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Abstract

The dynamics of infectious diseases spread via direct person-to-person transmission (such as influenza, smallpox, HIV/AIDS,
etc.) depends on the underlying host contact network. Human contact networks exhibit strong community structure.
Understanding how such community structure affects epidemics may provide insights for preventing the spread of disease
between communities by changing the structure of the contact network through pharmaceutical or non-pharmaceutical
interventions. We use empirical and simulated networks to investigate the spread of disease in networks with community
structure. We find that community structure has a major impact on disease dynamics, and we show that in networks with
strong community structure, immunization interventions targeted at individuals bridging communities are more effective
than those simply targeting highly connected individuals. Because the structure of relevant contact networks is generally
not known, and vaccine supply is often limited, there is great need for efficient vaccination algorithms that do not require
full knowledge of the network. We developed an algorithm that acts only on locally available network information and is
able to quickly identify targets for successful immunization intervention. The algorithm generally outperforms existing
algorithms when vaccine supply is limited, particularly in networks with strong community structure. Understanding the
spread of infectious diseases and designing optimal control strategies is a major goal of public health. Social networks show
marked patterns of community structure, and our results, based on empirical and simulated data, demonstrate that
community structure strongly affects disease dynamics. These results have implications for the design of control strategies.
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Introduction

Mitigating or preventing the spread of infectious diseases is the

ultimate goal of infectious disease epidemiology, and understand-

ing the dynamics of epidemics is an important tool to achieve this

goal. A rich body of research [1,2,3] has provided major insights

into the processes that drive epidemics, and has been instrumental

in developing strategies for control and eradication. The structure

of contact networks is crucial in explaining epidemiological

patterns seen in the spread of directly transmissible diseases such

as HIV/AIDS [1,4,5], SARS [6,7], influenza [8,9,10,11] etc. For

example, the basic reproductive number R0, a quantity central to

developing intervention measures or immunization programs,

depends crucially on the variance of the distribution of contacts

[1,12,13], known as the network degree distribution. Contact

networks with fat-tailed degree distributions, for example, where a

few individuals have an extraordinarily large number of contacts,

result in a higher R0 than one would expect from contact networks

with a uniform degree distribution, and the existence of highly

connected individuals makes them an ideal target for control

measures [7,14].

While degree distributions have been studied extensively to

understand their effect on epidemic dynamics, the community

structure of networks has generally been ignored. Despite the

demonstration that social networks show significant community

structure [15,16,17,18], and that social processes such as

homophily and transitivity result in highly clustered and modular

networks [19], the effect of such microstructures on epidemic

dynamics has only recently started to be investigated. Most initial

work has focused on the effect of small cycles, predominantly in

the context of clustering coefficients (i.e. the fraction of closed

triplets in a contact network) [20,21,22,23,24].

In this article, we aim to understand how community structure

affects epidemic dynamics and control of infectious disease.

Community structure exists when connections between members

of a group of nodes are more dense than connections between

members of different groups of nodes [15]. The terminology is

relatively new in network analysis and recent algorithm develop-

ment has greatly expanded our ability to detect sub-structuring in

networks. While there has been a recent explosion in interest and

methodological development, the concept is an old one in the

study of social networks where it is typically referred to as a

‘‘cohesive subgroups,’’ groups of vertices in a graph that share

connections with each other at a higher rate than with vertices

outside the group [18]. Empirical data on social structure suggests

that community structuring is extensive in epidemiological

contacts [25,26,27] relevant for infectious diseases transmitted by

the respiratory or close-contact route (e.g. influenza-like illnesses),
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and in social groups more generally [16,17,28,29,30]. Similarly,

the results of epidemic models of directly transmitted infections

such as influenza are most consistent with the existence of such

structure [8,9,11,31,32,33].

Using both simulated and empirical social networks, we show

how community structure affects the spread of diseases in

networks, and specifically that these effects cannot be accounted

for by the degree distribution alone. The main goal of this study is

to demonstrate how community structure affects epidemic

dynamics, and what strategies are best applied to control

epidemics in networks with community structure.

