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Genome-wide scanning for signals of recent positive selection is essential for a comprehensive and systematic
understanding of human adaptation. Here, we present a genomic survey of recent local selective sweeps, especially
aimed at those nearly or recently completed. A novel approach was developed for such signals, based on contrasting
the extended haplotype homozygosity (EHH) profiles between populations. We applied this method to the genome
single nucleotide polymorphism (SNP) data of both the International HapMap Project and Perlegen Sciences, and
detected widespread signals of recent local selection across the genome, consisting of both complete and partial
sweeps. A challenging problem of genomic scans of recent positive selection is to clearly distinguish selection from
neutral effects, given the high sensitivity of the test statistics to departures from neutral demographic assumptions
and the lack of a single, accurate neutral model of human history. We therefore developed a new procedure that is
robust across a wide range of demographic and ascertainment models, one that indicates that certain portions of the
genome clearly depart from neutrality. Simulations of positive selection showed that our tests have high power
towards strong selection sweeps that have undergone fixation. Gene ontology analysis of the candidate regions
revealed several new functional groups that might help explain some important interpopulation differences in
phenotypic traits.
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Introduction

In approximately the past 50,000 years, anatomically
modern human emerged from Africa and colonized most of
the globe. During this relatively short time, humans encoun-
tered numerous novel environments with drastically different
climates, pathogens, and food sources. In addition, several
important cultural developments undoubtedly had far-reach-
ing consequences, such as the introduction of various forms
of agriculture, the domestication of animals, and increasing
population density, resulting in conditions favorable for
epidemics and infectious diseases. It thus seems likely that
there has been ample opportunity for human populations to
have adapted by natural selection to the extreme changes that
have accompanied their recent expansion.

Detection of recent, local positive selection has long been a
pivotal issue of population genetics and is of increasing
interest to human geneticists [1–7]. However, demonstrating
conclusively that local selection has operated on a gene
remains a difficult task because it involves several aspects:
demonstrating that patterns of allelic variation at the gene
are not consistent with neutrality; that there is a functional
difference between alleles; and finally, that the functional
difference would result in a phenotypic effect that would be
influenced by selection. Such efforts have been mostly
focused on individual candidate genes [6], and very few have
had all these aspects demonstrated to some degree at least;
examples of genes for which all these aspects have been
shown include the lactose tolerance gene LCT [8], salt-
regulation genes at the CYP3A cluster [9], several disease

resistance genes, e.g., G6PD and CASP12 [10,11], and
pigmentation genes, e.g., SLC24A5 and MATP [12,13].
Recently, high-density surveys of genetic variation across

the genome are available for several major human popula-
tions [14,15]; and the advent of genotyping technology makes
such whole-genome surveys increasingly feasible in any
specific group [16,17]. This allows systematic characterization
of recent positive selection in the human genome, and several
studies have recently used such datasets to identify regions of
the human genome that harbor signatures of positive
selection [18–23]. The obvious strategy, from a statistical
standpoint, is to match the empirical data to a sensible
neutral model and thereby detect significant departures from
neutrality. However, this is complicated by the need for a
neutral model that incorporates the demographic history of
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humans, which is unknown and hence arguably not practical,
as well as the high sensitivity of conventional test statistics to
the departures from neutral assumptions, such as bottlenecks
and population structure [24]. Thus, aside from the compo-
site-likelihood–based test [20], which shows good robustness
towards several demographic factors, previous studies were
largely restricted to identifying outlier loci from the genome-
wide distribution of a certain test statistic, rather than
defining clear cutoffs for distinguishing selection from
instances of extreme neutral drift. This greatly constrained
the use of genomic scans, because it is impossible to address
essential questions such as the magnitude of recent positive
selection across the genome and the false positive and false
discovery rates of any particular approach.

