaction effects might not represent the majority of QTL with

small effects contributing to gene networks.

Conclusions and Consequences
We have summarised empirical evidence for the existence of

non-additive genetic variation across a range of species, including

that presented here from twin data in humans, and shown that

most genetic variance appears to be additive genetic. There are

two primary explanations, first that there is indeed little real

dominant or epistatic gene action, or second that it is mainly

because allele frequencies are distributed towards extreme values,

as for example in the neutral mutation model. Complete or partial

dominance of genes is common, at least for those of large effect;

and epistatic gene action has been reported in some QTL

experiments [8,69]. Detailed analyses in Drosophila melanogaster,

using molecular and genetic tools available for it, identify

substantial amounts of epistasis, including behavioural traits [70]

and abdominal bristle number [71], yet most genetic variation in

segregating populations for bristle number appears to be additive

(as noted above). But many QTL studies of epistatic gene action

suffer from a high degree of multiple testing, increasingly so the

more loci and orders of interaction are included, such that they

may be exaggerating the amount of epistasis reported. On the

assumption that many of the effects are indeed real, we have

turned our attention to the second explanation.

The theoretical models we have investigated predict high

proportions of additive genetic variance even in the presence of

non-additive gene action, basically because most alleles are likely

to be at extreme frequencies. If the spectrum of allele frequencies is

independent of which are the dominant or epistatic alleles, VA/VG

is large for almost any pattern of dominance and epistasis because

VA/VG is low only at allele frequencies where VG is low, and so

contributes little to the total VG. The distribution of allele

frequencies is expected to be independent of which are the

dominant or epistatic alleles for neutral polymorphisms; but under

natural selection the favourable allele is expected to be common

and lead to high or low VA/VG depending on whether it is

dominant (low VA) or recessive (high VA). The equivalent case for

epistasis is that all genotype combinations except one is favourable

(low VA) vs. only one genotype combination is favourable (high

VA).

If genetic variation in traits associated with fitness is due almost

entirely to low frequency, deleterious recessive genes which are

unresponsive to natural selection, these traits would show low VA/

VG. However, neither the empirical evidence nor the theory

supports this expectation. There seems to be substantial additive

genetic variance for fitness associated traits [21] and fitness itself

[30,31,72]. Although heritabilities for such traits may be low, they

show high additive genetic coefficient of variation (evolvability)

[29], and the correlation of repeat records is typically little higher

than the heritability (e.g., litter size in pigs), indicating that VA/VG
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is one-half or more. In agreement with this, when the life history of

deleterious, recessive mutants was modelled, VA/VG was found to

be 0.44 (Table 6), basically because rare recessives contribute so

little variance, albeit most is VD, in non-inbred populations.

We believe we have a plausible gene frequency model to explain

the minimal amounts of non-additive genetic and particularly

epistatic variance. What consequences do our findings have? For

animal and plant breeding, maintaining emphasis on utilising

additive variation by straightforward selection remains the best

strategy. For gene mapping, our results imply that VA is important

so we should be able to detect and identify alleles with a significant

gene substitution effect within a population. Such variants have

been reported from genome-wide association studies in human

population [9,10,11,12,13]. Although there may well be large non-

additive gene effects, the power to detect gene-gene interactions in

outbred populations is a function of the proportion of variance

they explain, so it will be difficult to detect such interactions unless

the effects are large and the genes have intermediate frequency.

Thus we expect that the success in replicating reported epistatic

effects will be even lower than it is for additive or dominance

effects, both because multi-locus interactions will be estimated less

accurately than main effects and because they explain a lower

proportion of the variance. Finally, if epistatic effects are real, gene

substitution effects may vary widely between populations which

differ in allele frequency, so that significant effects in one

population may not replicate in others.
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