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Abstract

The accuracy of machine learning tasks critically depends on high quality ground truth data.

Therefore, in many cases, producing good ground truth data typically involves trained pro-

fessionals; however, this can be costly in time, effort, and money. Here we explore the use

of crowdsourcing to generate a large number of training data of good quality. We explore an

image analysis task involving the segmentation of corn tassels from images taken in a field

setting. We investigate the accuracy, speed and other quality metrics when this task is per-

formed by students for academic credit, Amazon MTurk workers, and Master Amazon

MTurk workers. We conclude that the Amazon MTurk and Master Mturk workers perform

significantly better than the for-credit students, but with no significant difference between

the two MTurk worker types. Furthermore, the quality of the segmentation produced by

Amazon MTurk workers rivals that of an expert worker. We provide best practices to assess

the quality of ground truth data, and to compare data quality produced by different sources.

We conclude that properly managed crowdsourcing can be used to establish large volumes

of viable ground truth data at a low cost and high quality, especially in the context of high

throughput plant phenotyping. We also provide several metrics for assessing the quality of

the generated datasets.

Author summary

Food security is a growing global concern. Farmers, plant breeders, and geneticists are

hastening to address the challenges presented to agriculture by climate change, dwindling

arable land, and population growth. Scientists in the field of plant phenomics are using
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satellite and drone images to understand how crops respond to a changing environment

and to combine genetics and environmental measures to maximize crop growth effi-

ciency. However, the terabytes of image data require new computational methods to

extract useful information. Machine learning algorithms are effective in recognizing select

parts of images, but they require high quality data curated by people to train them, a pro-

cess that can be laborious and costly. We examined how well crowdsourcing works in pro-

viding training data for plant phenomics, specifically, segmenting a corn tassel—the male

flower of the corn plant—from the often-cluttered images of a cornfield. We provided

images to students, and to Amazon MTurkers, the latter being an on-demand workforce

brokered by Amazon.com and paid on a task-by-task basis. We report on best practices in

crowdsourcing image labeling for phenomics, and compare the different groups on mea-

sures such as fatigue and accuracy over time. We find that crowdsourcing is a good way of

generating quality labeled data, rivaling that of experts.

This is a PLOS Computational BiologyMethods paper.

Introduction

Crop genetics include basic research (what does this gene do?) and efforts to effect agricultural

improvement (can I improve this trait?). Geneticists are primarily concerned with the former

and plant breeders are concerned with the latter. A major difference in the perspectives

between these groups is their interest in learning which genes underlie a trait of interest:

whereas geneticists are generally interested in what genes do, breeders can treat the underlying

genetics as opaque, selecting for useful traits by tracking molecular markers, or directly, via

phenotypic selection [1].

Historically, the connections between plant genotype and phenotype were investigated

through forward genetics approaches, which involve identifying a trait of interest, then carry-

ing out experiments to identify which gene is responsible for that trait. With the advent of

convenient mutagens, molecular genetics, bioinformatics, and high-performance computing,

researchers were able to associate genotypes with phenotypes more easily via a reverse genetics

approach: mutate genes, sequence them, then look for an associated phenotype.

However, the pursuit of forward genetics approaches is back on the table, given the even

more recent availability of inexpensive image data collection and storage coupled with

computational image processing and analysis. In addition, the potential for breeders to com-

putationally analyze phenotypes is enabled, thus allowing for the scope and scale of breeding

gains to be driven by computational power. While high-throughput collection of forward

genetic data is now feasible, we must now enable the analysis of phenotypic data in a high-

throughput way. The first step in such analysis is to identify regions of interest as well as

quantitative phenotypic traits from the images collected. Tang et al. [2] described a model to

extract tassel out of one single corn plant photo through color segmentation. However, when

images are taken under field conditions, classifying images using the same processing algo-

rithm can yield sub-optimal results. Changes in illumination, perspective, or shading, as well

