
RESEARCH ARTICLE

Non-uniform distribution of myosin-mediated

forces governs red blood cell membrane

curvature through tension modulation

Haleh Alimohamadi1, Alyson S. SmithID
2, Roberta B. Nowak2, Velia M. FowlerID

2,3,

Padmini RangamaniID
1*

1 Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla,

California, United States of America, 2 Department of Molecular Medicine, The Scripps Research Institute,

La Jolla, California, United States of America, 3 Department of Biological Sciences, University of Delaware,

Newark, Delaware, United States of America

* prangamani@ucsd.edu

Abstract

The biconcave disk shape of the mammalian red blood cell (RBC) is unique to the RBC and

is vital for its circulatory function. Due to the absence of a transcellular cytoskeleton, RBC

shape is determined by the membrane skeleton, a network of actin filaments cross-linked by

spectrin and attached to membrane proteins. While the physical properties of a uniformly

distributed actin network interacting with the lipid bilayer membrane have been assumed to

control RBC shape, recent experiments reveal that RBC biconcave shape also depends on

the contractile activity of nonmuscle myosin IIA (NMIIA) motor proteins. Here, we use the

classical Helfrich-Canham model for the RBC membrane to test the role of heterogeneous

force distributions along the membrane and mimic the contractile activity of sparsely distrib-

uted NMIIA filaments. By incorporating this additional contribution to the Helfrich-Canham

energy, we find that the RBC biconcave shape depends on the ratio of forces per unit vol-

ume in the dimple and rim regions of the RBC. Experimental measurements of NMIIA densi-

ties at the dimple and rim validate our prediction that (a) membrane forces must be non-

uniform along the RBC membrane and (b) the force density must be larger in the dimple

than the rim to produce the observed membrane curvatures. Furthermore, we predict that

RBC membrane tension and the orientation of the applied forces play important roles in reg-

ulating this force-shape landscape. Our findings of heterogeneous force distributions on the

plasma membrane for RBC shape maintenance may also have implications for shape main-

tenance in different cell types.

Author summary

The spectrin-actin network of the membrane skeleton plays an important role in control-

ling specialized cell membrane morphology. In the paradigmatic red blood cell (RBC),

where actin filaments are present exclusively in the membrane skeleton, recent experi-

ments reveal that nonmuscle myosin IIA (NMIIA) motor contractility maintains the RBC
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biconcave disk shape. In this study, we have identified criteria for micron-scale distribu-

tions of NMIIA forces at the membrane required to maintain the biconcave disk shape of

an RBC in the resting condition. Supported by experimental measurements of RBC

NMIIA distribution, we showed that a heterogeneous force distribution with a larger

force density at the dimple is able to capture the experimentally observed biconcave mor-

phology of an RBC with better accuracy compared to previous models that did not con-

sider the heterogeneity in the force distribution. Furthermore, we showed that the

biconcave geometry of the RBC is closely regulated by the effective membrane tension

and the direction of applied forces on the membrane. These findings can be generalized to

any force-mediated membrane shape, providing insight into the role of actomyosin forces

in prescribing and maintaining the morphology of different cell types.

Introduction

Cell shape and function are intricately coupled; cells must maintain specific shapes to migrate,

divide normally, form tissues and organs during development, and support their physiological

functions [1,2]. Maintenance or modification of cell shape is a concerted action of the actomy-

osin network at the whole cell level that allows for a stable actin network in polarized cells or a

rapidly remodeling actin network for cell spreading and motility [3,4]. Thus, networks of actin

filaments (F-actin) and the F-actin-activated motor protein non-muscle myosin II (NMII)

specify cell shape by exerting forces on the plasma membrane to control membrane tension

and curvature [5–8]. These actomyosin networks determine cell shapes and interactions dur-

ing tissue morphogenesis in development [6,9–13] and their dysregulation has been implicated

in cancer, [14–16], hearing disorders [17], podocyte filtration in the kidney [17,18], and neuro-

degeneration [19], among other physical issues. Local, nanoscale changes in actomyosin orga-

nization can lead to micron-scale changes in membrane curvature and cell shape to support

normal cell function [20].

Human red blood cells (RBCs) have a biconcave disk shape, with a thin central dimple

region surrounded by a thicker rim [21,22] (Fig 1). This shape enables efficient gas and ion

exchange and increases RBC deformability and resilience in the circulation [23–25]. Due to its

lack of transcellular cytoskeleton or internal organelles, RBC shape depends exclusively on the

plasma membrane, and has long served as a simple model for membrane structure and func-

tion [26]. The RBC membrane is supported by the membrane skeleton, a two-dimensional net-

work of short F-actins interconnected by long, flexible spectrin molecules [26,27], which bind

to transmembrane proteins to maintain membrane tension, curvature, and mechanical prop-

erties of the RBC [23,24,26,28,29].

Historically, the biconcave disk shape of the RBC has been modeled as a thin elastic shell

using the Helfrich-Canham energy model, treating the RBC as a lipid bilayer whose properties

are spatially homogeneous along the entire RBC membrane [30,31]. This model, a classic in

the field of membrane mechanics, was able to explain the observed RBC shape as a family of

solutions for a given area and volume [30–32]. The calculated shapes corresponding to the

minimal Helfrich-Canham local bending energy are scale invariant for zero spontaneous cur-

vature [32]. Subsequent extensions of this model include consideration of reduced volume

[30,31], spontaneous curvature [33], area differences between the two leaflets of the bilayer

[34,35], and lateral distribution of membrane constituents [36–42]. A recent theoretical study

predicted that the coupling between inhomogeneously distributed curved membrane protein

inclusions and active cytoskeletal forces can govern the morphology of the membrane vesicles
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[43,44]. Additional refinements have modeled the membrane as a two-component system

composed of an incompressible lipid bilayer associated with an elastic spectrin-actin network

uniformly distributed along the membrane [35,45–49].

To date, computational models to account for the biconcave disk shape of the RBC have

not considered the contribution of actomyosin contractility even though RBCs contain NMII.

NMIIA is the predominantly expressed isoform and has biochemical properties similar to

NMIIs in other cell types [50–52]. Due to its low abundance, a potential role for NMIIA in

RBC shape had been largely ignored by experimental biologists. However, we showed recently

in Smith et al. [53] that RBC NMIIA forms bipolar filaments that bind to the membrane skele-

ton F-actin via their motor domains to control RBC membrane tension, biconcave disk shape

and deformability [53] (Fig 1A). Specifically, we showed that blebbistatin inhibition of NMIIA

motor activity in RBCs leads to loss of the biconcavity and the formation of elongated shapes,

indicating an important role for NMIIA-generated forces in maintaining RBC biconcave disk

shape and deformability [53]. Notably, the NMIIA filaments are sparsely distributed along the

RBC membrane (~0.5 filaments per square micrometer), and thus would be expected to apply

localized forces to the membrane [53]. However, it remains unclear how the magnitude and

distribution of NMII-mediated localized forces could provide a mechanism to influence mem-

brane curvature with respect to the morphology of RBCs.

