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Abstract

Structure and dynamics of voltage-gated ion channels, in particular the motion of the S4 helix, is a highly interesting and
hotly debated topic in current membrane protein research. It has critical implications for insertion and stabilization of
membrane proteins as well as for finding how transitions occur in membrane proteins—not to mention numerous
applications in drug design. Here, we present a full 1 ms atomic-detail molecular dynamics simulation of an integral Kv1.2
ion channel, comprising 120,000 atoms. By applying 0.052 V/nm of hyperpolarization, we observe structural
rearrangements, including up to 120u rotation of the S4 segment, changes in hydrogen-bonding patterns, but only low
amounts of translation. A smaller rotation (,35u) of the extracellular end of all S4 segments is present also in a reference
0.5 ms simulation without applied field, which indicates that the crystal structure might be slightly different from the natural
state of the voltage sensor. The conformation change upon hyperpolarization is closely coupled to an increase in 310 helix
contents in S4, starting from the intracellular side. This could support a model for transition from the crystal structure where
the hyperpolarization destabilizes S4–lipid hydrogen bonds, which leads to the helix rotating to keep the arginine side
chains away from the hydrophobic phase, and the driving force for final relaxation by downward translation is partly
entropic, which would explain the slow process. The coordinates of the transmembrane part of the simulated channel
actually stay closer to the recently determined higher-resolution Kv1.2 chimera channel than the starting structure for the
entire second half of the simulation (0.5–1 ms). Together with lipids binding in matching positions and significant thinning
of the membrane also observed in experiments, this provides additional support for the predictive power of microsecond-
scale membrane protein simulations.
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Introduction

Potassium channels are the single most common type of ion

channels in nature. The subclass of voltage-dependent potassium

channels enable controlled ion transport over the cell membrane

and are hence pivotal for a wide range of functions such as nerve

impulse action potentials, our heart beats, insulin secretion upon

low ATP, and many diseases [1]. The first X-ray structure to be

determined was the bacterial tetrameric KcsA K+ channel [2],

which is pH-modulated with an opening mechanism likely

controlled by protonation and salt bridges/hydrogen bonds [3].

Recently determined structures of voltage-modulated potassium

channels such as KvAP [4,5] and Kv1.2 [6,7] in the open state

share the same central pore domain (PD), but for these the actual

voltage-sensitivity is introduced by adjacent 4-helix voltage sensor

domains (VSDs) in each monomer. The PD is formed by eight

transmembrane helices (and their connecting loops), two from

each subunit, and it contains an ion-conducting channel

connecting the inside and the outside of the cell. This water-filled

pore consists of a rather large intracellular cavity leading into a

narrow ion-selectivity filter at the extracellular end.

The access to the intracellular cavity, and hence to the ion-

conducting pore, is controlled by a gate that is opened in response

to the membrane potential. It is well established that the gating

within the PD is regulated by conformational changes in the VSDs

in response to the varying membrane potential. In particular, the

gating is caused by the voltage sensor S4 helix of the VSD which

contains several positively charged amino acids [8–10]. When the

charged S4 helix moves it creates an experimentally measurable

current called the gating current, which is distinct from the so

called a-current caused by ions passing over the membrane

through the protein channel. The actual opening of the channel

pore domain and initiation of the a-current has experimentally

been shown to occur in the millisecond range [11], but Sigg et al.

have reported an early component of the gating current with a

time constant as short as 12 ms [12].
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When the cell is at rest, the membrane is hyperpolarized

(negative potential on intracellular side) and the gates of the

voltage-sensitive potassium channels are closed, their S4 helices

located near the intracellular membrane border, referred to as the

down or ‘‘resting’’ (R) state in Figure 1. Upon depolarization of the

membrane, channel opening is thought to occur in a stepwise

fashion where each voltage-sensing domain first activates inde-

pendently, by transferring some of the positive charges within the

voltage sensor helix from the intracellular side in the down state to

the extracellular side of the membrane, the up state. In this

transient activated state of the protein, the ion-conducting

pathway is still obstructed by the gate formed by the intracellular

ends of the four pore-lining S6 helices of the PD. Subsequently, the

channel gate is opened by an additional cooperative motion [13],

yielding the open-activated state (A) in Figure 1. For long periods

of depolarization, the channel is believed to undergo slow

inactivation caused by conformational changes around the

selectivity filter [14–17], making it impermeable for ions even

though the gate is open (the open-inactivated state, AL). Going

from R over A to AL, i.e., opening and eventually inactivating the

protein after long depolarization, is referred to the forward

direction in literature. However, since the experimental structure

corresponds to the AL (or possibly A) state, the current simulations

aim to assess the conformational changes in the backward

direction, both due to hyperpolarization and equilibration in a

more fluid bilayer.

Several experimental studies have shown that the gating

involves displacement of just over three charges per subunit across

the membrane [9,10,18,19]. Although the exact nature of the

gating process is not yet fully understood, several ideas have been

proposed, for instance S4 rotation combined with crevice

reshaping to effectively move charges between inside/outside

(transporter model [20]), larger rotation and translation of S4

inside a rigid environment (helical screw [21,22]) or S3b/S4

helices moving as a hairpin (paddle model [4]). These models have

mostly converged at smaller necessary S4 displacements combined

with rotation/tilt, but there are still important differences, for

instance whether S4 moves independently of S3b or not, whether

the charged arginine residues at some point are facing the

membrane or not, and in which order the motion events occur

[23]. Note that small S4 displacements still could explain the

effective charge displacement due to significant water depressions

in the VSDs that cause local focusing of the electric field [24–26].

Additional interesting conformational changes upon gating have

recently been proposed. In the new Kv1.2 crystal structure [7], the

intracellular end of the S4 helix adopts a 310 conformation leading

the authors to propose that this secondary structure alteration is

relevant for the gating. This is also supported by recent data from

Villalba-Galea et al. [27] suggesting that the R to A transition of

the voltage sensor takes place as 310 helix whereas the A to AL

transition changes the voltage sensor conformation to a-helix.

The experimental structures in combination with theoretical

models of the closed state [28] has led to considerable interest in

understanding these structural transitions. Simulations of isolated

voltage sensors have confirmed water-filled VSD crevices (on both

intracellular and extracellular sides), S4 stabilization and field

focusing [29,30]. Treptow et al. used short (9 ns) simulations of an

integral Kv1.2 channel to show how the S4 gating charges can be

stabilized [31], and Jogini/Roux have reported on structural

flexibility and arginine side chain dynamics in the voltage sensors

from 20 ns-simulations [26,32]. Coarse-grained representations of

Kv1.2 systems [33] have been used to reach 350 ns of simulation,

although the pore in this case collapsed to an apparently closed

state even without any applied field. Recently, Nishizawa et al.

reported on S4 motion in an isolated VSD when running at

elevated temperatures applying strong fields of 0.15 V/nm and

position-restraining adjacent helices. While interesting, it is

unclear how realistic this is since the position restraints will

prevent side chains in adjacent helices from stabilizing S4, and

near-instantaneous membrane rupture was observed at 0.2 V/nm

(in our longer simulations, fields exceeding 0.1 V/nm lead to

electrostatic breakdown in 100 ns) and no significant S4 motion

occurred in 30–40 ns simulations at lower voltages [34]. While all

these studies provide new insights into Kv1.2 dynamics, they are

all partly limited, either by short timescales or other approxima-

tions; VSDs might for instance behave differently than integral ion

channels, and any charged elements will move if the voltage

applied is high enough and the rest of the structure is restrained.

Ideally, one would want to simulate an entire ion channel system

for long times at low field strengths, which previously has not been

possible.