as occlusion, debris, precipitation, and vibration of the imaging equipment can all result in

large fluctuations in image quality and information content. Machine learning (ML) meth-

ods have shown exceptional promise in extracting information from such noisy and unstruc-

tured image data. Kurtulmuş and Kavdir [3] adopted a machine learning classifier, support

vector machine (SVM), to identify tassel regions based on the binarization of color images.
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An increasing number of methods from the field of computer vision are recruited to extract

phenotypic traits from field data [4, 5]. For example, fine-grained algorithms have been

developed to not only identify tassel regions, but also identify tassel traits such as total tassel

number, tassel length, width, etc. [6, 7]

A necessary requirement for training ML models is the availability of labeled data.

Labeled data consist of a large set of representative images with the desired features labeled or

highlighted. A large and accurate labeled data set, the ground truth, is required for training the

algorithm. The focus of this project is the identification of corn tassels, in images acquired in

the field. For this task, the labeling process includes defining a minimum rectangular bounding

box around the tassel. While seemingly simple, drawing a bounding box does requires effort to

ensure accuracy [8], and a good deal of time to generate a sufficiently large training set. Prepar-

ing such a dataset by a single user can be laborious and time consuming. To ensure accuracy,

such a generated set should ideally be proofed by several people, adding more time, labor, and

expense to the task.

One solution to the problem is to take a large cohort of untrained individuals to perform

the task, and to compile and extract some plurality or majority of their answers as a training

set. This approach, also known as crowdsourcing, has been used successfully many times to

provide image-based information in diverse fields including astronomy, zoology, computa-

tional chemistry, and biomedicine, among others [9–17].

Crop genetics research has a long history of “low-tech” crowdsourcing. Groups of student

workers are sent into fields to identify phenotypes of interest, with the rates of success often a

single instance among thousands of plants. Students in the social sciences also regularly partici-

pate in experiments to learn about the research process and gain first-hand experience acting as

participants. To manage these large university participant pools, cloud based software, such as

the Sona system (www.sona-systems.com), are routinely used to schedule experiment appoint-

ments and to link to web-based research materials before automatically granting credit to par-

ticipants. University participant pools provide a unique opportunity for crowdsourcing on a

minimal budget because participants are compensated with course credit rather than money.

More recently, crowdsourcing has been available via commercial platforms, such as the

Amazon Mechanical Turk, or MTurk, platform(https://www.mturk.com/). MTurk is a popu-

lar venue for crowdsourcing due to the large number of available workers and the relative ease

with which tasks can be uploaded and payments disbursed. Methods for crowdsourcing and

estimates of data quality have been available for years, and several recommendations have

emerged from past work. For example, collecting multiple responses per image can account

for natural variation and the relative skill of the untrained workers [18]. Furthermore, a

majority vote of MTurk workers can label images with similar accuracy to that of experts [19].

Although those studies were limited to labeling categorical features of stock images, other stud-

ies have shown success with more complex stimuli. For example, MTurk workers were able to

diagnose disease and identify the clinically relevant areas in images of human retinas with

accuracy approaching that of medical experts [11]. Amazon’s MTurk is a particularly valuable

tool for researchers because it provides incentives for high quality work. The offering party has

the ability to restrict their task to only workers with a particular work history, or a more gen-

eral criterion known as ‘Master Turk’ status. The Master title is a status given to workers by

Amazon based on a set of criteria that Amazon believes to represent the overall quality of the

worker; note that Amazon does not disclose those criteria.

The time and cost savings of using crowdsourcing to label data are obvious, but crowd-

sourcing is only a viable solution if the output is sufficiently accurate. The goal of the current

project was to test whether crowdsourcing image labels (also called tags) could yield a suffi-

cient positive-data training set for ML from image-based phenotypes in as little as a single day.

Crowdsourcing image analysis for plant phenomics
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We focus on corn tassels for this effort but we anticipate our findings to extend to other similar

tasks in plant phenotyping.