Among the various statistics used for recognizing signals of
positive selection from polymorphism data, the extended
haplotype homozygosity (EHH), first introduced by Sabeti et
al. [25] is particularly useful (e.g., [22,23,26–28]). EHH
incorporates information on both allele frequency and the
association between single nucleotide polymorphism (SNP)
sites, and may provide higher testing power than conven-
tional statistics [25]; furthermore, it is designed to work with
SNP rather than sequencing data, being less sensitive to
ascertainment bias than other approaches. These properties
make EHH a very promising candidate strategy for genome-
wide scans of recent positive selection. Voight et al. [21]
recently introduced a powerful method for identifying alleles
that have been driven to intermediate frequencies by positive
selection, based on the comparison of EHH between alleles
within a population, and detected wide-spread signals of
positive selection in the human genome. However, this
method lacks power to detect selective sweeps that have
resulted in near or complete fixation of an allele in a
population, and hence may fail to detect a significant fraction
of loci that have experienced local positive selection.

Here, we describe a novel genome-scan approach for
detecting local positive selection that is designed to detect

selective events that have resulted in complete or near-
complete fixation of a beneficial allele. Rather than compar-
ing the EHH between alleles within one population, this
approach contrasts the EHH patterns of the same allele
between populations, analogous to other statistics (lnRV and
lnRH [29,30]) that are also based on contrasting genetic
diversity between populations. We introduce a simple
counting algorithm to estimate EHH-related statistics directly
from genotype data, which avoids the time-consuming,
computationally intensive estimation of haplotypes. More-
over, we use simulations to demonstrate that our test has high
power to detect fixed, strong selective sweeps, and that our
new summary statistic is robust over a variety of demographic
models of human history, while capturing apparent depar-
tures of the empirical data from neutrality. We apply our
method to two genome-wide SNP datasets, define candidate
regions for local positive selection, and identify functional
gene categories that contain an excess of candidates.

Results

The Test Statistics
The primary goal of our study was to detect evidence of

recent, local positive selection from the whole-genome SNP
data of both the International HapMap Project and Perlegen
Sciences [14,15]. For the Perlegen dataset, we used the data
from all 71 unrelated individuals sampled in three groups:
African American (23), European American (24), and Han
Chinese (24). For the HapMap dataset, we only included
unrelated individuals from three groups; specifically 60
Yorubans, 40 Europeans, and 45 Han Chinese (see Methods).
Given the obvious shared ancestry between the groups in
Perlegen and HapMap, we hereafter refer to them as Africans
(Afr), Europeans (Eur), and Chinese (Chn), respectively.
Our approach is based on the idea of extended haplotype

homozygosity (EHH). First proposed by Sabeti et al. [25], the
EHH statistic is a measure of the decay of identity of
haplotypes as a function of distance from a ‘‘core’’ allele,
and the EHH associated with an allele that has risen to a
particular frequency under neutrality is expected to differ
from the EHH of an allele that has risen to the same frequency
by positive selection. Under neutral genetic drift, a young
derived allele that is at low frequency will have few associated
recombination events, and therefore will have low haplotype
diversity and high EHH, whereas a high-frequency ancestral
allele will have high haplotype diversity and low EHH because
of the many recombination events that have occurred. A
young derived allele under positive selection, however, rises
rapidly in frequency while retaining extensive EHH, and
leaves the alternative allele in low frequency with low EHH.
Previous approaches compare the EHH decay between the

alleles (hereafter, we refer to the EHH of an allele as EHHA)
of a site/core-haplotype within a single population, so that the
alleles with excessive EHH and high allele frequency indicate
positive selection [21,25]. An obvious caveat of this approach
is that the intrapopulation comparison has low power when
the selected allele is at high frequency, and becomes
impossible when the selected allele is fixed. Seeking a novel
strategy to overcome this problem, our approach compares
the decay of EHH of an individual SNP site (EHHS), rather
than EHHA, between populations. EHHS is defined as the
decay of identity of haplotypes starting from the tested SNP
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Author Summary