Here, we present a full atomic detail microsecond simulation of

an integral Kv1.2 system comprising 120,000 atoms, with an

Figure 1. Model of voltage gating. Based on Villalba-Galea et al.
[27], not including the RL state. At hyperpolarization the VSD is in
resting (R) state and protein is not conducting. Upon depolarization it
transfers to an activated (A) state, likely due to S4 voltage-dependent
motion and coupled to the channel opening. This state is transient and
converts into a more stable relaxed state (AL) at prolonged
depolarization (non-conducting). Crystal structures likely correspond
to this open-inactivated state.
doi:10.1371/journal.pcbi.1000289.g001

Author Summary

Proteins that transport ions across the cellular membrane
are essential for cellular life. The proteins conducting
positively charged potassium ions are key players in heart
beat and nerve impulse generation because they are
regulating the electrical excitability of the cell (together
with proteins transporting other ions). These particular ion
channels open and close in response to voltage changes
across cellular membranes, but the details of this process
are still not fully understood. It is, however, known that the
main protein element responsible is a helical section
containing several charges. Through new computer
simulation methods, we have been able to run unprece-
dentedly long atomic simulations of an entire potassium
channel embedded within a patch of membrane to help to
shed new light on this gating process. Upon changing the
voltage across the membrane, we observe a change in
structure of this helical protein segment that appears to be
an early sign of transition from the open to the closed
state of the channel. This has also been previously
proposed to be critical for the gating process. Under-
standing these structural changes on an atomic level is
essential for both advancing basic science and enabling
drug design targeting of voltage-regulated ion channels.

Microsecond Kv1.2 Simulation
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applied field of 0.052 V/nm, corresponding to approximately

500 mV of potential drop over the membrane (see methods and

Figure S1). The seed for this project was our recent development

of new parallelization techniques in the GROMACS molecular

simulation code [35] that have enabled us to reach a microsecond

with high-accuracy simulation settings in just a month of runs

(roughly 125,000 CPU-hours). Analysis of the S4 helix structure,

dynamics and interactions in applied fields is of course of

particular interest. Another challenge is to compare and contrast

results to the new high-resolution chimera Kv1.2/Kv2.1 structure

[7] that appeared during the project, and where the intracellular

part of S4 assumes 310 helix conformation. The primary questions

we wanted to address are whether previously observed motions in

short ion channel and VSD simulations do represent the early

stages of transition towards the resting state or merely short-time

fluctuations? To what extent can molecular simulations started

from lower-resolution structures predict native conformations

and/or lipid-protein interactions, and can we use it to better

understand channel opening/closing?

Methods

System Assembly
The initial ion channel conformation used in this study was

constructed from the X-ray structure of the Kv1.2 channel [6],

PDB accession ID 2A79. The monomer coordinates were

assembled into a tetramer channel which kindly was provided

directly from MacKinnon’s laboratory. To reduce the system size

the T1 domain was excluded. The parts used were chains B, from

residue T219 (inclusive), C from UNK33 corresponding to A162

in Kv1.2, and chain D. Since parts of the transmembrane helices

were of limited X-ray resolution it was necessary to complement it

with side chain and loop modeling to arrive at a model suitable for

simulations. The voltage sensor domains together with the pore

domain helices from the separate chains were structurally aligned

to the corresponding part in the ROSETTA model of the open

state of the Kv1.2 channel [28], using the program STRUCTAL

[36]. Subsequently, the missing parts of the crystal structure (i.e.,

residues denoted UNK, missing side chains and loops) were copied

from the ROSETTA model structure. This essentially resulted in a

model using the experimental data for the backbone and most side

chains, with the remaining side chains and missing loops from the

ROSETTA model. The ion channel structure was immersed in a

lipid membrane by using the Membrane package of VMD [37].

Starting from a pure POPC bilayer, the head group of every

fourth lipid was randomly (in each monolayer) exchanged for the

negatively charged PG head group. The ion channel was

subsequently inserted and overlapping lipids deleted, after which

313 POPC and 111 POPG lipids remained in the membrane.

Although somewhat similar to a prokaryotic membrane, this

mixture was used to better mimic conditions used in the

crystallization protocols [6,7] and it has previously also been used

in VSD simulations [38]. The negative head groups in particular

could have important interactions with arginine, and PG force

field parameters are better tested than PS. The bilayer was first

melted with MD at 300 K, while the protein was kept frozen and

the z-coordinates of the lipid chain methyl groups position

restrained (Fc = 1000 kJ/mol/nm2) to keep the membrane intact

while it packed around the protein for 1 ns. The system was

subsequently solvated with 26,632 SPC waters [39], of which 127

were replaced with potassium ions to neutralize the net system

charge, followed by another 1 ns of equilibration with only the

protein frozen. The final assembly reached 119,913 atoms, and an

approximate system size of 12*12*10 nm3 (Figure 2).

Molecular Simulations
The protein part of the system was described with the OPLS-

AA/L force field [40], and the lipids with the Berger force-field

[41]. The reason for this choice is simply that the Berger force field

has been shown to accurately reproduce experimental results

[42,43] combined with a low computation cost due to the united

CH2 atoms in the lipid chains, and then it is natural to combine it

with OPLS from which the Berger FF was derived. The OPLS-AA

combination rules and 1,4 scaling factors (0.5) were used when

mixing united and all-atom models. Atomic names of the VMD

lipids were converted with an in-house script (available upon

request).

All simulations were performed with a development version of

GROMACS 4.0 [35,44] that enabled efficient scaling and high

performance (50–60 ns/day) using 170 cores on a Cray XT4

supercomputer. Bond lengths were constrained with the LINCS

algorithm [45] while SETTLE [46] was used for water molecules.

A newly developed non-iterative parallel constraints algorithm (P-

LINCS) [47] enabled us to introduce virtual interaction sites to

remove all internal vibrational degrees of freedom of hydrogens

even when using domain decomposition, which in turn made it

possible to extend time steps to 5 fs while maintaining energy

conservation [35]. (All software is freely available through http://

www.gromacs.org.) Electrostatic interactions were calculated every

step with the Particle-Mesh Ewald algorithm [48]. Due to the

slightly worse scaling properties of PME (3D Fourier transforms) it

proved efficient to move interactions to direct space by using

longer cutoffs of 12 Å both for PME and van der Waals

interactions, so the PME grid cell dimensions could be reduced

Figure 2. Kv1.2 immersed in a membrane. The protein is colored
by subunits (blue, yellow, purple, green) and lipids chains are drawn in
gray. Water molecules were left out for clarity. The full system consists
of roughly 120,000 atoms. The lower panel shows the same system
without lipids.
doi:10.1371/journal.pcbi.1000289.g002

Microsecond Kv1.2 Simulation
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to 88688668 (for technical details, see Ref. [35]). Neighbor lists

were saved and reused for 5 steps. All simulations were performed

at constant temperature and with semi-isotropic pressure scaling.

The temperature of the system was coupled to 300 K using the

weak coupling algorithm with a time constant of tT = 0.1 ps [49].

The X+Y (isotropic) and Z box dimensions were coupled

independently to reference pressures of 1 bar with Berendsen

weak coupling, a tP = 10.0 ps time constant, dispersion corrections

to pressure, and a system compressibility of 4.5?1025 bar21 [49].

The assembled system was equilibrated in three steps with

gradually weaker position restraints on the protein (1000 kJ/mol/

nm2 for 1 ns, 100 kJ/mol/nm2 for 10 ns, 10 kJ/mol/nm2 for

another 10 ns). Side chains were only restrained in the first of these

runs. Production runs were performed without restraints; an initial

50 ns without applied potential followed by a microsecond

simulation with an applied electrical field of 0.052 V/nm along

the z system axis, with lower potential on the intracellular side.