Fig 1. Schematic of membrane-myosin interactions in RBC. Interaction of the membrane and skeleton controls the

shape of the RBC. (A) Schematic depiction of the biconcave disk shape of an RBC plasma membrane and the

membrane skeleton underneath. The effect of NMIIA filaments (shown in green) is modeled by local forces applied to

the plasma membrane (red and gray arrows). (B) Two distinct regions are identified in a biconcave RBC—the dimple

and the rim regions. In the dimple region (blue cylinder), each RZ cross-section of the shape has a negative curvature

along its arclength. In contrast, at the rim, the curvature of each RZ section is positive along the arclength. (C) The

geometry of a simulated RBC in axisymmetric coordinates and the three characteristic length scales that represent the

biconcave shape of the RBC. 2hmin is the minimum height at the dimple, 2hmax is the maximum height at the rim, and

2L denotes the cell’s maximum diameter. The dotted red curve shows the computational domain for our mechanical

model. n is the unit normal vector to the membrane surface and as is the unit tangent vector in the direction of

arclength.

https://doi.org/10.1371/journal.pcbi.1007890.g001
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In this study, motivated by our recent experimental observations [53], we investigated the

role of local forces in modulating the shape of the RBC. We revisited the classical Helfrich-

Canham model and modified it to account for localized forces representing the NMIIA-gener-

ated forces on the plasma membrane. By adding this extra degree of freedom to the classical

Helfrich-Canham model, we sought to focus on how forces applied to the membrane, rather

than spontaneous curvature or reduced volume, can result in the shapes that are comparable

to the experimentally observed RBC shapes. To determine the set of force distributions that

most closely reproduce experimentally observed RBC shapes, we varied the applied force het-

erogeneously along the membrane (Fig 1B).

Results

Model development

The RBC membrane is a thin elastic material that can bend but resists stretching. This feature

enables the RBC to deform and adjust its shape in response to applied stresses. Here, we out-

line the assumptions underlying the development of the model and the associated governing

equations of our model.

Assumptions

1. We consider that the radii of membrane curvatures are much larger than the thickness of

the bilayer [33]. Therefore, we treat the lipid bilayer as a thin elastic shell and model the

bending energy of the membrane using the Helfrich–Canham energy, which depends only

on the local curvatures of the surface and compositional heterogeneities [30,31].

2. Due to the high stretching modulus of lipid bilayers, we assume that the membrane is

locally incompressible [54]. We use a Lagrange multiplier to implement this constraint

[55,56]. We refer the reader to [55,57] for a detailed interpretation of this Lagrange multi-

plier as membrane tension.

3. We assume that the RBC is at mechanical equilibrium at all times, allowing us to neglect

inertia [58–60]. This assumption is consistent with the experimentally observed shapes for

the resting RBCs in both vivo and vitro [61,62].

4. We assume that the total surface area of the RBC membrane is constant (~135 μm2)

[63,64].

5. For simplicity in the numerical simulations, we assume that the RBC is rotationally sym-

metric and also has a reflection symmetry with respect to the Z = 0 plane (see Fig 1C)

[30,63,65,66]. This assumption reduces the computational cost of the simulation to simply

calculating the shape of the curve shown by the red dotted line in Fig 1C.

Membrane mechanics

In mechanical equilibrium, the shape of the membrane in response to an applied force can be

obtained as a result of the minimization of the membrane bending energy and the work done

by the applied forces by the cytoskeleton. In this case, the total energy is given by [67,68]

E|{z}
Total
energy

¼ Eb|{z}
Bending
energy

� Ef|{z}
Work done
by forces

; ð1Þ

PLOS COMPUTATIONAL BIOLOGY Non-uniform distribution of myosin-mediated forces governs red blood cell curvature

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007890 May 26, 2020 4 / 26

https://doi.org/10.1371/journal.pcbi.1007890


where E is the total energy of the system, Eb is the bending energy and Ef is the work done by

the applied forces given by

Eb ¼
R

o
ðWðH;K; y

a
Þ þ lðy

a
ÞÞda � pV; ð2AÞ

and

Ef ¼
R

o
FðyaÞ:ðr � r0Þda: ð2BÞ

Here, ω is the total surface area of the membrane, W is the energy density per unit area, θα

denotes the surface coordinate where α � {1,2}, H is the mean curvature, K is the Gaussian cur-

vature, λ is the membrane tension (also see assumption 2), p is the pressure difference across

the membrane, V is the enclosed volume, F is the force density per unit area representing the

applied force density to the membrane surface by the NMIIA motor proteins, r is the position

vector in the current configuration, and r0 is the position vector in the reference configuration.

The bending energy of the membrane is modeled using the Helfrich-Canham energy, defined

by [30,31,55,57,69],

WðH;K; y
a
Þ ¼ kHðyaÞ2 þ kGKðyaÞ ð3Þ

where κ and κG are constants representing the bending and Gaussian moduli respectively [70].

To minimize the bending energy (Eq 1) and obtain the RBC shapes from simulations under

the action of local forces, we used the variational approach which yields the so-called “shape

equation” [57,71],

kD½H� þ 2 kHðH2 � KÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Elastic effects

¼ pþ 2 l H
|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Capillary effects

þ F:n|{z}
Force due
to NMIIA

; ð4Þ

where Δ is the surface Laplacian (also known as the Laplace-Beltrami operator).

The incompressibility condition for the lipid membrane results in the spatial variation of

membrane tension given by [57,71,72]

l
0

|{z}
Membrane tension

variation

¼ � F:as|{z}
Force induced

variation

; ð5Þ

where (.)0is the derivative with respect to the arclength. The shape equation (Eq 4) along with the

incompressibility condition (Eq 5) represents the relationship between the forces applied by

NMIIA motor proteins and the resulting shape of RBCs. A complete derivation of the governing

equations of the force balance and the non-dimensionalization procedure are presented in S1

Text. All notations used in this manuscript are summarized in S1 Table and S2 Table. We refer

the interested reader to [55,67] for details on the mathematical principles underlying these

models.

Parameterization of RBC biconcave morphology and shape error

estimation

The geometry of human RBCs has been studied extensively using a variety of different

methods such as light microscopy [73,74], interference holography [75,76], resistive pulse

spectroscopy [77], micropipette aspiration [78,79], and light scattering [80,81]. In Fig 2A, we

summarize the reported values for the RBC geometrical parameters from the literature
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[73,75,78,81–83] in terms of the three characteristic lengths (hmin, hmax, and L) (Fig 1C), the

volume (V), the surface area (A), and the sphericity index (SI).

Several parametric models have been proposed to describe the biconcave morphology of

the RBC [75,76,84–88]. Funaki proposed a Cassini oval model with two coefficients to repre-

sent the RBC geometry [84]. Kuchel et al. [85] and later Yurkin [86] modified the Cassini oval

model to implicit equations with three and four coefficients, respectively. Borovoi et al. intro-

duced a function in spherical coordinates to characterize the RBC morphology [87]. The most

realistic model was proposed by Evans and Fung [75], where they first obtained images from

50 human RBC samples using light microscopy and then fitted a parametric equation to the

RZ cross-sectional shape of the RBCs (Fig 1C) using statistical analysis. The function proposed

by Evans and Fung is given by

Z Rð Þ ¼ �0:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �
2R
L

� �2
s

0:81þ 7:83
2R
L

� �2

� 4:39
2R
L

� �4
 !

; ð6Þ

where R is the radius from the axis of rotation and Z is the height from the base plane. In Fig

2B, we plotted the different proposed parametric models for the biconcave shape of an RBC.

We observed that for the fixed height of the dimple (hmin), height of the rim (hmax), and the

maximum diameter (L), all models generate similar shapes, but with slight differences. In this

study, we used the Evans and Fung parametric equation in Eq 6 as the reference data for the

experimental shape of an RBC, because Eq 6 was developed based on the direct experimental

measurement and fit well with the observed RBC shapes [89,90].