The evolution of new functions and adaptation to new environ-
ments occurs by positive selection, whereby beneficial mutations
increase in frequency and eventually become fixed in a population.
Detecting such selection in humans is crucial for understanding the
importance of past genetic adaptations and their role in contem-
porary common diseases. Methods have already been developed for
detecting the signature of positive selection in large, genome-scale
datasets (such as the ‘‘HapMap’’). Positive selection is expected to
more rapidly increase the frequency of an allele, and hence, the
length of the haplotype (extent of DNA segment) associated with
the selected allele, relative to those that are not under selection.
Such methods compare haplotype lengths within a single pop-
ulation. Here, we introduce a new method that compares the
lengths of haplotypes associated with the same allele in different
populations. We demonstrate that our method has greater power to
detect selective sweeps that are fixed or nearly so, and we construct
a statistical framework that shows that our method reliably detects
positive selection. We applied our method to the HapMap data and
identified approximately 500 candidate regions in the human
genome that show a signature of recent positive selection. Further
targeted studies of these regions should reveal important genetic
adaptations in our past.



site of a population as a function of distance. Starting at site i,
the normalized EHHS at site j would be:

EHHSi;j ¼
EðHoi;jÞ
EðHoiÞ

ð1Þ

This is the haplotype homozygosity between i and j
normalized by the homozygosity at site i. Note that both the
haplotype homozygosity and homozygosity calculations are
based on the site, regardless of the status of each allele.

In principle, EHHS is roughly the average EHHA for the
two alternative alleles weighted by their squared allele
frequencies, and starts at a value of one and decays towards
zero (Figure 1A). EHHS is therefore largely determined by the
EHHA of the high-frequency allele, decaying very fast under
neutrality when the dominating allele is the ancestral allele,
or remaining extensive when the beneficial derived allele
sweeps to a very high allele frequency or to fixation (Figure
1A).

When haplotype data are available, EHHS can be derived in
an analytical way:

EHHSðhapÞi;j ¼
1� ð1�

Xn
k¼1
ðpk;ðhapijÞ=nÞ2Þn=ðn� 1Þ

1� ð1�
Xm
l¼1
ðpl;ðalleiÞ=mÞ2Þm=ðm� 1ÞÞ

ð2Þ

Where Pk,(hap ij) is the kth haplotype between i and j, and
Pl,(alle i) is the lth allele (variant of a SNP site) for site i.
However, inferring haplotypes from genotype data at a
genome-wide scale is very computationally intensive and
may not be accurate over long genomic distances [31–33].
Here, we propose a new way to estimate EHHS directly from
the genotypic data. Assuming random mating in a popula-
tion, each extant individual represents an instance of random
chromosome (haplotype) pairing; the proportion of homo-
zygotes in a population, therefore, serves as an estimator of
the homozygosity. The EHH can then simply be estimated as
the proportion of individuals that remain homozygous for
intervals starting from the tested SNP and extending in both
directions.

Figure 1. Signal of Positive Selection around the SCL24A5 Gene in Europeans from the HapMap Data

(A) The EHH decay plot for i, a neutral site outside the selective sweep; and ii, a site in the middle of the SCL24A5 gene, which shows strong evidence of
positive selection in Europeans (Eur). Afr, Africans; Chn, Chinese.
(B) iES plotted against physical distance, back to back for Europeans and Africans.
(C) Signals of positive selection shown in the plot of Rsb (European/African) against physical distance.
doi:10.1371/journal.pbio.0050171.g001
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EHHSðgenoÞi;j ¼

Xn
k¼1

Ik;ðhap ijÞ ð 1 if hap1 ¼ hap2 Þ

Xn
l¼1

Il;ðalle iÞ ð 1 if alle1 ¼ alle2 Þ
ð3Þ

Here the Ik,(hap ij) is the identity of the two haplotypes
between site i and j in one individual, and Il,(alle i) is the
identity of the alleles at site i.

Because this procedure is based on counting the number of
homozygotes, hereafter, we call it the counting algorithm.
Our major analyses, including the simulations and the
analysis of the empirical HapMap and Perlegen genotype
data, use this procedure. Treatment of missing data is
discussed in the Methods section. This algorithm is fast and
not computationally intensive. Although there is some
inevitable loss of information compared to analyses based
on phase-known data, we show later that the analysis based on
the counting algorithm is comparable to that based on phase-
known data.