In this project, we recruited three groups of people for our crowdsourcing tassel identifica-

tion task, from the two online platforms Sona and MTurk. The first group consisted of stu-

dents recruited for course credit, or the Course Credit group. The second group consisted of

paid Master-status Mechanical Turk workers, (the Master MTurkers group), and the third

group consisted of paid non-master Mechanical Turk workers (the non-Master MTurkers

group). The accuracy of the different groups’ tassel identification was evaluated against an

expert-generated gold standard. These crowdsourced labeled images were then used as train-

ing data for a “bag-of-features” machine learning algorithm.

We found that performance of Master and non-Master MTurkers was not significantly dif-

ferent; however both groups performed better than the Course Credit group. At the same time,

using the labeling data from either course credit, MTurk or Master MTurk did not make any

significant difference in the performance of the machine learning algorithm when trained on

sets generated by any of these groups. We conclude that crowdsourcing via MTurk can be use-

ful for establishing ground truth sets for complex image analysis tasks in a short amount of

time, and that MTurkers’ and expert MTurkers’ performance exceed that of students working

for course credit. At the same time, perhaps surprisingly, we also show that the differences in

labeling quality do not significantly affect the performance of a machine learning algorithm

trained by any of the three groups.

Methods

Ethics statement

Research involving human participants was approved by the Institutional Review Board at

Iowa State University under protocol 15-653.

Data and software

The software for this study is available from: https://github.com/ashleyzhou972/Crowdsource-

Corn-Tassels

The data for this study are available from: https://doi.org/10.6084/m9.figshare.6360236.v2

General outline

The overall scheme of the work is depicted in Fig 1. Course Credit, Master MTurkers, MTur-

kers, and an expert, all labeled corn tassels in a set of 80 images. First, the labeling performance

was assessed against the gold standard. Then, each set of labeled images was also used to train

a bag-of-features machine learning method. The trained methods were each tested against a

separate expert-labeled training set, to assess how differently the ML method performed with

different training sets.

Recruiting participants

The Course Credit group included 30 participants, which were recruited using the subject pool

software Sona from the undergraduate psychology participant pool at Iowa State University.

Recruited students were compensated with course credits. The master MTurkers included 65

master-qualified workers recruited through MTurk. The exact qualifications for master status

are not published by Amazon, but are known to include work experience and employer ratings

of completed work. Master MTurkers were paid $8.00 to complete the task and the total cost

was $572.00. Finally, the non-master MTurkers pool included 66 workers with no qualification

Crowdsourcing image analysis for plant phenomics
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restriction, recruited through the Amazon Mechanical Turk website. Due to the nature of

Amazon’s MTurk system, it is not possible to recruit only participants who are notmaster

qualified. However, the purpose of including the non-master MTurkers was to evaluate work-

ers recruited without the additional fee imposed by Amazon for recruitment of Masters MTur-

kers. Non-master MTurkers were also paid $8.00 to complete the task and the total cost was

$568.00. Note that the costs include Amazon’s fees. Of the 30 students recruited, 26 completed

all 80 images. Of the 65 Master MTurkers recruited, 49 completed all images. Of the 66 non-

master MTurkers recruited, 51 completed all images. Data collected from participants who did

not complete the survey were not included in subsequent analyses.

Pilot study

A brief cropping task was initially administered to Sona and master MTurkers groups as a

pilot study to test the viability of this project and task instructions. Each participant was pre-

sented with a participant-specific set of 40 images randomly chosen from 393 total images.

The accuracy of participant labels helped designate Easy and Hard status for each image. Forty

images were classified as “easy to crop”, and 40 as “hard to crop”, based on accuracy results of

the pilot study. An expert who made gold standard boxes made adjustments to the Easy/Hard

classifications based on personal experience. These 80 images were selected for the main study.