To quantify the deviation between simulated geometries obtained from our mechanical

model and the parametric shape equation for the RBC (Eq 6), we define three error metrics

Fig 2. Parametric shape of a RBC. (A) Dimensions of healthy human RBC from the literature [73,75,78,81–83]. (B)

Comparison between the proposed parametric models describing the biconcave morphology of an RBC. There is a

close match between the four models for the fixed minimum height of the dimple, maximum height of the rim, and the

maximum diameter (C) Discretization scheme of the parametric shape of an RBC (Eq 6) (dotted blue line) and the

simulated geometry obtained from our mechanical model (Eqs 4 and 5) (solid red line). Each experimental and

simulated shape is discretized into N nodes where i indicates the node index. These nodes are used to compute the

total error in the simulated RBC geometry (Eq 8).

https://doi.org/10.1371/journal.pcbi.1007890.g002
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—�hmin, �hmax, and �L as follows

�hmax ¼
jhmax;par � hmax;simj

Lpar
¼
jDhmaxj

Lpar
;

�hmin ¼
jhmin;par � hmin;simj

Lpar
¼
jDhminj

Lpar
; ð7Þ

and

�L ¼
jLpar � Lsimj

Lpar
¼
jDLj
Lpar

;

where (.),par is the experimentally measured length scale fitted to the parametric equations (Eq

6) and (.),sim is the length scale obtained from the numerical simulation (Eqs 4 and 5). The

total error (�total) in the shape of the simulated RBCs is then calculated by the root mean square

between every two mapped points in the parametric shape of an RBC and the simulated geom-

etries (Fig 2C) given by

�total ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

Pi¼N
i¼1
ðZi;sim � Zi;parÞ

2
þ ðRi;sim � Ri;parÞ

2
h ir

Lpar
; ð8Þ

where N is the total number of nodes across the RBC shapes, i is the index node, Zi,sim and Zi,

par are the height of the simulated and the parametric (Eq 6) RBC shape at index i, respectively.

Ri,sim is the radius of the simulated shape at index i, and Ri,par is the radius of the RBC paramet-

ric shape (Eq 6) at index i.

While Eq 8 represents the error in the simulated shapes compared to the RBC parametric

shape, it does not capture measurement errors as Eq 6 was developed based on the average

dimensions of experimentally observed RBCs. However, there are standard deviations in the

measured dimensions as reported by Evans and Fung [75] and the resolution of imaging meth-

ods introduces additional uncertainties. Here, to account for these uncertainties, we assume

that the given parametric equation by Evans and Fung [75] can be written as

ZðRÞ ¼ ZmeanðRÞ þ ZerrorðRÞ; ð9Þ

where Zmean(R) is the given function in Eq 6 and we define Zerror(R) as the fitting error of the

Evans and Fung parametric equation to the actual shape of an RBC. In this study, we assume

that Zerror(R) is approximately 10% of Zmean(R) in order to represent the variance of RBC

dimensions.

Numerical simulation

Simplifying the shape equation (Eqs 4 and 5) for a rotationally symmetric RBC gives us a set of

first order differential equations (Eq. S11 in S1 Text). In order to obtain the RBC shapes from

simulations and determine the role of NMIIA-generated forces in maintaining the biconcave

morphology, we need to solve the coupled differential equations (Eq. S11 in S1 Text) for the

defined boundary conditions (Eq. S12 in S1 Text). Here, we used the commercially available

finite element solver COMSOL MULTIPHYSICS 5.3a to solve the governing differential equa-

tions (Eqs. S11 and S12 in S1 Text). In all our simulations, the transmembrane pressure is set

to zero (p = 0).
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Uniform distribution of force density across the membrane surface is not

sufficient to recover the biconcave shape of an RBC

Modeling studies of RBC shapes have been based on the assumption that the RBC membrane

and skeleton are spatially homogeneous [23,24,26,70]. Therefore, we first performed simula-

tions with a uniform pulling force density (Funiform) applied normally on the membrane sur-

face (Fig 3A and 3B). This uniform pulling force density can be interpreted as a pressure

difference between the inside and outside of the RBC that specifies the change in the RBC vol-

ume compared to an equivalent sphere (the reduced volume) [32,33,91].

To perform our simulations, we assumed that the RBC membrane area is large enough that

the lateral membrane tension is negligible (λ = 0) [92–94]. We also set the bending modulus to

be in the range of physiologically reported values for the RBC membrane (κ = 9 × 10−19 J) [93].

For a given value of uniform pulling force, we were able to match two out of three characteris-

tic length scales of the simulated shapes with the parametric shape of an experimentally

observed RBC (Eq 6) (see Fig 3B). Furthermore, we observed that for all configurations in Fig

3C, the calculated uniform force density from our mechanical model is in the order of the

reported pressure difference for a biconcave RBC (Funiform ~ O(1) pN/μm2), which validates

our numerical results (Fig 3C, bottom row).

We observed that for the large value of the pulling force density (Funiform = 1.92 pN/μm2),

the maximum and the minimum heights of the simulated shape match well with the paramet-

ric shape, while the maximum diameter does not (Fig 3C, left). For the intermediate pulling

Fig 3. Uniform force distribution. Mismatch between the parametric shape of an experimentally observed RBC (Eq

6) and the shapes obtained from simulations (Eqs. S10 in S1 Text) with a uniform distribution of the pulling force

density across the membrane surface. (A) RZ view of the center of an RBC from a confocal Z-stack of an RBC stained

for the membrane marker glycophorin A. (B) Schematic of a biconcave RBC with a uniform distribution of the normal

pulling force density (red arrows). Funiform represents the magnitude of the pulling force density. (C) Calculated error

in the characteristic length scales (Eq 7), and total shape error (Eq 8) for different values of the force density. The total

shape error (�total) calculated by Eq 8 is minimum for Funiform = 1.83 pN/μm2, when there is only a mismatch in the

maximum height of the RBC morphology (center bar). For all three values of the applied uniform force densities, the

calculated volume (V) is shown on the X-axis and is significantly different from the reported experimental data.

https://doi.org/10.1371/journal.pcbi.1007890.g003
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force density (Funiform = 1.83 pN/μm2), the minimum height and the maximum diameter of

the simulated shape are in good agreement with the parametric shape, but the maximum

height is not (Fig 3C center). Finally, for the small pulling force density (Funiform = 1.23 pN/

μm2), the mismatch between the simulated geometry and the parametric shape of the RBC is

in the minimum height of the dimple (Fig 3C right). For each value of the applied pulling force

density, we calculated the error for each of the characteristic lengths (L, hmax or hmin) (Eq 7)

and the total error (Eq 8) (Fig 3C). We found that both characteristic and the total shape errors

have the lowest value (�hmax~ 10.23% and �total ~ 8.2%) at the intermediate uniform force den-

sity and there is only a relatively small mismatch in the maximum height (Δhmax) (Fig 3C cen-

ter). Thus, we can predict that among the three main characteristic length scales of an RBC,

the maximum height of the rim (2) appears to be the least critical dimension in order to mini-

mize the shape error of the simulated geometries. It should be mentioned that for each case

here, we first calculated the mean errors based on the given parametric equation (Eq 6) and

then we computed the error bars using Eq 9.