We use the integrated EHHS (iES) to summarize the EHHS
decay for one single site, which basically integrates the area
under the curve of EHHS against distance (see Methods;
Figure1A). The log ratio of iES values between population
(ln(Rsb)9) then compares the EHHS decay of a single site
between two populations:

lnðRsbiÞ9 ¼ ln
iESpop1;i
iESpop2;i

� �
ð4Þ

Because recombination rates are largely conserved among
human populations [34], the comparison between popula-
tions thereby provides an internal control that largely cancels
out the effect of heterogeneous recombination rates. Extreme
values of ln(Rsb)9 indicate much slower EHH decay in one
population than the other, and therefore represent possible
evidence of selection. To achieve robustness across different
demographic scenarios, ln(Rsb)9 is standard transformed as:

lnðRsbiÞ ¼
lnðRsbiÞ9� medianðlnðRsbiÞ9Þ

SDðlnðRsbiÞ9Þ
ð5Þ

Here SD refers to standard deviation; the median is used
instead of the mean because it is less sensitive to extreme data
points. We calculated ln(Rsb) for every SNP site in the
HapMap phase II and Perlegen data, and for each pairwise
comparison among the three populations, namely African
versus European (AE), African versus Chinese (AC), and
Chinese versus European (CE).

We compared the ln(iES) and ln(Rsb)9 distributions
estimated from the counting algorithm and from the
analytical calculation based on a phase-known dataset, the
phase I HapMap data (see Methods). The agreement between
the two methods is considerable; r2 ranged from 0.855 ;

0.914 across different comparisons for ln(iES) and from 0.647
; 0.731 for ln(Rsb). Higher SNP densities, such as in the full
Perlegen and HapMap datasets, should give even better
agreement.

Effects of Recombination Rate and SNP Density
In principle, our approach should be robust against varying

local recombination rates and SNP density, because ln(Rsb)
compares the relative iES of the same SNP between two
populations, and such local effects are thus controlled.

Nevertheless, we tested for any influence of recombination
rate or SNP density by linear regression. Sites around large
gaps in the SNP distribution were first excluded from further
analysis because iES estimation is sensitive to such gaps (see
Methods). We observed statistically significant, but low-level,
associations between Rsb and either the recombination rate
or the SNP density for all the comparisons (r2 between ln(Rsb)
and recombination rate is 0.0014–0.0086 for the HapMap
data, and 0.0025–0.0153 for the Perlegen data; r2 between
ln(Rsb) and SNP density is 0.0002–0.0087 for the HapMap
data, and 0.0004–0.02 for the Perlegen data, respectively).
Given the low magnitude of these associations, we did not
include any further corrections for recombination rate and/
or SNP density.

Comparison between HapMap and Perlegen Datasets
The Perlegen and HapMap datasets vary greatly in their

SNP density, sample size, and ascertainment; it is, therefore,
of interest to compare the iES and Rsb distributions between
the two. We observed good agreement between the Perlegen
and HapMap data for the iES distributions, especially for the
comparisons in Europeans and Chinese (Figure 2A). Lower
similarity in iES distributions is seen between the two African
samples, which likely reflects admixture in the African
Americans sampled by Perlegen (Figure 2B). The iES
distribution is more variable in the Perlegen than in the
HapMap dataset, probably due to the smaller sample size and
lower SNP density of the former. There is a moderate
correlation of the Rsb distribution between the two datasets
(Figure 2C).

Genome Evidence of Departures from Neutrality
Do regions with extreme ln(Rsb) values indicate local

selection, or the extremes of the neutral distribution? To
answer this question without accurate information concern-
ing the demographic history of the populations, the ideal
statistic would be robust against violations of the neutral
assumption due to demographic history, yet at the same time
sensitive to departures from neutrality due to selection.
Previous studies have shown via simulations that neutral
distributions are heavily influenced by demographic param-
eters; exploration of a broad, neutral parameter space is
necessary, but results are often ambiguous [21,24]. Nonethe-
less, an important feature shared by all demographic factors
(but not selection) is that varying demographic parameters
are expected to influence all regions of the genome equally;
we therefore hypothesized that the shape of any neutral
distribution should have certain invariant properties. More
specifically, the density distributions of the standard trans-
formed ln(Rsb) should show little change across a broad range
of neutral parameters and varying ascertainment settings.
To investigate this, we generated a series of neutral