As opposed to the pilot study, participants in the main study each received the same set of 80

images, with image order randomized separately for each participant. The results of the pilot

study indicated that at least 40 images could be processed without evidence of fatigue so the

number of images included in the main experiment was increased to 80. The pilot study also

indicated, via user feedback, that a compensation rate of $8.00 for the set of 80 images was

acceptable to the MTurk participants. To expedite the pilot study, we did not include regular

MTurkers. Our rationale was that feasibility for a larger study could be assessed by including

master MTurkers and Sona only.

Gold standard

We define a gold standard box for a given tassel as the box with the smallest area among all

bounding boxes that contain the entire tassel, a minimum bounding box. Gold-standard boxes

Fig 1. Overall schema of datasets (boxes) and processes (arrows) that led to the analyses (red). Top row: The Expert Labeled dataset was used a gold

standard to analyze how well the different experimental groups (blue boxes) performed. Bottom row: the labeling from each experimental group was used to

train an ML classifier. Each ML classifier was then tested against an expert-labeled test set.

https://doi.org/10.1371/journal.pcbi.1006337.g001
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were generated by the expert, a trained and experienced researcher. The expert cropped all 80

images then computationally minimized the boxes to be minimum bounding. These images

were used to evaluate the labeling performance of crowdsourced workers, and should not be

confused with the ‘ground truth’ which were used to refer the labeled boxes used in training

the ML model.

General procedure

We selected the images randomly from a large image pool obtained as part of an ongoing

maize phenomics project. The field images focused on a single row of corn captured by cam-

eras set up as part of the field phenotyping of the maize Nested Association Mapping [20],

using 456 cameras simultaneously, each camera imaging a set of 6 plants. Each camera took an

image every 10 minutes during a two week growing period in August 2015 [21]. Some image

features varied, for example, due to weather conditions and visibility of corn stalks, but the tas-

sels were always clearly visible. Images were presented on a Qualtrics webpage (www.qualtrics.

com) and Javascript was used to provide tassel annotation functionality. After providing

Informed Consent, participants viewed a single page with instructions detailing how to iden-

tify corn tassels and how to create a minimum bounding box around each tassel. Participants

were first shown an example image with the tassels correctly bounded with boxes (Fig 2).

Below the example, participants read instructions on how to create, modify, and delete bound-

ing boxes using the mouse. These instructions explained that an ideal bounding box should

contain the entire tassel with as little additional image detail as possible. Additional instruc-

tions indicated that overlapping boxes and boxes containing other objects would sometimes

be necessary and were acceptable as long as each box accurately encompassed the target tassel.

Participants were also instructed to only consider tassels in the foreground, ignoring tassels

that appear in the background. After reading instructions, participants clicked to progress to

the actual data collection. No further feedback or training were provided. The exact instruc-

tions are provided in the Supplementary Materials.

Fig 2. Example image used during training to demonstrate correct placement of bounding boxes around tassels.

https://doi.org/10.1371/journal.pcbi.1006337.g002
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For each image, participants created a unique bounding box for each tassel by clicking and

dragging the cursor. Participants could subsequently adjust the vertical or horizontal size of

any drawn box by clicking on and dragging a box corner, and could adjust the position of any

drawn box by clicking and dragging in the box body. Participants were required to place at

least one box on each image before moving on to the next image. No upper limit was placed

on the number of boxes. Returning to previous images was not allowed. The time required to

complete each image was recorded in addition to the locations and dimensions of user-drawn

boxes.

Defining precision and recall

Consider any given participant-drawn box and gold standard box as in the right panel of Fig 3.