With a box length of ca 10 nm in the z direction, this corresponds

to a potential drop of ,500 mV, which is due to depolarization at

water/lipid interface and will occur mostly over the membrane

part (Figure S1). The treatment of external potentials in

membrane systems has recently been covered in detail [50], and

it has also been reported that the periodicity effects of the PME

algorithm artificially can increase polarization, corresponding to

almost 50% higher field in pure water [51].

As additional tests, the non-polarized simulation was extended

to 0.5 ms, and to assess the effect of higher temperature/potential a

separate third 0.5 ms simulation was started from the conformation

after 0.8 ms of lower applied field, but increasing temperature to

343 K and field strength to 0.1 V/nm. Finally, a 50 ns test

simulation (starting from 1 ms) was performed where the

interactions between R300-E183 and R303-E226 were turned

off using energy exclusion groups in GROMACS.

Results

Microsecond-Scale Dynamics of the Kv1.2 Channel
In terms of structural stability there are two obvious factors that

could affect the integrity of the ion channel negatively in extended

simulations; the significant number of rebuilt side chains and the

complete removal of the non-membrane-spanning T1 domain

believed to be partly responsible for tetramerization/stabilization

of the Kv1.2 chains [6]. Microsecond scales are still quite hard to

reach even for small globular proteins without the complex long-

range electrostatics critical in membrane and ion channel systems,

and to our best knowledge it has not previously been performed

for systems of this size. This is particularly critical since the slow

lipid diffusion and reorientation slows down all motion in the

membrane, so full stabilization (or unfolding) of a structure should

be expected to take at least hundreds of nanoseconds for a

membrane protein.

We directly observe distortion of the membrane close to the

protein with significant local bending, lipids pointing in toward

polar groups and deep water depressions (though not full

transmembrane pores) forming in all voltage sensor domains, just

as previously observed in shorter simulations both of isolated

voltage sensor domains [29,38] and complete ion channels

[26,31,52].

The Ca coordinate root mean square displacement (RMSD) of

the transmembrane helices relative to the (2.9 Å resolution) crystal

structure rapidly increases during the initial 50 ns of free

equilibration, but levels off around 2 Å. When the hyperpolariza-

tion field is applied it very slowly (0.25 ms) continues to grow to

2.6 Å, where it is stable for the remainder of the simulation

(Figure 3A). The central pore-lining helices are even more rigid,

although they are actually part of four different chains. For the first

0.2 ms they are roughly within 1 Å of the crystal structure, after

which it increases just slightly to 1.2 Å as a consequence of the

other structural changes in the rest of the structure. Since this was

achieved without the tetramerization domain attached this suggests

the extra domain might actually not be critical to maintain the

Kv1.2 structure, at least on microsecond scales. The structural

flexibility of the voltage sensors has previously been reported by

Jogini [26] and is quite striking; one possible explanation is that it

could be necessary to enable the structural transitions required for

the channel function.

Since the starting model was derived from the Kv1.2 crystal

structure [6] in combination with the ROSETTA open model

[28] it is quite illustrating to compare the RMSD of corresponding

parts of the transmembrane (TM) helices to the newer 2.4 Å

chimera structure, PDB accession ID 2R9R [7]. As the simulation

proceeds beyond 0.3 ms the RMSD of the transmembrane part

shows that the protein becomes less similar to the starting model,

leveling out at about 2.6 Å, compared to the new crystal structure

to which the RMSD is 2.2–2.3 Å. Thus, even when starting from

imperfect coordinates, the simulation ensemble is closer to the new

high-resolution chimera structure. However, as recently addressed

[27,53], it is not trivial to interpret the crystal data: the current

structures of Kv1.2 might not have captured the protein in its

open-activated state but rather in the open-inactivated state due to

prolonged depolarization.

To separate inherent flexibility from simple drift/unfolding of

the different Kv1.2 domains the Ca root mean square fluctuations

(RMSF) around the average structure of each chain from the 1 ms-

simulation were calculated (Figure 3B). All four subunits exhibit

virtually identical patterns, with the two largest peaks in the curve

correspond to the large flexible extracellular loops. Experiments

have shown that these two loops can be omitted and the resulting

protein remains functional [7]. At least the endpoints of the S3&S4

helices are more mobile than the S1&S2 helices, and the pore

helices are quite rigid. Interestingly, the protein regions located

‘‘behind’’ the selectivity filter in the three-dimensional structure

(the C-terminal part of the S5 helix and the P-loop in residues

361–373, together with the selectivity filter itself in residues 374–

378) proved remarkably stable throughout the simulation. This is

consistent with experimental data; residues in the P-loop in the

highly homologous pore domain of the KcsA potassium channel

have been shown to be involved in filter-stabilizing interactions

[17]. Two potassium ions were located within the selectivity filter

throughout the simulations and no events of ion transfer through

the filter were recorded.

While stable, the ion channel is still quite a sensitive system,

which became obvious for the high-temperature/field

(343 K&0.1 V/nm) simulation. The membrane stayed more or

less intact over 500 ns, but the RMSD of the TM part gradually

increased to 5 Å (data not shown). This was coupled with very large

distortions of the VSDs and even partial unfolding of alpha helices.

In our opinion, the system is simply unfolding under these

conditions. Fields higher than 0.1 V/nm consistently lead to

electrostatic breakdown on scales of 100 ns in test simulations. As

recently reported by Böckmann et al. there appears to be an

exponential dependence of pore formation time vs. applied field

[51], and we therefore decided to limit the analysis to the

simulations closer to long-time stable conditions.

Perhaps surprisingly, we only observed a couple of Ångström of

S4 helix translation along the bilayer normal towards the

intracellular side and no effect on the pore radius was observed.

Since the transition between open and closed conformations of the

Microsecond Kv1.2 Simulation
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channel is a process of one or a few milliseconds [11], it is not

expected to occur completely in ms-scale simulation. There is

however a small but significant component of the gating

movement, the fast gating component, which appears to occur

on ms timescales [12] and it is consequently feasible that initial

stages of channel structural transitions could be captured by the

current simulation. The fact that the crystal structure might not be

in the open-activated state (A) but rather the open-inactivated state

(AL) is also important since even when hyperpolarization is

applied the structure might have to go through the A state before

being able to access resting conformations, a process not expected

to be coupled to any significant charge transfer [27].

S4 Motion and Stabilization
To characterize the behavior of the key charged residues in the

S4 helix, the movement along the z-axis (parallel to the membrane

normal) was tracked. This is non-trivial since the protein position

fluctuates a lot over a microsecond due to membrane undulations.

It was thus calculated as the difference in the z-coordinate of the

Ca atoms of these residues after removing the rigid body motion of

the non-S4 helices of each VSD by fitting each frame of the

simulation trajectory to the corresponding Ca atom of the starting

structure of the protein. The hydrogen-bonding pattern of these

cationic side chains were also analyzed since conformational

changes often are associated with alterations in the hydrogen-

bonding.

The relative displacement of the Ca atoms along the z-axis (after

removal of overall VSD movement) is shown in Figures 4 (A & C

subunits), S2 (B & D subunits), and S3 (A & C subunits, depolarized

simulation).

In general, fluctuations of 5–10 Å were seen over hundreds of

nanoseconds, suggesting that it is quite difficult or impossible to

draw conclusions from shorter simulations. However, it is quite

striking that there is really only one case—subunit C—where we

see significant changes due to the applied field (for reference:

simulations had identical starting conditions). The net movement

towards the intracellular side is quite low in all cases (with and

without applied field), up to ,3 Å for R300 in subunit C, which

really is the same order of magnitude as the fluctuations on

microsecond scale. R303 and K306 also moved marginally in the

same direction while R294 adopted a more extracellular position

hence extending the N-terminal part of the helix. A visually more

appealing way to represent this is depicted in Figure 5. It shows

that the S4 helix in this subunit is less bent due to straightening of

the extracellular portion of the helix (see next section). It has the

effect that the mass center of the S4 helix backbone is shifted

towards the intracellular side, especially the N-terminal half,

explaining the relative downward movement of R300 but also the

lack of corresponding movement in R294 and R297 which both

end up on a more extracellular phase of the helix (due to rotation)

compared to the reference structure.