Results

We generate networks computationally with community

structure by creating small subnetworks of locally dense commu-

nities, which are then randomly connected to one another. A

particular feature of such networks is that the variance of their

degree distribution is relatively low, and thus the spread of a

disease is only marginally affected by it [34]. Running standard

susceptible-infected-resistant (SIR) epidemic simulations (see

Methods) on these networks, we find that the average epidemic

size, epidemic duration and the peak prevalence of the epidemic

are strongly affected by a change in community structure

connectivity that is independent of the overall degree distribution

of the full network (Figure 1). Note that the value range of Q shown

in Figure 1 is in agreement with the value range of Q found in the

empirical networks used further below, and that lower values of Q

do not affect the results qualitatively (see Suppl. Mat. Figure S1).

Epidemics in populations with community structure show a

distinct dynamical pattern depending on the extent of community

structure. In networks with strong community structure, an

infected individual is more likely to infect members of the same

community than members outside of the community. Thus, in a

network with strong community structure, local outbreaks may die

out before spreading to other communities, or they may spread

through various communities in an almost serial fashion, and large

epidemics in populations with strong community structure may

therefore last for a long time. Correspondingly, the incidence rate

can be very low, and the number of generations of infection

transmission can be very high, compared to the explosive

epidemics in populations with less community structure

(Figures 2a and 2b). On average, epidemics in networks with

strong community structure exhibit greater variance in final size

(Figures 2c and 2d), a greater number of small, local outbreaks that

do not develop into a full epidemic, and a higher variance in the

duration of an epidemic.

In order to halt or mitigate an epidemic, targeted immunization

interventions or social distancing interventions aim to change the

structure of the network of susceptible individuals in such a way as

to make it harder for a pathogen to spread [35]. In practice, the

number of people to be removed from the susceptible class is often

constrained for a number of reasons (e.g., due to limited vaccine

supply or ethical concerns of social distancing measures). From a

network perspective, targeted immunization methods translate

into indentifying which nodes should be removed from a network,

a problem that has caught considerable attention (see for example

[36] and references therein). Targeting highly connected individ-

uals for immunization has been shown to be an effective strategy

for epidemic control [7,14]. However, in networks with strong

community structure, this strategy may not be the most effective:

some individuals connect to multiple communities (so-called

community bridges [37]) and may thus be more important in

spreading the disease than individuals with fewer inter-community

connections, but this importance is not necessarily reflected in the

degree. Identification of community bridges can be achieved using

Figure 1. Effect of community structure, measured as modular-
ity (Q) on epidemic dynamics. Panels show effect of community
structure on (a) final size, (b) duration and (c) peak prevalence (i.e.
maximum frequency of population infected). Each of the points
represents the average of maximally 2000 simulation runs (only
simulations with a final size of at least 2% of the population were
included in calculating the averages). Error bars are omitted because the
ranges are less than the size of the plotting points. The different colors
represent different transmission rates: gray, b = 0.05 (R0<2.5); blue,
b = 0.06 (R0<3); red, b = 0.08 (R0<4). Panel (d) shows that the effect of a
change in community structure on the squared coefficient of variation of
the degree distribution (CV)2 is negligible.
doi:10.1371/journal.pcbi.1000736.g001

Author Summary

Understanding the spread of infectious diseases in
populations is key to controlling them. Computational
simulations of epidemics provide a valuable tool for the
study of the dynamics of epidemics. In such simulations,
populations are represented by networks, where hosts and
their interactions among each other are represented by
nodes and edges. In the past few years, it has become
clear that many human social networks have a very
remarkable property: they all exhibit strong community
structure. A network with strong community structure
consists of smaller sub-networks (the communities) that
have many connections within them, but only few
between them. Here we use both data from social
networking websites and computer generated networks
to study the effect of community structure on epidemic
spread. We find that community structure not only affects
the dynamics of epidemics in networks, but that it also has
implications for how networks can be protected from
large-scale epidemics.

Diseases in Networks with Community Structure
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the betweenness centrality measure [38], defined as the fraction of

shortest paths a node falls on. While degree and betweenness

centrality are often strongly positively correlated, the correlation

between degree and betweenness centrality becomes weaker as

community structure becomes stronger (Figure 3). Thus, in

networks with community structure, focusing on the degree alone

carries the risk of missing some of the community bridges that are

not highly connected. Indeed, at a low vaccination coverage, an

immunization strategy based on betweenness centrality results in

fewer infected cases than an immunization strategy based on

degree as the magnitude of community structure increases

(Figure 4a). This observation is critical because the potential

vaccination coverage for an emerging infection will typically be

very low. A third measure, random walk centrality, identifies

target nodes by a random walk, counting how often a node is

traversed by a random walk between two other nodes [39]. The

random walk centrality measure considers not only the shortest

paths between pairs of nodes, but all paths between pairs of nodes,

while still giving shorter paths more weight. While infections are

most likely to spread along the shortest paths between any two

nodes, the cumulative contribution of other paths can still be

important [40]: immunization strategies based on random walk

centrality result in the lowest number of infected cases at low

vaccination coverage (Figure 4b and 4c).