Let PB be the area of the participant box, let GB be the area of the gold standard box, and let IB
be the area of the intersection between the participant box and the gold standard box. Preci-

sion (Pr) is defined as IB/PB, and recall (Rc) is defined as IB/GB. Both Pr and Rc range from a

minimum value of 0 (when the participant box and gold standard box fail to overlap) to a max-

imum value of 1 (full overlap of boxes). As an overall measure of performance for a participant

box as an approximation to a gold standard box, we use F1, the harmonic mean of precision

and recall:

F1 ¼
2� Pr� Rc
Prþ Rc

:

Each participant-drawn box was matched to the gold standard box that maximized F1 across

all gold standard boxes within the image containing the participant box. If more than one par-

ticipant box was matched to the same gold standard box, the participant box with the highest

F1 value was assigned the Pr, Rc, and F1 values for that match, and the other participant boxes

matching that same gold standard box were assigned Pr, Rc, and F1 values of zero. In the usual

case of a one-to-one matching between participant boxes and gold standard boxes, each partic-

ipant box was assigned the Pr, Rc, and F1 values associated with its matched gold standard box.

To summarize the performance of a participant on a particular image, F1 values across par-

ticipant-drawn boxes were averaged to obtain a measure referred to as Fmean. This provides a

Fig 3. Drawing boxes around tassels. Left: Sample participant-drawn boxes. Right: The Red box is the gold standard box and black is a participant-

drawn box.

https://doi.org/10.1371/journal.pcbi.1006337.g003
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dataset with one performance measurement for each combination of participant and image

that we use for subsequent statistical analysis.

Results

Data distribution

As described in Methods, precision and recall were calculated for each participant-drawn box.

Density of precision recall pairs by group based on 61,888 participant-drawn boxes are shown

in the heatmap visualization of Fig 4.

High value precision-recall pairs are more common than low value precision-recall pairs in

all three groups. Perfect recall values were especially common because participants tended to

draw boxes that encompassed the minimum bounding box, presumably to ensure that the

entire tassel was covered.

Testing for performance differences among groups

Fig 4(D) shows the distribution of Fmean for the three groups. We used a linear mixed-effects

model analysis to test for performance differences among groups with the Fmean value

Fig 4. Density of precision recall pairs by group. Density based on a total of 61,888 participant-drawn boxes. A: Master MTurkers. B: MTurkers. C: Course Credit

participants. D: Violin plots showing the distribution of F-measure per image per user, where white circles: distribution median; black bars: second and third

quartiles; black lines 95% confidence intervals.

https://doi.org/10.1371/journal.pcbi.1006337.g004
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computed for each combination of image and user as the response variable. The model

included fixed effects for groups (Master MTurker, non-Master MTurker, course credit), ran-

dom effects for participants nested within groups, and random effects for images. Themixed
procedure available in SAS software was used to perform this analysis with the Kenward-

Roger method [22] for computing standard errors and denominator degrees of freedom. The

analysis shows significant evidence for differences among groups (p-value< 0.0001). Further-

more, pairwise comparisons between groups (Table 1) show that both Master and non-Master

MTurkers performed significantly better than undergraduate students performing the task for

course credit. There was no significant performance difference between Master and non-Mas-

ter MTurkers.

Time usage and fatigue

Next we wanted to understand whether there is any change of time taken to annotate over the

task given, whether there is a significant difference between the groups, and specifically if any

change indicated fatigue. Participants took a median time of 26.43 seconds to complete an

image, with the median time for the Master MTurker group at 30.02 seconds, non-Master

MTurkers at 29.40 seconds, and the course credit student group at 16.86 seconds. The course

credit group generally spent less time than either MTurker group. It is worth noting that there

is a large variance in time spent on each image, with the longest time for a single image at

15,484.63 seconds, and the shortest being 0.88 seconds. The very long image annotation time

was probably due to the participant taking a break after cropping part of the image and then

coming back later to finish that image.

There is a general downward trend in the time spent on each image over time. The trend is

shown in Fig 5, via linear regression on log time with fixed effects for group, question ordinal

index and group×question ordinal index, and random effects for user and image. The trend is

statistically significant in all three groups, with similar effect sizes. As participants complete

questions, the average time spent per question is reduced by about 1%, as shown by Table 2.