Hydrogen-bonding patterns of the key cationic side chains are

also displayed in Figures 4, S2, and S3. Hydrogen bonds formed

with other protein residues and lipids are shown, not with water,

but in practice all hydrogen bonding donors and acceptors in these

residues are matched. Consequently, the total number of hydrogen

Figure 3. Protein flexibility. (A) Root-mean square displacement (RMSD), smoothed by a 1 ns running average, of the transmembrane Ca atoms in
the entire protein (black), and for the pore domain (red), compared to initial simulation conformation and to the new chimera crystal structure of
Kv1.2 (PDB ID 2R9R) (green). (B) Root-mean square fluctuation (RMSF) of Ca, with each subunit displayed separately. The secondary structure regions
of the protein are identified for clarity.
doi:10.1371/journal.pcbi.1000289.g003

Microsecond Kv1.2 Simulation
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bonds formed by an arginine is 5 (3 for lysine), one for each side

chain hydrogen connected to an electronegative atom (nitrogen).

R294 and R297 formed strong hydrogen bonds with oxygens in

the lipid head groups in the extracellular leaflet and water

molecules in the extracellular VSD crevice but they also interacted

transiently with residues in the neighboring S5 helix of the pore

domain (D352 and E353). R300 and R303 on the other hand,

mostly formed stable salt-bridges with negatively charged residues

within the VSD, in particular E183 in S1 and E226 in S2,

something that also has been shown in the crystal structures of

Kv1.2 and in other modeling/simulation attempts of the open

Shaker channel [26,28,54], and with water (in the extracellular

crevice). For subunit C, where we did see clear differences with/

without hyperpolarization, the formation of new hydrogen bonds

with the protein and water in the extracellular VSD crevice

instead of interaction with lipids (for example in R297 in subunit A

and similar events in the other subunits, B and D) was highly

correlated with a large rotation around the helical axis (see next

section). As the rotation in the extracellular half of the S4 helix

took place in subunit C under hyperpolarization, the total number

of hydrogen bonds formed between lipids and R294 and R297

decreased as these side chains gradually reduced their exposure to

the lipid environment. The lysine residue, K306, formed hydrogen

bonds with protein, first with E236 in S2 (except in subunit C) and

later with D259 in S3 (interactions confirmed by experimental

findings in Shaker [55]), and water molecules in the intracellular

VSD crevice. Interestingly, the formation of the hydrogen bond

between K306 and D259 in subunit C at 0.3 ms is highly

correlated to onset of 310 helix growth in S4 of subunit C.

The charge movement in S4 towards the intracellular side upon

channel open-to-closed gating is thought to be associated with

hydrogen-bonding pattern changes. The two most extracellular

arginine residues should, as they move down in response to the

hyperpolarization, start competing for the hydrogen bonds formed

between the following two arginine residues (R300 and R303) and

the anionic residues in the VSD center (E183 and E226). As they

do, these latter two arginine residues become accessible to the

water in the intracellular crevice and/or other polar/charged

residues residing there [56]. It is likely that these changes in

hydrogen-bonding within the VSD contribute to the free energy

barrier between the intermediate states of gating. Curiously, no

systematic change in this hydrogen-bonding pattern was observed,

with the exception of R300 in subunit C under hyperpolarization,

where we see a complete loss of its hydrogen bonds to protein.

This could of course be due to the fact that this process is much

slower compared to the simulation timescale, as might be possible if

this really is the main free energy barrier of structural transforma-

tions between the open and closed states. To investigate this further

we attempted to selectively exclude the interactions between the

residues participating in these hydrogen bonds in the open state of

the channel. After 50 ns of such a simulation (continuing from the

last frame of the normal hyperpolarization simulation at 1 ms) we

still did not see any of these structural and binding rearrangements.

This indicates that the free energy barrier could rather be attributed

to the hydrophobic area surrounding S4 in the central part of the

VSD, formed by isoleucine residues in S1 and S2 (corresponding to

the Kv1.2 residues I177 and I230 respectively) as proposed by

Campos [57] and/or by phenylalanine (F233) as proposed by Long

[7], separating the extracellular and intracellular water crevices. To

fully close the channel, the S4 helix must be translated towards the

intracellular side according to all current models. It will force its

arginine residues to cross this hydrophobic area devoid of possible

Figure 4. Dynamics of charged amino acids in the S4 helix of subunits A and C. Panels A & F show the relative Ca translation along the
membrane normal, with positive direction towards the extracellular side. Note the difference in scales on the y-axis. Panels B/G & C/H indicate
rotation of Ca and the outermost heavy atom around the local helix axis, respectively (clockwise rotation being positive when viewed from the N-
terminal). Panels D/I & E/J display the number of hydrogen bonds formed with the rest of the protein and lipids, respectively (acceptor-donor
distance,3.5 Å, angle,30 degrees). A 1 ns running average is used in all panels.
doi:10.1371/journal.pcbi.1000289.g004
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hydrogen-bond acceptors, and hence the hydrogen bonds between

the arginine residues and the anionic residues located extracellularly

of the hydrophobic area (E183 and E226 in particular) are almost

certain to break as the former move across the barrier without

stabilizing hydrogen bonds, which would lead to a kinetic free

energy barrier for this transition. Once the side chains have crossed

the hydrophobic area, they can again form hydrogen bonds with

other polar residues of the protein or with water in the intracellular

crevice of the VSD.

Secondary Structure Alteration Might Be Necessary for S4
Translation

Rotation of the S4 helices was observed and quantified by

measuring the local rotation for all residues within the helix in

each subunit with respect to the position of the corresponding

residue in the starting conformation of the protein, defined from a

local helical axis. For the key positively charged residues in S4—

the four most extracellular arginine residues (R294, R297, R300

and R303) and the downstream lysine residue (K306)—both the

rotation of Ca and the outermost heavy atoms were analyzed

(Figure 4 for subunits A & C, Figure S2 for subunits B & D).

Interestingly, S4 helices in all subunits exhibit a limited rotation

in all simulations, even in the depolarized state. Significant

rotations were always counterclockwise around S4, as seen from

the extracellular side, turning the two most N-terminal arginine

residues slightly toward the VSD interior (see Figure 6). All four

subunits had a similar initial behavior with respect to S4 rotation

(Figures 4 and S2, S3 in depolarized state); a rotation of around

230 to 240u for the Ca atoms of R294 and R297 while their side

chains underwent a somewhat smaller rotation at the beginning

due to favorable hydrogen bonds to lipid head groups. Some of

these side chains were subject to additional rotations, highly

correlated with changes in their hydrogen-bonding, as is apparent

for R297 in subunit A at ,370 ns (and similar events for R294

and R297 side chains in subunits B and D, Figure S2), where the

creation of two hydrogen bonds with protein caused the side chain

to rotate to the level of the Ca atom. The more intracellularly

located residues in the helix, e.g., R300/R303/K306, underwent

marginal rotation, if any.