demographic models using coalescent simulation. These
include the simplest constant population-size model (model
1) and models with: different recombination rates (model 2)
or mutation rates (model 3); independent ancestors for
Europeans and Chinese (model 4); two different bottleneck
scenarios (models 5 and 6, see Methods); population
expansion (model 7); and population structure (model 8).
We also considered three complex models matching real data
in multiple aspects—one with no migration (model 9), one
with migration and uniform recombination rate (model 10),
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and one with no migration but heterogeneous recombination
rates (model 11) [35]. Ascertainment analogous to that of the
Perlegen data, but much simplified, was applied to these
models. (see Methods). Three other ascertainment processes
were also simulated for model 10 (hereafter referred to as the
standard neutral model because it is used as the null
distribution to compare to the empirical data) to assess the
impacts of low-quality sequencing (model 10-asc1), skewed
constitution in the diversity panel (model 10-asc2), and high
genotyping failure rate (model 10-asc3, see Methods for
details on all models). It should be noted that the ascertain-
ment schemes we use here do not capture the full complexity
of the empirical data. Nonetheless, they provide perspectives
as to how ascertainment in general affects ln(Rsb) distribu-
tion.

Data from the neutral simulations described above, as well
as the Perlegen data, were compared to the standard neutral
model (model 10) by three approaches, namely quantile–
quantile plots (QQ plots), superimposing histograms, and the
Kolmogorov-Smirnov D (KSD) statistic (see Methods). The
QQ plot shows a straight line when two distributions can be
linearly transformed into each other. Nonstandard ln(Rsb)9
distributions were compared in pairwise fashion using QQ
plots. For superimposing the histogram, the distributions of
standard transformed ln(Rsb) were superimposed onto one
another using the same coordinates (Figures 3 and S1–S13).
The KSD value was also determined for the pairwise
comparisons of the ln(Rsb) distributions as a quantitative
measure of difference between distributions (Figure 4). The p-

values for the Kolmogorov-Smirnov test are omitted due to
the lack of independence between SNPs.
The QQ plots indicate that, as hypothesized, varying the

neutral parameters does not heavily influence the shape of
the density distributions (Figures 3 and S1–S13). Most models
showed good agreement with the standard model (always
plotted on the x-axis), except in some cases, such as the
comparisons to the models with simple assumptions (models
1, 2, and 3), in which departures from linearity are more
obvious at both ends of the QQ plot curve (Figures S1–S13).
This is to be expected because the demographic assumptions
of models 1, 2, and 3 differ very much from the standard
model, and also because QQ plots of bell-shaped distributions
have fewer data points and, therefore, more fluctuation at the
tails of the curve. On the other hand, comparisons between
empirical data and the standard neutral model showed that
the QQ plots clearly departed from linearity even in the
central segment, indicating a difference between the empiri-
cal data and the standard model that seemingly is not
accounted for by demographic factors.
Histograms superimposing and KSD values show similar

trends. Most ln(Rsb) distributions for the different neutral
models with varying demographic parameters match very well
with the standard model, except a few with noticeable
mismatches, e.g., the models with different recombination
and mutation rates (models 2 and 3) in the AC comparison
(KSD ¼ 0.0134 in both cases), and the model with heteroge-
neous recombination rate (KSD ¼ 0.0131, 0.0136, and 0.0155
for AE, AC, and CE comparisons, respectively). However,
superimposing the distributions for the empirical data and

Figure 2. Comparisons of iES and Rsb Distributions between the Perlegen and HapMap Datasets

The iES and Rsb values are plotted for a 20-Mb region on Chromosome 15.
(A and B) iES against physical distance in Europeans (Eur) and Africans (Afr), respectively, back to back for the HapMap and Perlegen data.
(C) Plot of Rsb of Europeans over Africans against physical distance, back to back for the HapMap and Perlegen data.
doi:10.1371/journal.pbio.0050171.g002
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the standard model revealed much more pronounced differ-
ences: the modes of the empirical EA and CA distributions
shift to the left, although with larger right tails compared to
the simulated data; the empirical CE distribution is more
symmetrical, but also shows larger tails at both ends than the
neutral distribution (Figure 3). The KSD values for each
neutral model against the empirical data generally exceed the
corresponding comparisons against the standard model by a
factor of two, with the majority (34/42) ranging between 0.02
and 0.0316 (Figure 4).