By looking at the interaction term between participant group and question index, we were

able to conclude that the reduced time effect is not significantly different between the Master

MTurker and non-Master MTurker group (p = 0.6003), but is different between the course

credit group and Master MTurker group (p = 0.0431). This difference is weakened in terms of

course credit versus non-Master MTurker, with a p-value of 0.1086.

We also analyzed the change in accuracy, as measured by Fmean as the test progresses. Fig

5(B) shows that Fmean decreased slightly as the task progressed. The decreases are statistically

significant (p<0.05) for all three groups. However, the effect sizes (average decrease in Fmean
per round of image) for both MTurker groups are almost negligible, with Master MTurk

group showing a 0.00008 decrease per image and Non-master group showing a 0.00027

decrease. Decrease in Fmean for the course credit group is only slightly more noticeable, at

0.00095, and on a scale of 0-1 is unlikely to affect training. To summarize the effect of image

order, there was a subtle decline in Fmean and a larger decrease in image completion time as the

survey progressed.

Table 1. Parameter estimates from the ANOVA with master MTurk group as baseline.

Estimate Standard Error p-value

non-master MTurk vs. Master MTurker 0.01125 0.02078 0.5893

Course Credit vs. Master MTurker -0.1005 0.02521 0.0001

Course Credit vs. non-master MTurk -0.1117 0.01517 <0.0001

https://doi.org/10.1371/journal.pcbi.1006337.t001
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Another question of interest was whether image accuracy correlates with image completion

time. Indeed, there tended to be a slight increase in accuracy as time spent on an image

increased. Although the correlation is statistically significant in all three groups, the effect sizes

are too small to conclude that spending more time on a single image has an important positive

effect on accuracy for that image.

In conclusion, all three groups of participants spent less time on each image as the survey

progressed, possibly due to increasing familiarity in the task. Although their performance in

the task also decreases slightly over time, the effects were almost negligible. This fatigue effect,

while significant, is minor.

Image difficulty

Did the annotators spend more time on more difficult images? To answer this question, we

obtained the Best Linear Unbiased Predictor (BLUP) [23] of each image in the above analyses

to assess whether each image contributes to increased or decreased accuracy and time. BLUPs

can be viewed as predictions of random effects, in our case, one prediction of the eighty

images. Fig 6 is a scatter plot, with each point representing an image. The horizontal axis

shows the BLUPs with regard to logtime. The higher the BLUP, the more this particular image

contributes to increased time spent on each question. Similarly, the vertical axis shows the

BLUPs with regard to Fmean. Images with higher BLUPs tended to be processed more accu-

rately. We also obtained a difficult / easy classification of all eighty images from our expert

who manually curated the gold standard boxes, as they are shown by the two different colors

on the plot.

Fig 5. Both accuracy and time per question change as participants progress through the task. A: Time spent in log scale as a function of image order. B: Mean

F value decreases very slightly over the survey process.

https://doi.org/10.1371/journal.pcbi.1006337.g005

Table 2. Parameter estimates in linear mixed effects regression of time spent each image.

Estimate (β̂ ) Exponential of Estimate (exp(β̂ )) p-value

Master MTurk -0.01043 0.9896 < 0.0001

non-Master MTurk -0.01073 0.9893 < 0.0001

Course Credit -0.01181 0.9883 < 0.0001

https://doi.org/10.1371/journal.pcbi.1006337.t002

Crowdsourcing image analysis for plant phenomics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006337 July 30, 2018 10 / 16

https://doi.org/10.1371/journal.pcbi.1006337.g005
https://doi.org/10.1371/journal.pcbi.1006337.t002
https://doi.org/10.1371/journal.pcbi.1006337


It is interesting to observe that longer time spent annotating an image correlates positively

with accuracy. Indeed, the linear regression fit shown as the red line on the plot has a slope

estimate of 0.1003 (p = 0.00136), and an adjusted R2 of 0.1127, suggesting weak correlation.