In addition to the biconcave shape of an RBC, the volume of the RBC is one of the critical

parameters that is regulated by multiple transport systems [91]. We calculated the volume of

each simulated geometry (V) using Eq. S13b in S1 Text (Fig 3C). We found that for all three val-

ues of the uniform force densities, the volume of the simulated shapes is far from the reported

experimental data in Fig 2A. For the large and the intermediate force densities (Funiform = 1.92

pN/μm2 and Funiform = 1.83 pN/μm2), the volumes of the simulated geometries (Fig 3C) are

much smaller than the reported values, which range from V = 80 μm3 to V = 107 μm3 given in

Fig 2A. In contrast, for the small force density (Funiform = 1.23 pN/μm2), the volume of the

shape obtained from the simulation is significantly larger than the experimental values (Fig 3C).

Local force density at the RBC dimple reduces the shape error

Given that the shape mismatch and volume difference of the simulated RBC (Fig 2) are relatively

large compared to the experimentally measured RBC dimensions, we next asked if we could

change the distribution of the non-uniform pulling force density to reduce the shape error and

obtain a better agreement between the experimentally reported shapes for RBCs and our model.

We conducted simulations of Eqs S11, S12 in S1 Text but now assumed that the applied normal

force per unit area is locally concentrated in the dimple region (Fdimple) and that there is no force

along the surface of the rim (Fig 4A and 4B). This heterogeneous force distribution along the

membrane was implemented using a hyperbolic tangent function (Eq. S24 in S1 Text).

In Fig 4C, we compare the RBC shapes obtained from the simulation with the application

of increased local pulling force density at the dimple. We found that the total error is a nonmo-

notonic function of Fdimple; as Fdimple increases, the total error in shape mismatch decreases

and then increases again. Based on the shape of the simulated RBC, we can identify three dif-

ferent regimes (Fig 4C). For low dimple force density (Fdimple< 1.81 pN/μm2), the simulated

geometry has a spherical shape (hmax = hmin) and therefore the shape error is large (�total >

50%) (yellow area in Fig 4C). With increasing the magnitude of dimple force density (1.81 pN/

μm2 < Fdimple< 3.73 pN/μm2), the dimple forms biconcave shapes where hmax > hm and the

shape error decreases sharply (purple area in Fig 4C). When higher levels of force are applied

at the dimple (Fdimple> 3.73 pN/μm2), the error increases because the distance between the

two bilayers in the dimple becomes too narrow (kissing shapes where hmin = 0) (Fig 4C). We

also observed a similar nonmonotonic trend in the calculated errors for the characteristic

lengths (Eq 7) as a function of dimple force density (S1 Fig).

Based on our results in Fig 4C, the shape error has a minimum value of �total ~ 5.62% for the

case where Fdimple = 3.73 pN/μm2. This total error is less than that for all the simulated shapes
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determined in the case of a uniform force applied to the membrane (Fig 3C). We found that

the volume of the simulated RBC at Fdimple = 3.73 pN/μm2 is about V = 76.78 μm3, which is

closer to the reported experimental value for the RBC volume by Evans and Fung [75]. From

these results, we can conclude that there is a better agreement between the simulated shape

and the parametric shape of an experimentally observed RBC when a localized force is applied

at the RBC dimple compared to the case with a uniform force distribution (Fig 3).

Non-uniform distribution of force density in the RBC dimple region versus

the rim region minimizes the shape error

While localizing the force density at the dimple decreased the error and the volume mismatch

in our simulated RBC shapes, NMIIA is known to be distributed throughout the RBC [53].

Therefore, we next asked if the shape error can be minimized by including a normal force at

the rim region in addition to the applied force at the dimple region (Fig 5A). This analysis

allowed us to predict the RBC shape not only in terms of absolute values of forces in the dimple

and rim regions but also as a function of force per unit volume ratio in these two regions. In

our model, based on the given force density per unit area in the dimple (Fdimple) and rim

(Frim) regions, we defined the ratio of forces per unit volume as

Fratio ¼
Fdimple

Frim
�

AdimpleVrim

ArimVdimple
; ð10Þ

where Adimple and Arim are the area of the membrane surface in the dimple and rim regions,

and Vdimple and Vrim are the volume occupied by the dimple and rim regions, respectively. For

Fig 4. Local force density at the RBC dimple. A local distribution of the pulling force density at the RBC dimple

results in a better agreement between the parametric shape of an RBC (Eq 6) and the shape obtained from the

simulation. (A) RZ view of the center of an RBC from a confocal Z-stack of an RBC stained for the membrane marker

glycophorin A. (B, upper) A schematic depicting a biconcave RBC with a local force at the dimple area (red arrows)

and no force in the rim region. Fdimple represents the magnitude of the pulling force density in the dimple region. (B,

lower) The applied force density at the dimple as a function of the arclength (Eq. S24 in S1 Text). (C) The simulated

shape of the RBC with a local pulling force density in the dimple (solid green line) in comparison with the RBC

parametric shape (dotted blue line). (C) The nonmonotonic behavior of the total error when increasing the dimple

force density (Fdimple). Three different regimes can be identified based on the shape of the simulated RBC; (i) the

spherical shapes where hmax = hmin for the low Fdimple (yellow area), (ii) the biconcave shapes where the dimple forms

(hmax > hmin) for the mid-range of Fdimple (purple area), and (iii) the kissing shapes where hmin! 0 for large Fdimple

(gray area). The shape error has the lowest value at Fdimple = 3.73 pN/μm2 (�total ~ 5.62%) when the minimum height of

the dimple in the simulated geometry matches closely with the minimum height of the parametric shape. The volume

of the simulated RBC at Fdimple = 3.73 pN/μm2 is about 76.78 μm3.

https://doi.org/10.1371/journal.pcbi.1007890.g004
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a given RBC shape, the area and the volume of the dimple and rim regions can be calculated

by Eq. S13a and Eq. S13b in S1 Text, respectively.

We begin our analysis with the case where the pulling force in the dimple area is larger than

the pulling force in the rim area (Frim < Fdimple). We implemented this distribution of force

along the RBC membrane using a hyperbolic tangent function (Eq. S24 in S1 Text) and per-

formed the simulations over a range of forces at the dimple and the rim regions (Fdimple = 3.5–

14 pN/μm2 and Frim = 0–3.5 pN/μm2). The range of dimple force (Fdimple) was chosen based

on our previous results (Fig 4) to have a close comparison with the parametric shape and

obtain biconcave shapes from simulations with hmax> hmin and hmin> 0. The force along the

rim (Frim) was set between Frim = 0 and Frim = 3.5 pN/μm2 based on the imposed condition of

Fratio <1 for all simulations.

The heat map in Fig 5B represents the magnitude of the shape error for a given force density

at the dimple and rim area. The simulations were stopped when the height at the RBC dimple

approached zero, shown as white domains in the heat map (Fig 5B). Based on these calcula-

tions, we found that the shape error has the lowest value (�total ~ 4.1%) when Fdimple = 4.05 pN/

μm2 and Frim = 0.28 pN/μm2 (the point X on the heat map). For these specific force values, the

parametric shape of the RBC (Eq 6) and the shape obtained from the simulation at point X

Fig 5. Heterogeneous forces in the RBC dimple and rim. The applied force densities at the RBC dimple and rim

regions regulate the shape error. (A, upper) Schematic of a biconcave RBC with a large force density (red arrows) at the

dimple and a small force density (gray arrows) at the rim region. Schematic is overlaid on an RZ view of the center of

an RBC from a confocal Z-stack of an RBC stained for the membrane marker glycophorin A. (A, lower) The applied

force density along the membrane as a function of the arclength (Eq. S24 in S1 Text). (B) Heat map shows the

calculated shape error (Eq 8) for a range of the force densities at the dimple (Fdimple) and rim (Frim) regions. We

stopped the simulations when the height at the dimple tends to zero (hmin! 0). The marked point X shows the case

that has the lowest value of the error in the heat map at Fdimple = 4.05 pN/μm2 and Frim = 0.28 pN/μm2 (�total ~ 4.1%)

with V = 85.61 μm3. A comparison between the parametric shape of an RBC (dotted blue line) and the shape obtained

from the simulation at point X (dashed red line) is shown in the lower panel. (C) The shape error as a function of force

density at the dimple (Fdimple) for five different values of the applied force density at the rim region. The dotted purple

line shows a discontinuous transition in the shape error with increasing the dimple force density for Frim = 2 pN/μm2.