One exception is with heterogeneous recombination rates

(model 11), in which the KSD values against the empirical
data exceed only slightly, and in the case of the CE
comparison actually fall below, the KSD value for the
simulated model versus the standard model. This shows that
ln(Rsb) is robust towards most demographic factors, but
relatively sensitive to heterogeneous recombination rate (i.e.,
recombination hotspots). Nonetheless, we found that the
difference in ln(Rsb) distributions between the recombina-
tion hotspot model and the uniform-recombination model
does not come from the tail part of the distribution, which
determines the robustness of the false-positive rate. In fact,

Figure 3. Comparisons of the ln(Rsb) Distributions between Various Neutral Simulations and between the Full Neutral Model and Empirical Data

(A) shows the full neutral model (model 10) and several other neutral models; (B) shows model 10 and empirical data. The ln(Rsb) distributions are
compared by both a QQ plot and superimposing standardized histograms. In every QQ plot, quantile points of model 10 are plotted on the x-axis. For
all of the superimposed standardized histogram plots, the blue color designates the full model (model 10) and the red color designates the alternative
model.
doi:10.1371/journal.pbio.0050171.g003
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for the right tail of the distribution, when we fix the false-
positive rate of the standard model to be 0.5%, and apply the
corresponding critical value to model 11, 0.71%, 0.77%, and
0.66% of SNPs are significant for the AC, AE, and CE
comparisons, respectively, which are not drastically elevated
from 0.5%.

Defining Cutoffs for Top SNPs
In general, to determine cutoff values corresponding to a

particular significance level, an empirical distribution should
be compared to a null distribution by matching the neutral
part to the null distribution. Here we simply matched the first
and third quartile points of the empirical and the standard
neutral model distributions. The resulting superimposed
distributions resemble those of the ln(Rsb) histogram super-
imposition (Figures 3B and S14): For the AC and AE
comparisons, we infer that the excess in the right tail of
either distribution indicates the signal of positive selection in
the non-African populations, whereas an excess in the left tail
would indicate positive selection in the Africans. The two
empirical distributions, when compared to their neutral
distribution, have their modes shifted towards the left with a
bigger tail at the right end, suggesting an even larger
departure from the null distribution for the non-Africans if
the modes are matched. There is a corresponding deficit in
the left tail, obviously underevaluating the signals in Africans.
In the CE comparison, although both the left and right tails
extend farther than the null distribution, the empirical
distribution has lower shoulders than the null distribution.
Overall, these observations suggest that our approach is
conservative for identifying ln(Rsb) values that truly deviate
from neutral expectations.

We defined the level of significance to be 0.005 for the AE
and AC comparisons and 0.001 for the CE comparison so as
to make the cutoffs for the empirical distribution approx-
imately two to three times that of the level of significance.
The cutoffs thus defined are 1.35% for Europeans in the EA
comparison, 1.14% for Chinese in the CA comparison,
0.303% for Europeans in the CE comparison, and 0.245%

for Chinese in the CE comparison. Although the African
group is also expected to have experienced local positive
selection, our method down-weights any signals of selection
in Africans, resulting in cutoff values for Africans that are
even lower than the test level. Evaluation of positive selection
in Africans, therefore, is not possible by this approach. It
should be noted that, given the conservative nature of our
approach, the cutoffs thus defined may not precisely estimate
the fractions of the human genome under the effect of recent
positive selection. However, in contrast to any arbitrary
cutoffs, this conservative approach should provide a lower
boundary for the distribution of recent, local positive
selection. A better strategy, one that precisely matches the
neutral part of the empirical data to the null hypothesis, is
needed in the future to investigate the signal of positive
selection in Africans as well as to provide more accurate
cutoffs for non-Africans.