In addition to the small but clear rotation of the S4 helix present

in all chains, the extracellular half of the helix in subunit C also

exhibited a significantly larger but slow rotation in the 0.3–0.7 ms

timeframe when the hyperpolarization field was applied. R294

and R297 rotated about 280 to 2120u (peak values as much as

2150u), whereas the minimal rotation of R300 and R303 was

kept. This had the consequence that the helix became longer as

Figure 5. Sideview of subunit C, helix S1 to S4–S5 linker helix. For a clearer view of the S4 helix, the protein is visualized as viewed from the
pore domain. The extracellular side is ‘‘up’’ in the figure. The starting structure (gray) and the last frame of the simulation (cyan) are shown. They were
structurally aligned using the Ca coordinates of the helices S1 to S3. In both structures, the Ca atoms of the four top arginine residues (R294, R297,
R300 and R303) in S4 are shown as blue spheres for comparison. Simulation box is visualized in inset (same orientation).
doi:10.1371/journal.pcbi.1000289.g005

Microsecond Kv1.2 Simulation

PLoS Computational Biology | www.ploscompbiol.org 7 February 2009 | Volume 5 | Issue 2 | e1000289



the pitch angle between helix turns increased and the positively

charged residues in the helix aligned on the same phase, all

pointing toward the VSD interior, forming a significant stretch of

310 helix. The Ca rotation is again closely correlated with side

chains (the backbone might even precede the sidechains).

Together with the rearrangement taking 0.4 ms to complete, it

indicates a predominantly entropy-limited process.

To double-check that the a helix vs. 310 helix states are correctly

modeled, the energies for an ACE-Ala20-NME peptide in the two

secondary structures were calculated, confirming that the a helix

enthalpy is lower by roughly 5 kJ/mol per residue. This agrees

well with earlier studies using both OPLS [58] and other

parameters [59] that also calculated an entropic contribution to

oppose roughly 1/3 of this. The final free energy is thus roughly 3–

4 kJ/mol lower per Alanine residue for an alpha helix in solvent,

with a low barrier around 1 kJ/mol (from 310 to a helix) in earlier

OPLS studies [58]. In addition, the force field employed here has

also been succesful at reproducing the free energy landscape for

the 310 helix-containing Trp-cage protein to within 1.5 Å [60], so

we do not expect the transition to be an artifact from parameters.

The larger rotation was a progressive event, not associated with

single hydrogen-bonding formation/breakage as in the abrupt

R297 side chain rotation in subunit A. Note that no corresponding

rotation occurred in any of the subunits in the simulation without

external field. The 310 helix extension (which even starts from the

intracellular side) was associated with formation of a new hydrogen

bond between K306 and D259. S3b motion was clearly coupled

with S4 in fluctuation motions and initially even rotates slightly

counter-clockwise around S4 to maintain interaction surfaces.

However, at least in the present simulations, these interactions

were broken when S4 rotated .70u degrees, and the extracellular

part of S4 turned almost a third of a turn relative to S3b.

Hydrogen-bonding to lipids decreased in R294 and R297 after

approximately 470 ns (in favor of hydrogen bonds to water and to

some extent protein residues in the case of R297), but most of the

rotation had already taken place at that point. Consequently, the

lipids involved in hydrogen-bonding with these two arginine

residues were dragged in towards the VSD/PD interface as the

field-driven subunit C rotation took place.

Secondary structure plots from the hyperpolarization simulation

are presented in Figures 7 (subunits A,C) and S4 (subunits B,D),

while Figure S5 shows the secondary structure in subunits A,C in

the non-polarized simulation. They provide additional evidence of

protein stability; the S1–S6 transmembrane helices keep their core

a-helical structure while the helix ends and the connecting loops

are somewhat more variable in their secondary structure as

expected. The region around the selectivity filter (residues 274–

278) also shows a high structural stability throughout the

simulation.

The rotation of the extracellular half of the S4 helix in subunit C

caused this part of the helix to be more tightly wound and

somewhat elongated because the pitch angle between following

helix turns increased. The secondary structure in this region

accordingly underwent a change from a-helix to 310-helix. In fact,

the handful most C-terminal residues of the S4 helix in all subunits

adopt 310 secondary structure already early in the simulation.

However, the significant 310-helix growth in S4 of subunit C starts

after some 200 ns and continued for 250–300 ns, perfectly

correlated with the rotation of the extracellular end of this helix.

After the rotation, the 310-helix consistently encompassed a full 17

residues in S4 (residues 293–309), including the two most

extracellular arginine residues R294 and R297. No corresponding

310-helix growth was seen in any of the subunits in the simulation

without the applied electric field.

Our model was derived from the original crystal structure of the

Kv1.2 channel [6] but it has very interesting similarities to the new

fully-resolved Kv1.2 chimera crystal structure [7]. In particular,

the new structure features 310-helices C-terminally of the second

arginine in S4 (R297). One idea put forward by MacKinnon and

coworkers is that the 310 portion of the secondary structure of the

S4 helix could be important for the function of the protein by

turning the arginine residues away from the lipid membrane as

they start the motion towards the intracellular side in response to

the hyperpolarization of the membrane. The easy solution would

be if the side chains are simply pulled down by the hyperpolarizing

field, essentially dragging the helix into 310 helix. However, this

would not explain why the transition in vivo can take up to

milliseconds, or why there are separate open-active and open-

inactive states. In the hyperpolarization simulations, the backbone

and side chain rotation appears to be quite correlated and slow,

and the 310 helix is even growing from the intracellular side. As

mentioned above, this rather points to an entropic effect of

packing S4 to the remaining VSD helices, somewhat akin to

finding a keyhole in the dark—it takes time, and pushing harder

will not help. It also supports an overall ‘screwing’ motion of S4,

but in particular a model where S4 first might have to transition to

310 helix (AL to A) for the actual closing motion (A to R) to be

possible, as recently also suggested by Villalba-Galea et al. [27].

Protein-Membrane Interactions
The lipid bilayer thickness was studied by calculating time-

averaged bilayer thickness between sn-2 carbons in the glycerol

group (the carbon at the branching point between the two acyl

chains and the head group) on a grid in the plane of the membrane

Figure 6. Rotation of the S4 helix in subunit C. An extracellular
view of the S4 helix at the beginning (gray) and end (cyan) of the
simulation. The top three arginines in each conformation are shown in
stick representation and the large counter-clockwise rotations of R294
and R297 indicated by arrows. The end-conformation was been aligned
to the initial using the Ca atoms in helices S1 to S3 after which the S4
helices were aligned to each other in order to compare their relative
rotation.
doi:10.1371/journal.pcbi.1000289.g006
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Figure 7. The secondary structure of subunits A and C as calculated by DSSP. Note the significant growth of the 310 helix in subunit C that
correlates with S4 rotation.
doi:10.1371/journal.pcbi.1000289.g007
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(the xy-plane). The result is shown in Figure 8. Membrane proteins

have been shown to induce large distortions in the surrounding

bilayer in some cases and that the lipid membrane can modulate

protein function [61]. Clearly, the transmembrane protein has a

large effect on the bilayer thickness; in general, the thickness is

obviously reduced close to the protein and in particular in the

grooves between neighboring VSDs (down to ,25 Å) compared to

the bulk thickness (40–50 Å).

The Kv1.2 chimera structure [7] has highly resolved lipid

molecules in the crystal forming a bilayer-like structure, especially

in the grooves between laterally protruding neighboring VSDs,

indicating that these lipids are an integral part of the protein

structure and probably contribute to its stability. This suggest

strong lipid-protein interactions in those regions which in turn

support the data that shows that these parts of the lipid bilayer are

very important for lipid and lipid-soluble channel-regulators, such

as drugs and toxins [62–64]. Even though the number of resolved

lipid molecules is rather low in the crystal structure, a direct

comparison to the simulations is tempting. In addition to several

lipid acyl chain fragments, three polar lipid head groups are

resolved in the unit cell (containing a single subunit); one in

contact with the C-terminal part of S6, the second wedged

between the VSD and the S4–S5 linker, both part of the

intracellular leaflet, whereas the last is located close to the P-loop

on the extracellular side. This latter region had already been

proposed to be a lipid-interaction site due to lipid head group

electron density in the KcsA crystal structure [65]. The lipid close

to the S4–S5 linker in the intracellular leaflet was noted to have a

considerable different level of burial in the bilayer. By mapping

snapshots of the simulation onto the crystal structure we estimate a

thinning specifically on the intracellular side of at least 8 Å in this

region. These two lipid molecules are shown in Figure 9 (lipid close

to the S4–S5 linker on the right), together with two POPC lipids

from the simulation at very similar positions—note that this

packing was not assigned in the starting conformation. The

simulation suggests a thinning, not only of the same magnitude,

but also in the same region of the bilayer.