Similar to Fig 4B, independent of the value of Frim, the total error is a nonmonotonic function of the dimple force

density (Fdimple).

https://doi.org/10.1371/journal.pcbi.1007890.g005
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were very well-matched (Fig 5B lower panel). Additionally, the volume of the simulated shape

at point (X), is close (V = 85.62 μm3) to the experimentally reported value by Evans and Fung

[75].

To further understand the relationships between Frim and Fdimple in governing the shape of

the RBC, we plotted the shape error as a function of Fdimple for five different values of the force

density at the rim section (Fig 5C). We found that the shape error shows the same nonmono-

tonic dependence for different values of Frim. By increasing the value of Fdimple, the shape error

initially decreases by an order of magnitude and attains a relative minimum for each curve

(Fig 5C). Any further increase in the dimple force density results in a larger shape error (Fig

5C), similar to Fig 4B. As expected from Fig 5B, the shape error has the lowest value on the red

curve (Frim = 0.28 pN/μm2) when Fdimple = 4.05 pN/μm2. Using Eq 10, this set of dimple and

rim forces in Fig 5B is equivalent to Fratio~ 14.27, which reflects the fact that to obtain the best

match between the simulated RBC shape and the experimentally observed morphology, 14.27

times larger force per unit volume should be applied in the dimple region than the rim region.

Thus far, we have only considered the cases in which NMIIA motors were able to exert

small pulling forces in the rim region. However, two other force configurations are possible:

(i) NMIIA motors apply a larger force density in the rim region than the dimple area (Frim >

Fdimple) (panel A in S2 Fig), and (ii) NMIIA motors exert pushing forces in the rim region

(panel A in S3 Fig). We found that a large pulling force in the rim region (Frim > Fdimple) gen-

erates a shape resembling a peanut-shaped vesicle with a large shape error of �total >> 50% (S2

Fig). We also observed that applying a pushing force in the rim region (Frim = 3.73 pN/μm2)

with no force in the dimple causes an error of �total ~ 12.5% (panel B in S3 Fig). Even adding a

small pushing force in the rim region (Frim = 0.53 pN/μm2) with Fdimple = 3.73 pN/μm2

increases the shape error to �total ~ 9.7% (panel C in S3 Fig). Our major prediction is that RBC

biconcave shape depends on a heterogeneous distribution of NMIIA forces, which can be

accomplished by more NMIIA motors density in the dimple compared to the rim.

RBC dimple region has a higher concentration of the NMIIA puncta as

compared to the rim region

Our simulations suggest that NMIIA-mediated force densities are not uniformly distributed

across the RBC membrane but instead are larger in the dimple region than the rim region (Fig 5).

Therefore, we hypothesized that the NMIIA distribution in RBCs is also non-uniform, with more

NMIIA in the dimple region than the rim region. To test this hypothesis, we localized NMIIA

motor domain puncta in three-dimensional reconstructions of AiryScan confocal Z-stacks [53,95]

(Fig 6A). The puncta in these images are individual NMIIA bipolar filaments, based on our previ-

ous study showing that that RBCs contain ~150 NMIIA puncta/cell [53], consistent with calcula-

tions of numbers of NMIIA bipolar filaments/cell using quantitative biochemical assays [50].

We divided each RBC into dimple and rim regions based on F-actin staining at the mem-

brane (Fig 6B) and quantified the number of NMIIA motor domain puncta in each region and

the volumes of each region and the whole RBC using Volocity software. The dimple region

accounted for about 7.4% of the total RBC volume (based on the F-actin staining, Fig 6C). This

value agrees with calculations of dimple volume (~7.1% of total volume) from our simulated

shapes, in which we classify the dimple and rim regions based on the sign of the local mean

curvature (Fig 1B). The number of NMIIA puncta varies between RBCs, with 125 ± 47 puncta

in the whole RBC, 113 ± 42 puncta in the rim, and 12 ± 9 puncta in the dimple (all values are

mean ± SD). The dimple region contains about 9.1% of the total NMIIA motor domain puncta

(Fig 6D). In the dimple and rim regions as well as the whole RBC, the number of NMIIA

puncta tends to increase with increasing the region or cell volume (S4 Fig).
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Fig 6. Experimental measurement of NMII puncta. The RBC dimple has a higher average NMIIA puncta density than the RBC rim.

(A) Maximum intensity projections of super-resolution Airyscan confocal Z stacks of individual human RBCs immunostained with an

antibody to NMIIA motor domain (grey scale, top row), together with merged images (second row) of NMIIA (green) and rhodamine

phalloidin for F-actin (red). (B) Schematic illustrating volume segmentation of RBCs and NMIIA puncta distribution. Optical section of

a super-resolution Airyscan confocal Z-stack of human RBC immunostained with an antibody to the motor domain of NMIIA (green)

and rhodamine-phalloidin for F-actin (orange). The top left image shows a perspective view of the optical section. Top right and bottom

left images show YZ and XZ slices, respectively, of the RBC from planes perpendicular to this optical section. The bottom right image

shows an XY view of the optical section. The blue cylinder represents the region identified as the dimple region. The rest of the RBC is

identified as the rim region. Note, the myosin puncta near the RBC membrane are difficult to visualize in these merged images due to

the bright F-actin staining. (C) The percent of total RBC volume occupied by the dimple region. Mean ± S.D. = 7.37 ± 1.79. (D) The

percent of total NMIIA puncta in the dimple region. Mean ± S.D. = 9.11 ± 3.30. (E) The RBC dimple region has a ~25% higher density

of NMIIA puncta than whole RBCs (Total) (p = 0.0051) or the rim region (p = 0.0023) by Tukey’s multiple comparisons test. Mean ± S.

D.: Total = 1.73 ± 0.562; Dimple = 2.15 ± 0.888; Rim = 1.70 ± 0.556. (F) Ratio of dimple and rim region NMIIA puncta densities for

each RBC. Mean ± S.D. = 1.29 ± 0.452. (C-F) n = 55 RBCs from 3 individual donors.

https://doi.org/10.1371/journal.pcbi.1007890.g006
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The number of NMIIA puncta per unit volume (μm3) in an RBC region is likely propor-

tional to the number of NMIIA filaments that interact with membrane skeleton F-actin to

exert force on the RBC membrane. The whole RBC and the rim region have similar NMIIA

puncta densities (1.73 ± 0.562 μm3 and 1.70 ± 0.556 μm3, respectively), while the dimple region

has a ~25% higher density (2.15 ± 0.888 μm3) (Fig 6E). Thus, the dimple region has ~1.29

times higher NMIIA puncta density compared to the rim region (Fig 6F).