To test the efficiency of targeted immunization strategies on real

networks, we used interaction data of individuals at five different

universities in the US taken from a social network website [41],

and obtained the contact network relevant for directly transmis-

sible diseases (see Methods). We find again that the overall most

successful targeted immunization strategy is the one that identifies

the targets based on random walk centrality. Limited immuniza-

tion based on random walk centrality significantly outperforms

immunization based on degree especially when vaccination

coverage is low (Figure 5a).

In practice, identifying immunization targets may be impossible

using such algorithms, because the structure of the contact

network relevant for the spread of a directly transmissible disease is

generally not known. Thus, algorithms that are agnostic about the

full network structure are necessary to identify target individuals.

The only algorithm we are aware of that is completely agnostic

about the network structure network structure identifies target

nodes by picking a random contact of a randomly chosen

individual [42]. Once such an acquaintance has been picked n

times, it is immunized. The acquaintance method has been shown

to be able to identify some of the highly connected individuals, and

thus approximates an immunization strategy that targets highly

connected individuals. We propose an alternative algorithm (the

so-called community bridge finder (CBF) algorithm, described in detail

in the Methods) that aims to identify community bridges

connecting two groups of clustered nodes. Briefly, starting from

a random node, the algorithm follows a random path on the

contact network, until it arrives at a node that does not connect

back to more than one of the previously visited nodes on the

random walk. The basic goal of the CBF algorithm is to find nodes

that connect to multiple communities - it does so based on the

notion that the first node that does not connect back to previously

visited nodes of the current random walk is likely to be part of a

different community. On all empirical and computationally

generated networks tested, this algorithm performed mostly better,

often equally well, and rarely worse than the alternative algorithm.

Figure 2. Typical incidence curves and distributions of final size in networks with medium and strong community structure. (a) and
(b): Typical incidence curves of disease outbreaks in a network with medium community structure ((a): Q<0.76) and a network with strong ((b):
Q<0.9) community structure (disease parameters equal to those in Figure 1 for the case where R0<3). Each stacked bar represents the cumulative
number of new cases during a given day. The color of a single infection case denotes the infection generation (initial case = 0), i.e. the number of
hosts through which the infection has been passed on before infecting the current case. (c) and (d): Distribution of final size of simulations of disease
outbreaks in a network with medium ((c), same contact network as in (a)) and strong ((d), same contact network as in (b)) community structure. Note
that only simulations with a final size of at least 2% of the population were included in the distributions.
doi:10.1371/journal.pcbi.1000736.g002

Diseases in Networks with Community Structure
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It is important to note a crucial difference between algorithms

such as CBF (henceforth called stochastic algorithms) and

algorithms such as those that calculate, for example, the

betweenness centrality of nodes (henceforth called deterministic

algorithms). A deterministic algorithm always needs the complete

information about each node (i.e. either the number or the identity

of all connected nodes for each node in the network). A comparison

between algorithms is therefore of limited use if they are not of the

same type as they have to work with different inputs. Clearly, a

deterministic algorithm with information on the full network

structure as input should outperform a stochastic algorithm that is

agnostic about the full network structure. Thus, we will restrict our

comparison of CBF to the acquaintance method since this is the

only stochastic algorithm we are aware of the takes as input the

same limited amount of local information.

In the computationally generated networks, CBF outperformed

the acquaintance method in large areas of the parameter space

(Figure 4d). It may seem unintuitive at first that the acquaintance

method outperforms CBF at very high values of modularity, but

one should keep in mind that epidemic sizes are very small in those

extremely modular networks (see Figure 1a) because local

outbreaks only rarely jump the community borders. If outbreaks

are mostly restricted to single communities, then CBF is not the

optimal strategy because immunizing community bridges is

useless; the acquaintance method may at least find some well

connected nodes in each community and will thus perform slightly

better in this extreme parameter space.