Furthermore, the images that our expert considered difficult did not take participants longer

to complete, nor did they yield significantly lower accuracy. The images were shown to partici-

pants in a random order, eliminating the possibility that fatigue contributes to the longer time

it takes to complete easy images. Since previous analysis showed that participants tend to

spend less time on images shown to them later (Fig 5A), this may suggest ordering the images

so that more difficult images are shown to the participants first. In that way, a surveyor may

take advantage of the fact that participants tend to spend more time on each image in the

beginning, to obtain more accurate results.

Evaluating the performance of participant-trained classifiers

Automatic tassel detection is an important prerequisite for fast computation of quantitative

traits. We can automatically detect tassels in images using a classifier trained with data derived

from crowdsourcing. Although our results above show that paid Master MTurkers and non-

Master MTurkers tend to provide higher quality tassel bounding boxes than students working

for course credit, the differences in quality we have detected may not necessarily translate into

better training of a classification algorithm. We therefore examined how the performance of a

classification algorithm varies as the data used to train the classifier varies across participants.

The algorithm consists of two stages. The first stage involves extracting features from a set

of training images using a bag-of-features method [24]. Each training image corresponds to a

single box within one of our original images. The training images (i.e., boxes) are selected so

that each contains either a tassel or no tassel. Each training image is then represented by a vec-

tor of frequencies, with one frequency for each feature. The second stage of the algorithm

involves training a support vector machines (SVM) classifier using the frequency vectors

Fig 6. Best Linear Unbiased Predictors for images. BLUPs are calculated in both analyses for Fmean and time in log

scale. Color represents image difficulty determined by expert.

https://doi.org/10.1371/journal.pcbi.1006337.g006
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associated with the training images, as well as the status of each training image: whether it

contains a tassel or not. For each of the 126 participants in our study, we constructed a set of

training images using the participant-drawn boxes as the positive set (i.e., the training images

containing a tassel), together with a constant negative set of 600 images (corresponding to

boxes that contain no tassel). The number of training images in the positive set varied across

participant, with a median of 457. The classification algorithm was then separately trained

using each of the 126 training datasets.

We applied the 126 participant-trained classifiers to a test set of 600 tassel images and 600

non-tassel images. Performance was calculated as the mean of the true positive rate and the

true negative rate of the classification. Overall, the algorithm achieved a classification perfor-

mance of 0.8811, averaged over all participants. For the master and non-master MTurker

groups, the average performances were 0.8851 and 0.8781, respectively. For the course credit

group, it was 0.8795. We performed a linear model analysis of the 126 performance measures

to test for group differences. The F test yielded a p-value of 0.7325, indicating no detectable dif-

ferences among the average performances of the three groups.

We also trained a classifier based on the ground truth data that the our expert curated. This

classifier achieved an accuracy of 0.91, slightly higher than the performance of the classifiers

trained from the crowdsourced labels.

Discussion

Machine learning methods have revolutionized processing and extracting information from

images, and are being used in fields as diverse as public safely, biomedicine, weather, military,

entertainment, and, in our case, agriculture. However, these algorithms still require an initial

training set created by expert individuals before structures can be automatically extracted from

the image and labeled. This project has identified crowdsourcing as a viable method for creat-

ing initial training sets without the time consuming and costly work of an expert. Our results

show that straightforward tasks, such tassel cropping, do not benefit from the extra fee assessed

to hire master over non-master MTurkers. Performance between the two groups was not sig-

nificantly different, and non-master MTurkers can safely be hired without compromising data

quality.