To determine whether differences in NMIIA densities relate to the extent of RBC biconcav-

ity, we related NMIIA density to the minimum and maximum heights of XZ slices at the center

of each RBC (S5 Fig). In both whole RBCs (panel A in S5 Fig) and the dimple region (panel C

in S5 Fig), RBC biconcavity increased with increasing NMIIA density, while NMIIA density in

the rim region was not related to biconcavity (panel B in Fig). These results agree with the

results of our simulations, which predict that the maximum height of the rim (hmax) is the least

critical dimension to minimize the shape error (Fig 3) and furthermore, that NMIIA exerts a

larger force density at the RBC dimple (Fig 5). Together, our simulations and experimental

data suggest that this non-uniform force distribution is required to specify RBC biconcave

disk shape.

Effective membrane tension regulates the required force densities ratio in

the RBC dimple versus the rim region

We found that for the simulated RBC shapes, the shape error is minimized when the force per

unit volume applied normally in the dimple region is about 14.27 times larger than the force

per unit volume applied in the rim region (Fratio = 14.27), in a tensionless membrane (Fig 5).

However, our experimental measurements reveal that in a healthy human RBC, the dimple

region has only ~25% higher density of NMIIA puncta than the rim region (Fig 6). If we

assume that the NMIIA density is proportional to the force generation capacity, then the

induced force in the dimple region should be 1.25 times larger than the rim area. Therefore,

we set out to reconcile the predicted Fratio and measured the NMIIA density ratio. Literature

suggests that the membrane tension in RBCs can vary from 10−1 pN/nm to 10−4 pN/nm

[70,93,96]. Here, we interpret membrane tension to be the effective contribution of the mem-

brane in-plane stresses and the membrane-cytoskeleton interactions [97]. We hypothesized

that this in-plane tension of the RBC could play a critical role in relating the RBC shape to the

NMIIA-generated force ratio in dimple and rim regions.

To investigate how this variation in membrane tension can modulate Fratio and the shape

error, we repeated the simulations as in Fig 5 for three different effective membrane tensions:

(i) low membrane tension (tension = 10−4 pN/nm) (Fig 7A), (ii) intermediate membrane ten-

sion (tension = 10−3 pN/nm) (Fig 7B), and (iii) high membrane tension (tension = 10−2 pN/

nm) (Fig 7C). The marker (X) in each heat map shows the point with minimum shape error

for that set of simulations. To visualize the geometry of the simulated RBC at each point

marked with an ‘X’, we plot the shapes that were obtained from simulations (solid yellow line)

versus the reference experimental data (dotted blue line) [75] and also calculated the volume

of the simulated geometry using Eq. S13b in S1 Text.

We observe that the shape error remains almost constant (�total ~3.8%) with increasing the

membrane tension from zero to low and intermediate values (Fig 7A and 7B). However, vary-

ing the membrane tension alters the force ratio that gives the minimum shape error as well as

the volume of the simulated geometry. For example, at low tension, the minimum shape error

occurs at Fratio = 4.35 where V = 79.62 μm3 and at intermediate tension the shape error is mini-

mum when Fratio = 1.27 with V = 91.37 μm3 (Fig 7A and 7B), close to the volume experimen-

tally reported by Evans and Fung [75]. In the case of high membrane tension, we found that
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the simulated shape deviates significantly from the biconcave disk and becomes closer to a

pancake with a small volume (V = 36.58 μm3) and the error goes up noticeably to about 12 per-

cent (�total ~ 12.5%) (Fig 7C).

Additionally, we found that for low and intermediate tensions independent of the value of

Frim, the shape error has the same non-linear relationship with increasing Fdimple as previously

observed for the tensionless membrane (Fig 7D and 7E). At low tension, the minimum shape

error occurs when Fdimple = 5.06 pN/μm2 and Frim = 1.4 pN/μm2 (blue square line) (Fig 7D).

At intermediate tension, a combination of Fdimple = 12.66 pN/μm2 and Frim = 9.95 pN/μm2

gives the minimum shape error (green triangle line) (Fig 7E). However, for high tension,

because of the stiffness of the membrane, we observe not only a deviation from the biconcave

shape but also a deviation from the nonmonotonic error—dimple force relationships (Fig 7F).

Fig 7. The role of effective tension. Effective membrane tension is a key parameter in regulating the RBC biconcave shape in addition to applied

forces in the dimple and rim regions. (A-C) Heat maps show the total error in the shape of the simulated RBCs for (A) low tension (tension = 10−4

pN/nm), (B) intermediate tension (tension = 10−3 pN/nm), and (C) high tension (tension = 10−2 pN/nm). In each heat map, the point with the

minimum error is marked with X. Also, for each marked point, the volume of the simulated RBC (V) is calculated using Eq. S13b in S1 Text, and the

shape (solid yellow line) is shown in comparison with the reference parametric shape (dotted blue line). At intermediate tension, the shape error has

the lowest value when Fratio = 1.27 consistent with our experimental results in Fig 6. (D-F) The calculated shape error (Eq 8) as a function of the

dimple force density (Fdimple) for different values of the force density at the rim region and the membrane tension.

https://doi.org/10.1371/journal.pcbi.1007890.g007
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Based on these results, we concluded that in addition to a non-uniform force distribution

along the RBC membrane, a non-zero intermediate tension is required to obtain a close match

between the shape and the volume of the simulated RBC and the experimental data. Further-

more, the intermediate value of tension (tension = 10−3 pN/nm) gives an excellent quantitative

match for the predicted value of Fratio (Fig 7B) and the experimentally observed NMIIA density

ratio (Fig 6).

The angle of applied forces in the RBC dimple and rim regions controls the

shape error

Until now, we have assumed the net effects of NMIIA motor proteins act as local forces applied

normally to the membrane surface. However, there is evidence that these molecules also exert

forces tangential to the membrane [98]. To examine how the orientation of the induced forces

by NMIIA can affect the morphology of the RBC, we repeated the simulation in Fig 7 for dif-

ferent membrane tension values assuming that the applied forces make an angle ϕ with the

tangent vector as (Fig 8A). Because the exact orientation of the applied forces by NMII mole-

cules is currently unknown, we varied angle ϕ from ϕ = 900 (normal to the membrane) to ϕ =

0 (tangential to the membrane) and for each case found the combination of the force densities

that gives the minimum shape error (S6 Fig, S7 Fig, S8 Fig and S9 Fig).

In Fig 8B–8D, we plotted the minimum shape error as a function of angle ϕ for three differ-

ent values of the membrane tension; (B) tensionless membrane, (C) low membrane tension

(tension = 10−4 pN/nm), and (D) intermediate tension (tension = 10−3 pN/nm). We observed

that in all three cases, with varying the angle ϕ from normal to tangential orientation, the

simulated shapes deviate from the biconcave disks to the pancake shapes with an almost three

times larger shape error. Based on our results, we found that for tensionless membranes, the

transition from the biconcave shapes with �total < 5% (pink area) to the pancake shapes where

�total >> 5% (gray area) occurs for angles smaller than 450 (ϕ< 450) (Fig 8B). This transition

to pancake shapes shifted toward the smaller angles (ϕ< 300) for low and intermediate

Fig 8. The role of tension and angle of applied forces. Effective membrane tension and the angle of applied forces in

the RBC dimple and rim regions work together to maintain the biconcave shape of an RBC. (A) Schematic of a

biconcave RBC with a non-uniform distribution of force density across the dimple and rim regions. In both regions,

the forces per unit area are applied with angle ϕ with respect to the tangent vector (as). (B-D) The shape error and the

RBC shapes obtained from simulation for different angles of the applied forces (ϕ) for (B) tensionless membrane, (C)

low tension (tension = 10−4 pN/nm), and (D) intermediate tension (tension = 10−3 pN/nm). For all values of the

membrane tension, as the angle of forces deviates from normal (ϕ = 900) to tangential orientation (ϕ = 0), the

simulated shapes flatten and the shape error increases.

https://doi.org/10.1371/journal.pcbi.1007890.g008
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membrane tension (Fig 8C and 8D). Finally, in the case of high membrane tension, as expected

from Fig 7C, independent of the angle of force ϕ, the simulated shapes have a pancake-shaped

morphology with very large shape errors (see S9 Fig). Thus our model predicts that membrane

tension and the orientation of the applied forces can be collectively tuned to actively maintain

the biconcave morphology of an RBC.