In empirical networks, CBF did particularly well on the network

with the strongest community structure (Oklahoma), especially in

comparison to the similarly effective acquaintance method with

n = 2. (Figure 5c). As immunization strategies should be deployed

as fast as possible, the speed at which a certain fraction of the

Figure 3. The breakdown of the correlation between degree and
betweenness centrality (CB) with increasing community structure.
(a) The correlation coefficient r2 decreases rapidly as modularity increases.
(b–d): Correlation between degree and betweenness in network with (b)
medium, (c) strong and (d) very strong community structure.
doi:10.1371/journal.pcbi.1000736.g003

Figure 4. Assessing the efficacy of targeted immunization
strategies based on deterministic and stochastic algorithms in
the computationally generated networks. Color code denotes the
difference in the average final size Sm of disease outbreaks in networks
that were immunized before the outbreak using method m. The top
panel (a) shows the difference between the degree method and the
betweenness centrality method, i.e. Sdegree 2 Sbetweenness. A positive
difference (colored red to light gray) indicates that the betweenness
centrality method resulted in smaller final sizes than the degree
method. A negative difference (colored blue to black) indicates that the
betweenness centrality method resulted in bigger final sizes than the
degree method. If the difference is not bigger than 0.1% of the total
population size, then no color is shown (white). Panel (a) shows that the
betweenness centrality method is more effective than the degree based
method in networks with strong community structure (Q is high). (b)
and (c): like (a), but showing Sdegree 2 Srandomwalk (in (b)) and Sbetweenness 2
Srandomwalk (in (c)). Panels (b) and (c) show that the random walk method
is the most effective method overall. Panel (d) shows that the community
bridge finder (CBF) method generally outperforms the acquaintance
method (with n = 1) except when community structure is very strong (see
main text). Final epidemic sizes were obtained by running 2000 SIR
simulations per network, vaccination coverage and immunization
method.
doi:10.1371/journal.pcbi.1000736.g004
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network can be immunized is an additional important aspect. We

measured the speed of the algorithm as the number of nodes that

the algorithm had to visit in order to achieve a certain vaccination

coverage, and find that the CBF algorithm is faster than the

similarly effective acquaintance method with n = 2 at vaccination

coverages ,30% (see Figure 6).

Discussion

A great number of infectious diseases of humans spread directly

from one person to another person, and early work on the spread

of such diseases has been based on the assumption that every

infected individual is equally likely to transmit the disease to any

susceptible individual in a population. One of the most important

consequences of incorporating network structure into epidemic

models was the demonstration that heterogeneity in the number of

contacts (degree) can strongly affect how R0 is calculated

[12,13,34]. Thus, the same disease can exhibit markedly different

epidemic patterns simply due to differences in the degree

distribution. Our results extend this finding and show that even

in networks with the same degree distribution, fundamentally

different epidemic dynamics are expected to be observed due to

different levels of community structure. This finding is important

for various reasons: first, community structure has been shown to

be a crucial feature of social networks [15,16,17,19], and its effect

on disease spread is thus relevant to infectious disease dynamics.

Furthermore, it corroborates earlier suggestions that community

structure affects the spread of disease, and is the first to clearly

isolate this effect from effects due to variance in the degree

distribution [43]. Second, and consequently, data on the degree

distribution of contact networks will not be sufficient to predict

epidemic dynamics. Third, the design of control strategies benefits

from taking community structure into account.

An important caveat to mention is that community structure in

the sense used throughout this paper (i.e. measured as modularity

Q ) does not take into account explicitly the extent to which

communities overlap. Such overlap is likely to play an important

role in infectious disease dynamics, because people are members of

multiple, potentially overlapping communities (households,

schools, workplaces etc.). A strong overlap would likely be

reflected in lower overall values for Q; however, the exact effect

of community overlap on infectious disease dynamics remains to

be investigated.

Identifying important nodes to affect diffusion on networks is a

key question in network theory that pertains to a wide range of

fields and is not limited to infectious disease dynamics only. There

are however two major issues associated with this problem: (i) the

structure of networks is often not known, and (ii) many networks

are too large to compute, for example, centrality measures

efficiently. Stochastic algorithms like the proposed CBF algorithm

or the acquaintance method address both problems at once. To

what extent targeted immunization strategies can be implemented

in a infectious diseases/public health setting based on practical

and ethical considerations remains an open question. This is true

not only for the strategy based on the CBF algorithm, but for most

strategies that are based on network properties. As mentioned

above, the contact networks relevant for the spread of infectious

diseases are generally not known. Stochastic algorithms such as the

CBF or the acquaintance method are at least in principle

applicable when data on network structure is lacking.