Determining Candidate Regions
To further reduce noise in the data, the variance of ln(Rsb)

values was estimated by bootstrapping across the genotyping
panels. SNPS with ln(Rsb) values above the cutoff values (top
SNPs, or tSNPs) but with high bootstrap ln(Rsb) variances
were removed from further analysis (see Methods). The
remaining tSNPs tend to cluster tightly into discrete regions,
marked as sharp peaks in the Rsb map (Figure 1), which is
expected from positive selection because the flanking SNPs
are then influenced by hitchhiking.
In order to define candidate regions, we connected tSNPs

within 200 kilobases (kb) of each other into discrete regions.
Regions that span over 40 kb (half of the genome has linkage
disequilibrium [LD] blocks of size 40 kb or longer for
Europeans and Asians [36]) and that include more than 14
tSNPs were considered candidate regions and were extended
50 kb in both directions (50 kb is roughly the distance LD
decays by half). We defined candidate regions for the
HapMap and Perlegen data separately, each consisting of
four candidate region lists, namely Eur-AE, Chn-AC, Eur-CE,
and Chn-CE, where Eur-AE, for example, indicates candidate
regions exhibiting a signature of selection in Europeans when
compared to Africans. The two candidate region sets defined
in the HapMap and Perlegen datasets were also combined
into a common candidate region set, by merging overlapping
regions and including those that encompass any tSNPs in the
alternative dataset. Figure 1 shows one candidate region in
the HapMap data, which contains the SLC24A5 gene, a
pigmentation gene for which there is prior evidence of
selection in Europeans [12].
Table 1 lists examples of candidate regions from the

common candidate region set with strong signals of local
selection and the genes these regions contain. Complete lists
of candidate regions are given in Tables S2–S13. The
numbers of candidate regions from the HapMap data (in
the order of Eur-AE, Chn-AC, Eur-CE, and Chn-CE) are: 298,
240, 62, and 49, respectively, roughly double that of the
Perlegen data (147, 115, 25, and 22 regions, respectively), and
also more than that of the combined candidate region set
(216, 143, 23, and 19 regions, respectively). The sizes of the
candidate regions in the combined set are on average 391 kb,
405 kb, 305 kb, and 339 kb for the Eur-AE, Chn-AC, Eur-CE,
and Chn-CE comparisons, respectively, and range from 140
kb to 1,893 kb. The fact that the AE and AC comparisons

Figure 4. KSD Statistic for the Comparisons of Standardized ln(Rsb)

Distributions within Neutral Models, and between Neutral Models and

Empirical Data

Categories on the x-axis denote the neutral models 1 to 10-asc3, where
10-asc1, 10-asc2, and 10-asc3 indicate the three different ascertainment
schemes (see Methods). Each neutral distribution is compared to the
corresponding empirical (in blue) or model 10 (in yellow) distribution. A
cluster of three bars in the same color denotes the KSD values in the
three pairwise comparisons in the order AE, AC, and CE.
doi:10.1371/journal.pbio.0050171.g004
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produced many more candidate regions than the CE
comparison is consistent with the notion that a common
ancestral population of Europeans and Chinese diverged
much earlier from Africans before subsequently splitting.

Power of Tests Based on ln(Rsb)
To evaluate the power of ln(Rsb)-based tests, we performed

simulations of selective sweeps using the two-population
model described in Thornton and Jensen [37], in which a
derived population experiences a bottleneck while splitting
from an ancestral population, and then selection occurs in
the derived, but not the ancestral, population. Loci that were
2 megabases (Mb) long were generated for both neutral and
selection scenarios (see Methods). To allow EHH to decay
substantially before reaching the ends of loci, ln(Rsb) values
were calculated only for SNPs residing in the central 1Mb.

The first test simply uses the ratio of tSNP over the total
number of SNPs in each central 1-Mb region as the test
statistic. The tSNP cutoff value is set to be the ln(Rsb) value
that defines the top 0.5% tail area of the neutral distribution.
SNPs with ln(Rsb) value greater than this value are assigned as
tSNPs, and loci with a ratio of tSNPs above a critical value are
called significant.

The second test is analogous to the ad hoc procedure used
to define candidate regions in the empirical data. In this test,
tSNPs are defined as above, and tSNPs within 200 kb of each
other are connected into regions. A region is called a
candidate region if it is longer than 40 kb in physical distance
and contains more than 84 tSNPs (based on the 14 tSNP
criterion used for the empirical Perlegen data, adjusted for
the different SNP density in the simulated data). An accepted
candidate region is extended 50 kb farther from both ends.