The lipid-exposed positively charged arginine residues in S4

perturbed the membrane bilayer in their neighborhood because of

their hydrogen-bonding to lipid head groups. However, they never

interacted directly with the hydrophobic phase. On average, lipids

were dragged down to be able to form these interactions and the

bilayer hence became thinner in this region which can be seen by

the mostly blue-colored regions of the membrane in Figure 8, close

Figure 8. Lipid bilayer thickness. Distance between sn2 carbons (second carbon of the glycerol backbone) on opposite sides of the bilayer,
calculated on a grid in the xy-plane (viewed from the intracellular side) and averaged over 100 ns in the beginning, in the middle and in the end of
the simulation. White areas are representing grid-points where the lipid densities are low in both leaflets, i.e., protein regions.
doi:10.1371/journal.pcbi.1000289.g008

Figure 9. Comparison of lipid structure between a simulation
snapshot and the new Kv1.2 chimera crystal structure. A
sideview of the S4–S5 linker to S6 region of the crystal structure (gray)
superpositioned on a snapshot of the simulation (cyan). Lipid molecules
of the crystal structure are shown as van der Waals spheres. Two lipids
molecules from the simulation at corresponding positions are shown in
stick representation.
doi:10.1371/journal.pcbi.1000289.g009
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to the PD at the right edges of the VSDs as viewed radially from

the protein pore (region at x,y-coordinates ,(4,4.5) nm in plot, for

subunit A). Such interactions between the positively charged

arginine residues of S4 and the negatively charged lipid

phosphodiester groups are crucial for the protein function, as

they are stabilizing the open conformation [66]. Moreover, this

significant thinning of the bilayer in the proximity of the voltage-

sensing arginine residues further helps the electric field focusing

[25,67].

Other simulations have also reported on the thinning of the

membrane with immersed voltage-gated ion channels or VSDs. In

simulations of the VSD in POPC/POPG bilayer mixtures at 3:1

molecular ratio, Sands et al. found a thinning of the bilayer of

,7 Å close to the voltage sensor compared to bulk (measuring the

P-P distance of opposing phospholipids) [38]. In simulations of an

isolated S4 helix (from KvAP) in a POPC bilayer, Freites et al. [68]

found such a deformation of the membrane in the vicinity of the

peptide where the hydrophobic core was reduced to a mere 10 Å.

In particular, they noted that one lipid in a simulation snapshot

spanned the entire membrane in a configuration resembling that

of a monolayer. Roux and coworkers [26] also reported significant

membrane thinning at the intracellular side in their simulation of

Kv1.2 due to increased interactions between basic residues and

(DPPC) lipid head groups. Although these studies are hard to

compare due to differences in methodology, lipid and protein

compositions, thinning of the bilayer around the VSD is present in

all cases and the phenomenon most likely has functional

importance because it both stabilizes the open state and focuses

the electric field around the voltage-sensing arginine residues of

the S4 helix.

To characterize the nature of the lipid-protein interactions, the

number of POPC and POPG lipids within 9 Å of the protein

surface (measured from the phosphor atom in the lipid head

group) was analyzed and compared between the first (random) and

last (equilibrated) frames of the simulation, see Figure 10. The

POPC/POPG ratio at the start of the simulation is 2.61 while it

decreases to 2.28 at the end, compared to the overall ratio of 2.82

(313/111), clearly indicating an enrichment of negatively charged

POPG lipids close to the protein. A closer look at the data reveals

that the contribution to the POPG enrichment is mainly due to

increased interactions between POPG and positively charged

residues on the intracellular side of the protein, far away from the

voltage-sensing arginine residues in the open state. This might not

be critical for the protein function, but experimental studies have

shown that the presence of the phosphodiester moiety of the lipid

head group is important for the stabilization of the open state of

the voltage-dependent K+ channels [66]. Rather, this enrichment

might simply be explained by electrostatics; the charge distribution

of the protein differs significantly between the intracellular and

extracellular sides of the membrane with a clear overweight of

positively charged residues at the intracellular side, which hence

attracts negatively charged POPG lipid molecules. Biological

relevance of specific interaction sites of anionic lipids can not be

ruled out, however, since they have been detected in KcsA [69]

and they are thought to modulate the selectivity filter stability [70].

In the same spirit, cardiolipin binding sites have been reported for

a number of membrane proteins such as the ADP/ATP carrier,

and a cardiolipin molecule has also been found in the structure of

the cytochrome bc1 complex [71]. Finally, they could be

important for accessibility of lipid-soluble protein functional

regulators binding at or in close proximity to these sites.

Discussion

The environment of the charged arginine residues in S4 after

equilibration confirms previous reports that the two most

extracellular arginine residues are only partly exposed to the lipid

environment where they hydrogen bond to lipid head groups, in

addition to transient interactions with water molecules in the

extracellular VSD crevice and protein residues of the neighboring

pore domain. The downstream two arginines were found to

participate in stable salt-bridges with negatively charged residues

from the neighboring S1 and S2 helices, forming a structural

barrier separating the extracellular and intracellular water cavities

within the voltage-sensing domains.

The initial 30–40u rotation of the upper part of S4 in all

subunits (both with and without hyperpolarization applied)

indicates that the equilibrium state in a bilayer is likely somewhat

different from the crystal structures. The rotation partly moves the

two arginine residues within this segment away from the

membrane-exposed surface of the VSD, towards its interior.

Recently, Lewis et al. [53] presented a study that supports the

notion that the voltage sensor in the crystal structure might not

have the exact orientation expected in the open-activated state,

based on experimentally derived distance-constraints between the

most N-terminal arginine in S4 (R294) and residues in the S5 helix

of the pore domain, but they should be rotated by ,37u. Our

simulations agree virtually perfectly with this, and enabled

interactions (although transient) between R294 and relevant S5

residues.

However, since this rotation occurs also in the simulation

without external applied field (which should probably correspond

to the AL state, if that is indeed the state of the crystal structure),

this motion might not be representative of the AL to A transition,

but rather an equilibration of the X-ray structure due to different

environment (e.g., ion concentrations) in the crystal vs. the

simulation. It is not trivial to say which one of these is closer to the

native state. To focus on possible simulation shortcomings, one

could, e.g., argue that the rotation might be be due to incomplete

initial lipid packing around the protein, which is important for the

stability of the S4 helices. While theoretically possible, we find this

somewhat unlikely since the ion channel coordinates were

restrained for the first 20 ns of simulation to pack lipids efficiently

around the protein, and the rotation subsequently took another

,50 ns to complete. Furthermore, the membrane used for

solvation did not have the four-fold symmetry of the ion channel,

so it is improbable that incomplete local solvation would cause

quantitatively similar rotation in all four VSDs.

The slower, large-magnitude, rotation of S4 observed in the

VSD of subunit C (roughly 120u) is quite striking, and most likely

caused by the hyperpolarization of the membrane since no

corresponding rotation is observed in the simulation without the

Figure 10. Change in number of contacts between the protein
and lipids. A contact is defined between the protein and a lipid if at
least one protein atom is located within 9 Å from the phosphorous
atom in the lipid head group. The absolute initial number of contacts
are 102 and 39 for protein-POPC and protein-POPG, respectively.
doi:10.1371/journal.pcbi.1000289.g010
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applied electrical field. Equally important—this rotation is closely

coupled to most of S4 forming 310 helix (17 residues), which we

hence can attribute to the hyperpolarization with fair confidence.