Community structure in host networks is not limited to human

networks: Animal populations are often divided into subpopula-

tions, connected by limited migration only [44,45]. Targeted

immunization of individuals connecting subpopulations has been

shown to be an effective low-coverage immunization strategy for

the conservation of endangered species [46]. Under the assump-

tion of homogenous mixing, the elimination of a disease requires

an immunization coverage of at least 1-1/R0 [1] but such coverage

is often difficult or even impossible to achieve due to limited

vaccine supply, logistical challenges or ethical concerns. In the case

of wildlife animals, high vaccination coverage is also problematic

as vaccination interventions can be associated with substantial

risks. Little is known about the contact network structure in

humans, let alone in wildlife, and progress should therefore be

made on the development of immunization strategies that can deal

with the absence of such data. Stochastic algorithms such as the

acquaintance method and the CBF method are first important

steps in addressing the problem, but the large difference in efficacy

between stochastic and deterministic algorithms demonstrates that

there is still a long way to go.

Methods

SIR simulations
To investigate the spread of an infectious disease on a contact

network, we use the following methodology: Individuals in a

population are represented as nodes in a network, and the edges

between the nodes represent the contacts along which an infection

can spread. Contact networks are abstracted by undirected,

unweighted graphs (i.e. all contacts are reciprocal, and all contacts

transmit an infection with the same probability). Edges always link

between two distinct nodes (i.e. no self loops), and there must be

maximally one edge between any single pair of nodes (i.e no

parallel edges). Each node can be in one of three possible states:

(S)usceptible, (I)nfected, or (R)esistant/immune (as in standard

SIR models). Initially, all nodes are susceptible.

Simulations with immunization strategies implement those

strategies before the first infection occurs. Targeted nodes are

chosen according to a given immunization algorithm (see below)

until a desired immunization coverage of the population is

achieved, and then their state is set to resistant.

After this initial set-up, a random susceptible node is chosen as

patient zero, and its state is set to infected. Then, during a number

of time steps, the initial infection can spread through the network,

and the simulation is halted once there are no further infected

nodes. At each time step (the unit of time we use is one day, i.e. a

Figure 5. Assessing the efficacy of targeted immunization strategies in empirical networks based on deterministic and stochastic
algorithms. The bars show the difference in the average final size Sm of disease outbreaks (n cases) in networks that were immunized before the
outbreak using method m. The left panels show the difference between the degree method and the random walk centrality method, i.e. Sdegree 2

Srandomwalk. If the difference is positive (red bars), then the random walk centrality method resulted in smaller final sizes than the degree method. A
negative value (black bars) means that the opposite is true. Shaded bars show non-significant differences (assessed at the 5% level using the Mann-
Whitney test). The middle and right panels are generated using the same methodology, but measuring the difference between the acquaintance
method (with n = 1 in the middle column and n = 2 in the right column, see Methods) and the community bridge finder (CBF) method, i.e. Sacquaintance1

2 SCBF and Sacquaintance2 2 SCBF. Again, positive red bars mean that the CBF method results in smaller final sizes, i.e. prevents more cases, than the
acquaintance methods, whereas negative black bars mean the opposite. Final epidemic sizes were obtained by running 2000 SIR simulations per
network, vaccination coverage and immunization method.
doi:10.1371/journal.pcbi.1000736.g005
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time step is one day), an infected node can get infected with

probability 12exp(2bi), where b is the transmission rate from an

infected to a susceptible node, and i is the number of infected

neighboring nodes. At each time step, infected nodes recover at

rate c, i.e. the probability of recovery of an infected node per time

step is c (unless noted otherwise, we use c = 0.2). If recovery occurs,

the state of the recovered node is toggled from infected to resistant.