Discussion

The biconcave disk shape of mammalian RBCs provides a maximum surface-area-to-volume

ratio, which enables efficient gas and ion exchange and increases RBC deformability and resil-

iency [99]. This shape has been studied extensively from a mechanical standpoint to identify

stress-strain relationships in cell membranes. Most studies modeling RBC shapes have been

based on the work of Canham and Helfrich [59,65] and have reinforced the idea that mechani-

cal force balance on the membrane by itself can provide insights into the unique shape of the

RBC. The studies by Canham and Helfrich and other researchers suggested that the minimiza-

tion of the membrane bending energy and the asymmetry between the inner and outer mem-

brane leaflets generate the RBC biconcavity [30,31]. For example, Markin showed how the

induced nano-scale curvature field due to the lateral distribution of membrane components

can prescribe the biconcave shape of RBCs [36]. Here, we focused on micron-scale differences

in lateral distribution of myosin-mediated forces as another degree of freedom and demon-

strated how they are important for maintaining the RBC biconcave shape.

In RBCs, the skeleton underneath the plasma membrane is an elastic network of spectrin

linked to short actin filament nodes that are attached to the membrane by anchoring proteins

[26,27]. Studies of human and mouse congenital hemolytic anemias have also established a

role for the RBC membrane skeleton in maintaining RBC biconcave shape in circulation

[23,24,26]. Many different studies have demonstrated the importance of membrane/skeleton

interactions in the formation of unusual RBC shapes as well as RBC deformability in the shear

flow [49,100–102]. In these studies, the RBC lipid bilayer and the membrane skeleton were

mainly modeled as two distinct elastic components connected to each other via bond proteins

[45–47]. However, no theoretical models for RBC biconcave shape have considered an active

role for mechanochemical forces due to myosin motor proteins interacting with membrane

skeleton F-actin in regulating RBC morphologies [45,103].

A recent study by Smith et al. [53] highlighted a critical role for NMIIA interactions with F-

actin in the membrane skeleton in controlling RBC membrane tension and curvature. This

discovery of a new experimental phenomenon calls for explanation and new/modified models

that explicitly incorporate the effects of the molecular motors into the models based on pure

membrane mechanics. Ultimately, RBCs can be used as a simple model system to explore the

general role of NMII-generated forces in regulating plasma membrane curvature since RBC

are the only cell type where F-actin is exclusively in the membrane skeleton [26]. The ubiquity

of the membrane skeleton at the plasma membranes of all metazoan cells, where F-actin is also

present in a transcellular cytoskeleton, further emphasizes the utility of the RBC paradigm.

In this study, we revisited the classical Helfrich-Canham energy model for the RBC mem-

brane to include non-uniform forces along the membrane due to NMIIA-actin interactions.

Undoubtedly, adding an additional degree of freedom to the energy allows us to attain a better

match between the simulated and the experimentally observed RBC shapes compared to previ-

ous studies. Further, based on our results, we predicted two conditions that need to be satisfied

to produce the best fit with the experimental shapes of RBCs. First, the density of the NMIIA-

generated force must be non-uniform along the RBC membrane to produce the best fit with

the shapes measured experimentally. By conducting a parameter sweep of the force density
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configurations, we found that the non-uniform force distribution must be such that Fdimple is

larger than Frim (Figs 4 and 5). Experimental measurements of NMIIA density in the dimple

and rim regions of RBCs using immunofluorescence showed that indeed NMIIA density is

higher in the dimple than in the rim (Fig 6) by about 25%. Our combined computational and

experimental results highlight that a micron-scale, non-uniform force distribution of NMIIA

plays a fundamental role in maintaining the biconcave shape of RBCs. We emphasize that this

non-uniform density of forces is at the length scale of microns rather than at the length scale of

fluctuations of the RBC membrane [104].

Second, we predicted that the effective membrane tension and the orientation of the applied

forces are important physical parameters in modulating the RBC morphology and the required

NMIIA-mediated force density ratio in the RBC dimple versus the rim region (Fratio) (Figs 7

and 8). As compared to tensionless or low-tension membranes, the intermediate tension values

Fratio for minimum shape error (~1.27) are a better match with the experimentally reported

NMIIA density ratio at the dimple versus the rim. Furthermore, we found that the deviation of

the applied forces from normal to tangential orientations results in pancake-shaped morpholo-

gies with very large shape errors compared to the actual biconcave shape of RBCs (Fig 8).

Additionally, we calculated the reduced volume (υ); the volume of the simulated RBC with

respect to the volume of the sphere with no force (Eq. S14). Based on our calculation, the

reduced volume of biconcave RBC varies in a wide range between ~0.62 and 0.83. A recent

study by Mesarec et al. has also shown that in stable discocyte RBS shapes, the reduced volume

varies in a wide range (between 0.58 and 0.8) if the membrane’s in-plane ordering is taken into

account [105]

Therefore, we predict that in mature, healthy biconcave RBCs, NMIIA motor domains

exert force on the membrane with angle ϕ> 300 under intermediate membrane tension

(~10−2 pN/nm) and the reduced volume can vary in a broad range. Currently, the exact value

of membrane tension and the angle of forces in an intact RBC are hard to measure because of

the contributions from both the membrane and the underlying skeleton [106,107]. In the liter-

ature, a wide range of values are reported for the membrane tension from 10−1 pN/nm to 10−4

pN/nm [70,93,96]. This range can be attributed to dynamic lipid rearrangements [108], mem-

brane-skeleton interactions [109], and based on our work here, rearrangement of force-gener-

ating NMIIA molecules [53]. The angle of applied forces by NMIIA at the RBC membrane is

still a matter of debate because nanoscale 3D images of F-actin and NMIIA motors using

cryoelectron tomograms would be required to explore the relative configurations of myosin

motors, F-actin and the RBC membrane surface [107]. This will require the development of

novel sample preparation approaches for RBCs and is a subject for future study. Our theoreti-

cal analyses, supported by experimental measurements, implicitly suggest that for a biconcave

RBC, the effective membrane tension should be on the order of 10−2 pN/nm and the NMIIA

motors should apply forces with angles ϕ> 300 with respect to the membrane surface.