Together, this has the effect that the positively charged residues in

S4 align on the same phase of the helix, all pointing to the VSD

interior. While some caution is advised considering the limited

amount of data, this does look like an early stage of the voltage

sensor transitioning. This is supported by considerable axial

rotation of the S4 helix (as much as ,180u in recent disulfide and

metal bridge experiments [57]) and a change of the tilt angle of the

helix [72].

A shorter stretch (two turns) of 310 helix is also present in the

new chimera Kv1.2/Kv2.1 structure [7], and the authors have

suggested it could be important for gating. In a new experimental

paper by Villalba-Galea et al. [27] this idea has taken further and

they propose a mechanism of gating where the S4 helix totally

adopts a 310 conformation as it moves between the resting and

activated states (R and A). Moreover, their data suggest that the

slow inactivation of the protein (the A to AL transition) takes the

S4 helix from the 310-conformation to a-helical in the open-

inactivated state. Interestingly, since the crystal structures of the

Kv-channels are thought to be in the open-inactivated state, this

seems to support the transition observed, which in that case would

correspond to the backward direction from open-inactivated AL

state towards the activated A state (S4 forming 310 helix), which

later would enable the A to R transition since a tighter helix with

aligned charges could be easier to translate vertically.

Since stepwise activation of the VSDs has been observed

experimentally [13,73], we expect similar transitions to later occur

in the remaining three subunits too. However, since even the

transition motion takes close to half a microsecond to complete,

even these fairly long simulations are at the very lower boundary of

the timescales required to overcome the free energy barriers

involved.

Since gating is a reversible process, the hyperpolarization should

return the protein to the closed resting state. However, it is not

obvious that this mechanism of charge transfer is strictly the

reverse of activation, in particular not when starting from the

open-inactivated state. It is for instance likely that the closing

process too is initiated in the VSD, and conformational changes

propagated to the channel such that the entrance to the ion-

conducting pore closes. In this case, it is also quite possible that S4

first might have to rotate away from the lipids when destabilized

by the hyperpolarization, and later translate down due to entropic

packing (whether this corresponds exactly to the AL-A-R

transition or not is a separate question). While high potential/

temperature or coarse-grained models are extremely useful from

an understanding point of view, they can also easily alter this order

of events or produce artificial motion. In fact, based on recent

experiments [27] it is doubtful that a VSD should be able to

transition (in particular not directly from AL to R states) on 10–

100 nanosecond timescales while not changing secondary

structure!

So, which is the chicken and which is the egg? Does the 310

helix formation drive the rotation or vice versa? Unfortunately this

is not easy to resolve even from simulations since the two appear to

be extremely coupled—the 310 helix of subunit C extended from

the C-terminal side of the helix with a duration directly correlated

with the large rotation after hyperpolarization. The seed for this

alteration in structure seems to have been a hydrogen bond

forming abruptly between K306 in S4 and D259 in S3, putting a

local strain on the S4 helical backbone which subsequently was

mediated ‘upwards’ in the S4 helix. Prior to this, the VSD helices

became less tightly packed transiently as reflected by a 10%

increase in the radius of gyration around the z-axis, possibly

pushing the structural flexibility needed to initiate the 310

formation in this otherwise tightly packed central part of the

VSD. On the other hand, the first part of the rotation at the N-

terminal end of S4 began directly as the positional restraints were

released and cannot be attributed to the change in secondary

structure which started after about 0.2 ms in subunit C. Further, if

the subsequent large rotation in subunit C was caused solely by the

310 formation, then one would expect that the more C-terminally

located R297 would start to rotate before R294. In practice, we

believe it is a collective entropic process of re-packing S4 against

the adjacent helices when the field changes, which would explain

both the slow transition and why S4 can be transiently stable as 310

helix in the open-active state.

The interactions between lipids and the membrane protein

constitute an entire chapter by itself. Generally speaking, the

coupling between membrane protein activation and membrane

composition has been reported previously [74], illustrating the

importance of specific lipid-protein interactions as well as the

effects of membrane elastic properties on protein structure and

dynamics. The thinning of the bilayer in the grooves between

neighboring VSDs is evident, and this is actually also the region

with resolved lipids in the new crystal structure of the chimera

Kv1.2 protein [7], indicating favorable interactions with the

protein. There are several experimental reports of functionally

important interactions between the voltage sensor and lipids, both

for stabilizing the open state of the voltage-dependent K+ channels

[66] and for the focusing of the electric field around the voltage

sensor [25,67], that are mapped to this area of the bilayer.

Additionally, interaction sites with protein function regulators,

such as drugs and toxins, have been shown to be located on the

protein surface facing these lipid regions [62–64]. Hence, the

bilayer behavior within these grooves seems to be of a very

different nature compared to the bulk lipid bilayer and other parts

of the membrane close to the protein. Quantifying these

differences more thoroughly is something we will focus on in a

future project.

Supporting Information

Figure S1 Average actual electric field and potential in the 1

microsecond simulation. Shown as a function of z-position with

and without the applied field. The field and potential is calculated

by single and double intergration, respectively, of the charge

density according to the Poisson equation. Due to depolarization

at the water/lipid interface, virtually the entire potential shift

occurs over the membrane part of the system.

Found at: doi:10.1371/journal.pcbi.1000289.s001 (0.71 MB TIF)

Figure S2 Charged residue dynamics in S4 for subunits B and

D. Panels A&F show the relative Ca translation along the

membrane normal, with positive direction towards the extracel-

lular side. Note the difference in scales on the y-axis. Panels B/

G&C/H indicate rotation of Ca and the outermost heavy atom

around the local helix axis, respectively (clockwise rotation being

positive when viewed from the N-terminal end of the S4 helix).

Panels D/I&E/J display the number of hydrogen bonds formed

with the rest of the protein and lipids, respectively.

Found at: doi:10.1371/journal.pcbi.1000289.s002 (2.75 MB TIF)

Figure S3 Dynamics of charged amino acids in subunits A and

C without external field (Compare Figures 4&S2). Panels A&F

show the relative Ca translation along the membrane normal,

panels B/G&C/H rotation of Ca and the outermost heavy atom

around the local helix axis, and Panels D/I&E/J the number of
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hydrogen bonds formed with the rest of the protein and lipids.

Interestingly, all subunits show limited rotation (30–40 degrees)

even without applied field, indicating the membrane environment

could be slightly different from the crystal structure.

Found at: doi:10.1371/journal.pcbi.1000289.s003 (1.92 MB TIF)

Figure S4 The secondary structure of subunits B and D as

calculated by DSSP. Note that no 310 formation in S4 is present

(compare Figure 7).

Found at: doi:10.1371/journal.pcbi.1000289.s004 (2.97 MB TIF)

Figure S5 DSSP secondary structure of subunit A and C

without external electric field. There is no significant growth of 310

helix contents in S4.

Found at: doi:10.1371/journal.pcbi.1000289.s005 (0.93 MB TIF)

Author Contributions

Conceived and designed the experiments: IV EL. Performed the

experiments: PB PSN. Analyzed the data: PB PSN. Wrote the paper: PB

PSN IV EL.

References

1. Xu X, Erichsen D, Börjesson S, Dahlin M, Amark P, et al. (2008)

Polyunsaturated fatty acids and cerebrospinal fluid from children on the
ketogenic diet open a voltage-gated K channel: a putative mechanism of

antiseizure action. Epilepsy Res 80: 57–66.

2. Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, et al. (1998) The
structure of the potassium channel: molecular basis of K+ conduction and

selectivity. Science 280: 69–77.

3. Thompson A, Posson D, Parsa P, Nimigean C (2008) Molecular mechanism of
pH sension in KcsA potassium channels. Proc Natl Acad Sci U S A 105:

6900–6905.