Unless mentioned otherwise, the transmission rate b is chosen such

that R0,(b/c) * d<3 where d is the mean network degree, i.e the

average number of contacts per node. For the networks used here,

this approximation is in line with the result from static network

theory [47], R0,T(,k2./,k.21), where ,k. and ,k2. are

the mean degree and mean square degree, respectively, and where

T is the average probability of disease transmission from a node to

a neighboring node, i.e. T<b/c. Note that the variation in the

degree is too small to be of relevance here (see further below and

Figure 1d). The reason we chose c = 0.2 (i.e. an average length of

infectious period of 5 days) and R0<3 in most simulations (unless

mentioned otherwise) is that these parameter values reflect, very

roughly, some of the most widespread infectious diseases to which

our study is relevant (i.e. flu-like infectious diseases that are

transmitted directly from person to person by the respiratory or

close-contact route [8,9,48,49,50]).

After a simulation, we record the total number of cases infected

(the epidemic size), the maximum frequency of infection at any

point during the simulation (the peak prevalence), and the number

of days that have passed between the first infected case and the

simulation stop (the duration of the epidemic).

Generation of network with community structure
In order to understand the effect of community structure, we

generated networks with 2000 nodes from scratch with varying

degrees of community structure. The strength of community

structure is generally measured as network modularity Q, which is

defined as

Q~
X

i

(eii{a2
i )

where eij is the fraction of all edges in the network that link nodes

in community i to nodes in community j, and

ai~
X

j

eij

[15]. Thus, ai represents the fraction of edges in the network

that connect to nodes in community i. If edges were to fall

between nodes without any regard for communities, we would

have eij = ai aj, and thus Q = 0. There are numerous methods to

Figure 6. Assessing the speed of stochastic immunization
algorithms acquaintance2 and CBF. The speed of an algorithm is
assessed by counting the nodes that have to be visited by the
algorithm until the desired vaccination coverage is achieved. Each visit
is counted, even if the same node has been visited before. The bars
show the difference of node visits (n visits) between the acquaintance2
method and the CBF method. Red bars mean the CBF method has
visited fewer nodes - the difference is given by the height of the bar. A
black bar indicates that the acquaintance2 methods has visited fewer
nodes. With the exception of vaccination coverage 30% in the North
Carolina network, the CBF method is always faster. (Data for speed
comparison between acquaintance1 and CBF is not shown - the
acquaintance1 method is always faster, but significantly less effective -
see middle column in Figure 5).
doi:10.1371/journal.pcbi.1000736.g006
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calculate the value of Q for a given network, and the develop-

ment of more accurate and efficient methods is still a very active

research field. In particular, one has to be careful when comparing

values of Q because some measures are normalized while others

or not [51]. We have used the spin glass method introduced by

Reichhardt and Bornholdt [52] to measure Q throughout this

manuscript.

To generate networks with community structure, we initialize a

network by creating 50 small-world communities (as found in

various social networks, see e.g. ref. [53]) of 40 nodes using the

Watts-Strogatz algorithm [54] such that each node has exactly 8

edges connecting to nodes of the same community. We then add

2000 edges randomly between randomly chosen nodes, making

sure that the edges fall between communities only. Thus, we create a

graph with 2000 nodes and 10000 (i.e. (2000+50 * 40 * (8/2)))

undirected edges where one out of five edges falls between

communities. The average degree of the network is 10, which is in

line with recent reports on social contact patterns [55]. Starting

from this initial network where Q<0.76, we create networks with

increasing community structure by rewiring between-community

edges so that they become within-community edges. More precisely,

at each rewiring step, we (i) randomly choose a between-

community edge, (ii) randomly choose one of the two communities

that the edge connects, (iii) pick a random node of the chosen

community, and (iv) rewire the edge by detaching it from the node

of the community that was not chosen in step (ii), and attaching it

to the new node in the community that was chosen in step (iii). At

all times, edges must always fall between two distinct nodes, and

there can only be one edge between any two pair of nodes. We’ve

also tested if all networks thus created consist of only a single

connected component (they do).

The quantity (CV)2 is the square of the coefficient of variation in

degree (i.e. the squre of the ratio of the standard deviation of

degree to the mean degree, where degree is defined as the number

of edges incident to a node). (CV)2 is important for the spread of

infectious diseases since it is known that

R0~r0½1z(CV )2�

where r0 is the value of R0 under the assumption of a homogenous

network (i.e. no variance in the degree distribution) [1,56].