Our conclusions of non-uniform force density and tension regulation can be used to obtain

insight into the effective activity of NMIIA motor domains at any given time. Assuming that a

single NMIIA motor domain produces an average force of ~ 2 pN [110,111], the calculated

force densities (calculated using force per unit volume) in Fig 7B corresponds to 90 and 815

myosin motor domains in the dimple and rim regions, respectively. This means that the force

generated by a total of ~850 active NMIIA motor domains, distributed between the dimple

and the rim as we predicted, is sufficient to sustain the biconcave disk shape of an RBC. Previ-

ous studies estimated that each mature human RBC contains ~ 6,000 NMIIA molecules,

~12,000 motor domains [50,51] and at any given time, roughly 40–50% of these molecules are

bound to the membrane skeleton [53]. Our calculations suggest that approximately 15% of

these bound NMIIA molecules are active and exerting forces distributed unevenly along the
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membrane. It is also possible that the amount of force generated by a single NMIIA motor

domain varies due to the stiffness of the membrane skeleton network, the processivity (the

duration over which the motor stays attached to actin), and the cross-linking activity of

NMIIA myosin filaments [110,111]. Therefore, further research will be required to determine

the quantitative relationship between the copy number of NMIIA molecules and their activity,

that together determine the overall magnitude of the force exerted on the RBC membrane.

The idea of the asymmetrical distribution of the membrane skeleton and its components in

the dimple and rim areas of RBCs was initially introduced by Hoffman, although no direct evi-

dence for this was obtained [112,113]. Recently, Svetina et al. modeled RBC volume regulation

according to the permeability of the Piezo1 channel. Based on their simulation results, they

found that Piezo1 channels are expected to be distributed non-uniformly in a biconcave RBC,

tending to localize in the dimple region [114]. They speculated that the simulated localization

of Piezo1 channels in the dimple region is controlled by the membrane curvature and induced

surface tractions [115]. The RBC membrane curvature may also influence the localization of

NMIIA motor proteins, as has been observed in other cell types [15]. Alternatively, a shear-

induced Ca2+ influx through localized Piezo1 channels could locally activate NMIIA through

activation of myosin light chain kinase and phosphorylation of the regulatory light chain [50–

52], leading to enhanced NMIIA binding to F-actin and enhanced local contractility at the

dimple, activating Piezo1 and Ca2+ influx in a feed-forward loop. We believe our findings here

are a motivation for future studies to develop quantitative relationships between the myosin-

mediated forces, Ca2+ influxes, and the membrane curvature of the cell surface.

We acknowledge that despite the conclusions from our studies, there are some limitations

and simplifying assumptions that will need to be revisited for future studies. First, we limited

our model to axisymmetric shapes, while RBCs often adopt non-axisymmetric shapes [116].

Future studies will involve simulations without any assumptions of symmetry [117]. Experi-

mental tests probing whether NMIIA activity is non-uniform along the RBC membrane will

also give insight into NMIIA density distribution versus activity distribution along the mem-

brane. Second, we assumed that the contributions from thermal fluctuations and the deforma-

tion of the membrane skeleton are negligible compared to the bending energy [61,118].

However, for a more general quantitative model, these effects should be considered [104]. Par-

ticularly, in the case of discocyte-echinocyte RBC shape transformation and in RBC membrane

vesiculation, previous studies have shown the important role of membrane skeleton in driving

these shape transformations [48,49,119–122]. Future efforts focusing on the shape transforma-

tions of RBCs from discocytes to echinocytes or stomatocytes will be important to connect RBC

morphology to physiological function and molecular mechanisms. There is also an opportunity

to extend the current models for non biconcave RBCs shape including experimental manipula-

tion of the membrane tension or inhibition of the myosin activity in RBCs [106,123,124]. These

require the adaptation of newly emerging technologies for RBC biology and will provide new

insight into the molecular mechanisms of RBC shape generation and maintenance.

Materials and methods

a. Immunofluorescence staining of RBCs. Human peripheral whole blood was collected

from healthy human donors into EDTA tubes (BD Diagnostics). 20μl of whole blood was

added to 1 ml of 4% paraformaldehyde (PFA, Electron Microscopy Sciences) in Dulbecco’s

PBS (DPBS–Gibco), mixed, and incubated at room temperature overnight.

i. NMIIA immunostaining and rhodamine phalloidin staining. Fixed RBCs were

washed three times in DPBS by centrifuging for 5 minutes at 1000 x g, permeabilized in
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DPBS + 0.3% TX-100 for 10 minutes, and then blocked in 4% BSA, 1% normal goat

serum in DPBS (Blocking Buffer, BB) at 4˚C for at least 4 days or up to 1 week before

immunostaining. Permeabilized and blocked RBCs were then incubated with rabbit

anti-NMIIA motor domain antibody (Abcam ab75590) diluted in BB (1:1000) for 2–3

hours at room temperature, washed two times in BB as above, and then incubated in

Alexa-488-conjugated goat anti-rabbit secondary antibody (Life Technologies A11008,

diluted 1:1000) mixed with rhodamine-phalloidin (Life Technologies R415, at a final

concentration of 130nM) in BB for 1–2 hr at room temperature, followed by washing

three times in BB as above. Stained cells were cytospun onto slides and mounted with

ProLongTM Gold mounting medium (Invitrogen) and coverslipped prior to imaging.

ii. Glycophorin A (GPA) immunostaining. Fixed RBCs were washed three times in DPBS

by centrifuging for 5 minutes at 1000 x g, blocked for 1 hour in BB, and stained with

FITC-conjugated mouse anti-GPA antibody (BD Pharmingen 559943) for 1 hour at

room temperature. GPA-stained RBCs were washed twice in DPBS by centrifugation as

above, then cytospun onto glass slides and mounted with ProlongTM Gold and cover-

slipped prior to imaging.

b. Fluorescence microscopy.

i. RBCs immunostained for NMIIA and rhodamine phalloidin for F-actin. RBCs were

imaged using a Zeiss LSM 880 Airyscan laser scanning confocal microscope with a 63×
1.46 NA oil Plan Apo objective. Z-stacks were acquired at a digital zoom of 1.8 and a Z-

step size of 0.168 μm. The distance between Z-steps was set to 0.10 μm in images used for

NMIIA puncta analysis in Volocity (Quorum Technologies).

ii. RBCs immunostained for NMIIA and rhodamine phalloidin for F-actin. RBCs were

imaged using a Zeiss LSM 880 Airyscan laser scanning confocal microscope with a 63×
1.46 NA oil Plan Apo objective. Z-stacks were acquired at a digital zoom of 1.8 and a Z-

step size of 0.168 μm.

iii. RBCs immunostained for GPA. RBCs were imaged using a Zeiss LSM 780 laser scan-

ning confocal microscope with a 100× 1.4 NA oil Plan Apo objective. Z-stacks were

acquired at a digital zoom of 1.0 and a Z-step size of 0.25 μm. The distance between Z-

steps was set to 0.18 μm in images used for presentation.

c. Image analysis. Numbers of NMIIA puncta in whole RBCs, in the dimples, and in the rims

were counted automatically from Airyscan confocal stacks in Volocity (Quorum Technologies)

using the “Find Spots” function in the “Measurements” module. The volumes of whole RBCs,

the dimples, and the rims were measured from the rhodamine phalloidin (F-actin) fluores-

cence in Volocity using the “Find Objects” function, with gaps in staining filled using the

“Close” function. RBC height measurements were acquired manually from XZ views of the

center of each RBC in Volocity using the line function to measure the distance between the

edges of fluorescent F-actin staining signal at the widest and narrowest regions of each RBC.

d. Statistical analysis. Data are presented in dot plots as mean ± standard deviation (SD), or

in scatter plots showing the best-fit line from the linear regression. Differences between the

variances of the two samples were detected using F-tests. Differences between means were

detected using unpaired t-tests with Welch’s correction. When more than one comparison

was made, differences between means were detected using one-way ANOVA followed by

Tukey’s multiple comparisons test. Statistical significance was defined as p < 0.05. Statisti-

cal analysis was performed using GraphPad Prism 7.03 software.
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