The MTurk platform allows for fast collection of data within a day instead of one to two

weeks. While MTurk may be one of the most popular crowdsourcing platforms, many univer-

sities possess a research participant pool that compensates students with class credit instead of

cash for their work. However, in our study the undergraduate student participant pool did not

perform as well as either of the MTurker groups. While it is possible that MTurk workers are

simply more conscientious than college students, it is also possible that monetary compensa-

tion is a better motivator than course credit. In addition to the direct monetary reward, both

groups of MTurkers were also motivated by either working towards or maintaining the “mas-

ter” status. Such implicit motivational mechanisms might be useful in setting up a long-term

crowdsourcing platform. The distinction in labeling performance between MTurkers and stu-

dents does not matter when considering the actual outcome of interest: how well the machine

learning algorithm identifies corn tassels when supplied with each of the three training sets.

The accuracy of the ML algorithm used here was not affected by the quality of the training set

provided, which were manually-labeled through crowdsourcing. Therefore, a student partici-

pant pool with a non-monetary rewards system provides the opportunity for an alternate

model by lowering overall image tagging cost. This would allow additional features to be

tagged or a larger number of responses to be sourced with existing funding levels and further

database expansion.
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Indeed, there are many crowdsourcing projects that do not offer monetary reward. For

example, the Backyard Worlds: Planet 9 project hosted by NASA for search of planets and star

systems in space [9], the Phylo (http://phylo.cs.mcgill.ca/) game for multiple sequence align-

ment [25] and fold.it (http://fold.it) [12] for protein folding. These projects attract participants

by offering the chance to contribute to real scientific research. This concept has been catego-

rized as citizen science, where nonprofessional scientists participate in crowdsourced research

efforts. In addition to the attraction of the subject matter, these projects often have interactive

and entertaining interfaces to quickly engage the participants’ interests and attention. Some of

them were even designed as games, and competition mechanisms such as rankings provide

extra motivation. Another important purpose of such citizen science projects is to educate the

public about the subject matter. Given the current climate regarding Genetically Modified

Organisms (GMOs), crowdsourcing efforts of crop phenomic and phenotypic research could

potentially be a gateway to a better understanding of plant research in the general public. A

recent effort has shown that non-experts can be used for accurate image-based plant phe-

nomics annotation tasks [26]. However, the current data points to the challenge of non-mone-

tary reward in sustaining a large-scale annotation effort.

Phenomics is concerned with the quantitative and qualitative study of phenomes, where all

possible traits of a given organism vary in response to genetic mutations and environmental

influences [27]. An important field of research in phenomics is the development of high-

throughput technology analogous to high-throughput sequencing in genetics and genomic

studies, to enable the collection of large-scale data with minimal efforts. Many phenotypic

traits could be recorded with images, and databases such as BioDIG [28] make the connection

of such image data with genomic information, providing genetics researchers with tools to

examine the relationship between the two types of data directly. Hence, the computation and

manipulation of such phenomic image data becomes essential. In plant biology, maize is cen-

tral for both basic biological research as well as crop production (reviewed in [29]). As such,

phenotypic information derived from ear (female flowers) and tassel (male flowers) are key to

both the study of genetics and crop productivity: flowers are where meiosis and fertilization

occur as well as the source of grain. To add a new features such as tassel emergence, size,

branch number, branch angle and anthesis to the systems such as BioDIG, the specific tassel

location and structure should be located, and our solution to this task is to use crowdsourcing

combined with machine learning to reduce cost and time of such a pipeline, while expanding

its utility. Our findings, and the suggested crowdsourcing methods can be generally applied to

other phenomic analysis tasks. It is worthy to note that differences in quality of training sets

may not translate into significant differences in classification, as was in our study. However,

this may vary between different classification algorithms, and different training sets. We hope

our study will help establish some best practices for researchers in setting up such a crowd-

sourcing study. Given the ease and relatively low cost of obtaining data through Amazon’s

Mechanical Turk, we recommend it over the undergraduate research pool. That being said,

student research pools would be a suitable method for obtaining proof of concept or pilot data

to support a grant proposal.
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