Empirical networks
We used the network data collected on the social network

website Facebook (www.facebook.com) by Traud et al. [41]. The

data contains the friendship network at five US universities,

where nodes represent individuals (i.e. members of the university),

and edges represent friendship links between two individuals.

Additionally, the data includes covariate information (if available)

about the individuals, such as the gender of the individual, the

dormitory residence, major (field of specialization) etc. While

such friendship network data are interesting for various reasons,

they do not necessarily reflect the contact network relevant for the

spread of infectious diseases. Clearly, a friendship connection

between two individuals on a social network website does not

necessarily mean that there is also a connection between the two

individuals in the contact network relevant to the spread of

infectious diseases.

Thus, in order to obtain contact network data that are relevant for

the spread of infectious diseases transmitted directly from person to

person by the respiratory or close-contact route, we make the

following assumptions: Individuals who have a friendship relation in

the network, and who either (a) have the same dormitory residence,

or (b) who major in the same field and the same class year, are likely to

be in close enough physical contact on a regular basis as to be able to

transmit an infection to each other. Thus, using the raw friendship

data and the available information on dormitory residence, major,

and class year, we extract the subgraph which reflects our

assumptions. Having extracted the subgraph, we remove all nodes

who are not part of the largest connected component (i.e. small

subgraphs that are not part of the larger network). The networks thus

reduce to the following contact networks:

N Caltech (620 nodes and 7,255 edges, Q = 0.788)

N Princeton (5,112 nodes and 28,684 edges, Q = 0.753)

N Georgetown (7,651 nodes and 79,799 edges, Q = 0.662)

N Oklahoma (10,386 nodes and 163,225 edges, Q = 0.914)

N North Carolina (13,081 nodes, 88,266 edges, Q = 0.812)

We note that the modularity Q of these networks is within the

range of modularities measured in the computationally generated

networks (see for example Figure 1), with the exception of one

network (Georgetown). Clearly, these networks will contain

contacts that are not relevant for the spread of diseases (false

positives) - at the same time, they will also miss some relevant

contacts (false negatives). However, given the accuracy and

amount of data, these networks are well suited to study the spread

of infectious diseases on human contact networks, in particular for

diseases transmitted directly from person to person by the

respiratory or close-contact route. Degree distributions of these

networks are shown in Suppl. Mat. Figure S2.

Immunization algorithms
The algorithms used to identify nodes can be divided into two

classes: deterministic and stochastic algorithms. Deterministic

algorithms require the complete information about each node

(i.e. either the number or the identity of all connected nodes for each

node in the network), and they rank nodes by processing that

information by a procedure specific to that algorithm. Target

nodes are then chosen by their rank (from high to low). Thus, for a

given network structure, deterministic algorithms always give the

same result, i.e. they identify the same target nodes (except for

random choices when two nodes have exactly the same rank).

Stochastic algorithms, on the other hand, do not require such

detailed structural information - they identify target nodes by

collecting information locally from randomly chosen nodes in the

network. These algorithms represent the type of investigation-

related information in actual epidemics. We will now describe a

number of deterministic and stochastic algorithms as we have used

them in the main text.

Deterministic algorithms. We identifiy target nodes by

ranking nodes to one of the three following criteria: degree,

betweenness centrality, and random-walk centrality.

The degree of a node simply denotes the number of edges

incident to a node.

The betweenness centrality CB(i) of a node i is defined as

CB(i)~
X

s=t=i

sst(i)

sst

where s, t and i are distinct nodes of the graph, sst is the total

number of shortest paths between nodes s and t, and sst(i) is the

number of those shortest paths that go through node i [38].

The random-walk centrality of a node i is a measure based on

random walks, counting how often the node i is traversed by a

random walk between any pair of nodes s and t. Following
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Newman [39], we rank nodes according to the random-walk

measure

CR(i)~
X

svt

I
(st)
i

where

I
(st)
i ~

1

2

X

j

Aij DDDTis{Tit{TjszTjt
D
D

for i?s, t. Here, Aij is the element in the adjacency matrix of the

graph (0 or 1 in our case), and Tis is the element in the voltage

matrix which is calculated as described in detail in Newman [39].

Nodes are ranked according to the measure chosen (i.e degree,

betweenness centrality, or random-walk centrality). We then

immunize nodes going from high to low rankings, until the

desired immunization coverage is achieved.