4. Jiang Y, Ruta V, Chen J, Lee A, MacKinnon R (2003) The principle of gating
charge movement in a voltage-dependent K+ channel. Nature 423: 42–48.

5. Lee SY, Lee A, Chen J, MacKinnon R (2005) Structure of the KvAP voltage-

dependent K+ channel and its dependence on the lipid membrane. Proc Natl
Acad Sci U S A 102: 15441–15446.

6. Long SB, Campbell EB, Mackinnon R (2005) Crystal structure of a mammalian

voltage-dependent Shaker family K+ channel. Science 309: 897–903.

7. Long SB, Tao X, Campbell EB, Mackinnon R (2007) Atomic structure of a

voltage-dependent K+ channel in a lipid membrane-like environment. Nature

450: 376–382.

8. Yang N, Horn R (1995) Evidence for voltage-dependent S4 movement in

sodium channels. Neuron 15: 213–218.

9. Aggarwal SK, MacKinnon R (1996) Contribution of the S4 segment to gating
charge in the Shaker K+ channel. Neuron 16: 1169–1177.

10. Seoh SA, Sigg D, Papazian DM, Bezanilla F (1996) Voltage-sensing residues in

the S2 and S4 segments of the Shaker K+ channel. Neuron 16: 1159–1167.

11. Hille B (1992) Ionic Channels of Excitable Membranes. Sunderland,
Massachusetts: Sinauer Associates.

12. Sigg D, Bezanilla F, Stefani E (2003) Fast gating in the Shaker K+ channel and

the energy landscape of activation. Proc Natl Acad Sci U S A 100: 7611–7615.

13. Pathak M, Kurtz L, Tombola F, Isacoff E (2005) The cooperative voltage sensor
motion that gates a potassium channel. J Gen Physiol 125: 57–69.

14. Yellen G, Sodickson D, Chen TY, Jurman ME (1994) An engineered cysteine in

the external mouth of a K+ channel allows inactivation to be modulated by metal
binding. Biophys J 66: 1068–1075.

15. Liu Y, Jurman ME, Yellen G (1996) Dynamic rearrangement of the outer mouth

of a k+ channel during gating. Neuron 16: 859–867.

16. Kiss L, LoTurco J, Korn SJ (1999) Contribution of the selectivity filter to

inactivation in potassium channels. Biophys J 76: 253–263.

17. Cordero-Morales JF, Jogini V, Lewis A, Vasquez V, Cortes DM, et al. (2007)
Molecular driving forces determining potassium channel slow inactivation. Nat

Struct Mol Biol 14: 1062–1069.

18. Schoppa N, McCormack K, Tanouye M, Sigworth F (1992) The size of gating

charge in wild-type and mutant Shaker potassium channels. Science 255:
1712–1715.

19. Lecar H, Larsson H, Grabe M (2003) Electrostatic model of S4 motion in

voltage-gated ion channels. Biophys J 85: 2854–2864.

20. Bezanilla F (2002) Voltage sensor movements. J Gen Physiol 120: 465–473.

21. Catterall WA (1986) Molecular properties of voltage-sensitive sodium channels.

Annu Rev Biochem 55: 953–985.

22. Ahern CA, Horn R (2004) Stirring up controversy with a voltage sensor paddle.
Trends Neurosci 27: 303–307.

23. Tombola F, Pathak MM, Isacoff EY (2006) How does voltage open an ion

channel? Annu Rev Cell Dev Biol 22: 23–52.

24. Islas L, Sigworth F (2001) Electrostatics and the gating pore of shaker potassium
channels. J Gen Physiol 117: 69–89.

25. Starace DM, Bezanilla F (2004) A proton pore in a potassium channel voltage

sensor reveals a focused electric field. Nature 427: 548–553.

26. Jogini V, Roux B (2007) Dynamics of the Kv1.2 voltage-gated K+ channel in a

membrane environment. Biophys J 93: 3070–3082.

27. Villalba-Galea CA, Sandtner W, Starace DM, Bezanilla F (2008) S4-based
voltage sensors have three major conformations. Proc Natl Acad Sci U S A 105:

17600–17607.

28. Yarov-Yarovoy V, Baker D, Catterall WA (2006) Voltage sensor conformations
in the open and closed states in ROSETTA structural models of K+ channels.

Proc Natl Acad Sci U S A 103: 7292–7297.

29. Freites JA, Tobias DJ, White SH (2006) A voltage-sensor water pore. Biophys J
91: L90–L92.

30. Sands ZA, Grottesi A, Sansom MS (2006) The intrinsic flexibility of the Kv

voltage sensor and its implications for channel gating. Biophys J 90: 1598–1606.

31. Treptow W, Tarek M (2006) Environment of the gating charges in the Kv1.2

Shaker potassium channel. Biophys J 90: L64–L66.

32. Sigworth FJ (2007) The last few frames of the voltage-gating movie. Biophys J

93: 2981–2983.

33. Treptow W, Marrink S, Tarek M (2008) Gating motions in voltage-gated

potassium channels revealed by coarse-grained molecular dynamics simulations.

J Phys Chem B 112: 3277–3282.

34. Nishizawa M, Nishizawa K (2008) Molecular dynamics simulation of Kv

channel voltage sensor helix in a lipid membrane with applied electric field.

Biophys J 95: 1729–1744.

35. Berk H, Kutzner C, Van Der Spoel D, Lindahl E (2008) GROMACS 4.0:

algorithms for highly efficient, load-balanced, and scalable molecular simulation.

J Chem Theory Comput 4: 435–447.

36. Subbiah S, Laurents DV, Levitt M (1993) Structural similarity of DNA-binding

domains of bacteriophage repressors and the globin core. Curr Biol 3: 141–148.

37. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics.

J Mol Graph 14: 33–38, 27–28.

38. Sands ZA, Sansom MS (2007) How does a voltage sensor interact with a lipid

bilayer? Simulations of a potassium channel domain. Structure 15: 235–244.

39. Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) Interaction

models for water in relation to protein hydration. In: Intermolecular Forces.

Pullman B, ed. Dordrecht, The Netherlands: D. Reidel Publishing Company. pp

331–342.

40. Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) Evaluation

and reparametrization of the OPLS-AA force field for proteins via comparison

with accurate quantum chemical calculations on peptides. J Phys Chem B 105:

6474–6487.

41. Berger O, Edholm O, Jahnig F (1997) Molecular dynamics simulations of a fluid

bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure,

and constant temperature. Biophys J 72: 2002–2013.

42. Lindahl E, Edholm O (2001) Molecular dynamics simulation of NMR relaxation

rates and slow dynamics in lipid bilayers. J Chem Phys 115: 4938–4950.

43. Benz R, Castro-Roman F, Tobias D, White S (2005) Experimental validation of

molecular dynamics simulations of lipid bilayers: a new approach. Biophys J 88:

805–817.

44. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, et al. (2005)

GROMACS: fast, flexible, and free. J Comput Chem 26: 1701–1718.

45. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear

constraint solver for molecular simulations. J Comput Chem 18: 1463–1472.

46. Miyamoto S, Kollman PA (1992) SETTLE: an analytical version of the SHAKE

and RATTLE algorithms for rigid water models. J Comput Chem 13: 952–962.

47. Hess B (2008) P-LINCS: a parallel linear constraint solver for molecular

simulation. J Chem Theory Comput 4: 116–122.

48. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, et al. (1995) A smooth

particle mesh Ewald method. J Chem Phys 103: 8577–8592.

49. Berendsen HJC, Postma JPM, DiNola A, Haak JR (1984) Molecular dynamics

with coupling to an external bath. J Chem Phys 81: 3684–3690.

50. Roux B (2008) The membrane potential and its representation by a constant

electric field in computer simulations. Biophys J 95: 4205–4216.
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