Stochastic algorithms. We use two stochastic algorithms to

identify target nodes without knowledge of the full network

structure. In the algorithms described below, targets are identified

and immunized if they have not been immunized before.

The first algorithm, acquaintance immunization, has been

described by Cohen et al. [42] and it works as follows: pick a

random node v0, and then pick a random acquaintance v1, i.e. a

randomly picked neighboring node of v0. Immunize nodes that

have been referred to as acquaintances at least n times until the

desired immunization coverage is achieved. In the case n = 1, every

acquaintance will be immunized immediately. The acquaintance

strategy has been shown to identify highly connected individuals,

particularly in fat-tailed networks (such as so-called scale-free

networks).

We propose another strategy, the community-bridge-finder

(CBF) strategy, which rests on the observation that some

individuals act as bridges between communities. The goal of the

CBF algorithm is to identify such individuals based on random

walks, without knowledge of the network structure, and thus

without knowledge of the communities in a network. The

algorithm works as follows: pick a random node vi = 0 and follow

a random path (one node at a time, with the only condition that a

Figure 7. Sketch of the community bridge finder algorithm. (a) A random walk follows the path starting from v0 to v1 and v2, at which point it
starts checking for connections of v2 to v0 and v1. (b) Since there are more than one connections (v2-v1 and v2-v0), the walk continues to v3. (c) Except
the obvious v3-v2, there are no connections from v3 to any of the previously visited nodes, so v2 is a potential target. (d) The algorithm then picks two
random neighbors of v3 to check for connections to previously visited nodes - and finds one (to v0). (e) Hence, v2 is dismissed as a potential target,
and the random walk continues to v4. Again, v4 does not back-connect to any previously visited node (except, of course, to v3), and thus v3 is
identified as a potential target - (f) thus again, two random neighboring nodes are picked to check for connections to previously visited nodes. Since
no back connections can be found, v3 is identified as a target and immunized.
doi:10.1371/journal.pcbi.1000736.g007
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node has not been visited by the random walk before). At every

node vi$2, check if there is more than one connection from vi to

any of the visited nodes (the requirement for more than one

connection stems from the simple fact that every node vi will have

at least one connection to vi21). If there is just one back connection

(i.e. from vi to vi21), a potential target vi21 has been identified. As

an additional check, pick two random neighboring nodes of vi

(other than vi21) and check for connections back to the previously

visited nodes vj,i. If such connections exist, vi21 is not a potential

target - continue the random walk at vi21. If no such connections

exist, immunize the potential target. Discard all information about

visits, and start again at a randomly picked node v0. A schematic

sketch of the algorithm is outlined in Figure 7.

An algorithmic search for community bridges as described

above can potentially take a very long time, depending on the

structural features of the network. For example, the frequency of

nodes that can potentially meet the immunization requirement set

by the algorithm might be smaller than the desired immunization

coverage. To prevent endless searches for community bridges, two

additional checks are implemented. First, the number of nodes in

any running random path does not exceed 10 (this is implemented

using a first-in-first-out list that keeps track of the visited nodes).

Second, we keep track of all nodes visited, and if a node has been

visited at least k times (on any random walk), it will be immunized.

In all results presented in this manuscript, we use k = 2.

Supporting Information

Figure S1 Results from simulations with the same parameters

and settings as Figure 1a in the main text, but based on networks

with lower community structure. The initial creation of these

networks was identical to those created for Figure 1 in the main

text (see description in Methods in the main text), but rather than

rewiring between-community edges and turn them into within-

community edges, we randomly rewired within-community edges

in the following way: at each rewiring step, we (i) randomly choose

a within-community edge, (ii) randomly choose one of the two

nodes, (iii) pick a random node in the network, and rewire the edge

by detaching it from the node that was not chosen in step (ii), and

attaching it to the new node that was chosen in step (iii). At all

times, edges must always fall between two distinct nodes, and there

can only be one edge between any two pair of nodes. Note that this

algorithm is essentially the reverse of the algorithm used to create

networks with increased community structure in the main text.

Found at: doi:10.1371/journal.pcbi.1000736.s001 (2.38 MB TIF)

Figure S2 Degree distributions of the empirical networks used in

the main text. Main panels show cumulative frequency distribu-

tions; insets show non-cumulative frequency distributions.

Found at: doi:10.1371/journal.pcbi.1000736.s002 (2.24 MB TIF)
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