Figure 5 is the power plot for both tests, at a false-positive
rate of 0.01 for the first test. Both tests have almost no power
to detect weak selection (alpha ¼ 100). However, when the
selection coefficient is relatively high (alpha ¼ 1,000 and
1,500), they both show high power: for test 1, the power
ranges from 0.85 to 0.98 when the selected site is in the
central 1 Mb of the simulated locus; from 0.67 to 0.94 if the
selected site lies within 200 kb outside of the central 1Mb
region, and from 0.59 to 0.85 for the entire 2-Mb locus. For
test 2, the power ranges from 0.86 to 0.96 for alpha ¼ 1,000
and 1,500. Test 2 has a varying, but low, false-positive rate
around 0.02 for f¼ 0.1, 0.029 for f¼ 0.2, and 0.033 for f¼ 0.4,
where f is a measure of the severity of the bottleneck
experienced by the derived population (see Methods). The
power of the test tends to be negatively correlated with the
severity of bottleneck, which is to be expected since more
severe bottlenecks create more fluctuations and also decrease
the genetic diversity of the neutral loci. Notably, our tests
have comparable power to the composite-likelihood test and
its related tests, which are generally considered to be the best
of the available tests [20,38,39]

Overlap of Signals between the Perlegen and HapMap
Datasets
There is significant overlap in the candidate regions from

the HapMap and Perlegen datasets. Pairwise comparisons
revealed 8%–40% overlap of the corresponding candidate
region lists between the two sets (p , 0.001, Table 2). The
concordance between the candidate regions identified in the
HapMap and Perlegen datasets, although significant, is not
very high, which is consistent with the moderate correlation
of the ln(Rsb) distribution between the two datasets (Figure

Table 1. Some Examples of Candidate Regions with Strong Signals

Chromosome Start Position End Position Size (bp) Genes (HUGO ID)a Population

1 34746422 35776692 1,030,270 SFPQ, ZNF262, PSMB2, EIF2C4, EIF2C1 Eur

1 49912518 50427159 514,641 ELAVL4, DMRTA2 Chn

1 75614439 76171629 557,190 ACADM, RABGGTB, MSH4, ASB17 Chn

1 91966493 92466551 500,058 ABHD7, GFI1 Chn

2 44334487 44829489 495,002 SLC3A1 Eur

2 73531031 74151827 620,796 ALMS1, NAT8, DUSP11 Chn

2 84447501 84957406 509,905 SUCLG1, DNAH6 Chn

2 108334947 109339416 1,004,469 RANBP2, EDAR Chn

2 113400327 114038454 638,127 SLC20A1, IL1A, IL1F9, IL1F6 Eur

2 135366530 136005898 639,368 MGAT5 Eur

2 195939340 197832270 1,892,930 STK17B, GTF3C3 Eur

3 25656003 26480726 824,723 TOP2B Chn

4 82281939 82942108 660,169 BMP3, PRKG2, RASGEF1B Eur

4 159889846 160584807 694,961 ETFDH, PPID Eur

5 109634856 111024685 1,389,829 WDR36, CAMK4, STARD4 Eur

6 144708023 145419128 711,105 UTRN Eur

8 10630705 11614773 984,068 C8orf5, C8orf15, C8orf6, C8orf7, MTMR9, AMAC, C8orf12, BLK, C8orf14 Chn

10 22278186 23383177 1,104,991 DNAJC1, COMMD3, BMI1, PIP5K2A, ARMC3 Eur

10 58234245 59320638 1,086,393 IMPK Chn

15 45880972 46733388 852,416 DUT, FBN1 Chn

15 61405108 62101621 696,513 HERC1, DAPK2 Chn

15 69738375 70422059 683,684 BRUNOL6, HEXA Eur

17 59485989 60020923 534,934 TBX2, TBX4 Eur

aHuman Genome Organisation (http://www.hugo-international.org).
Chn, Chinese; Eur, Europeans.
doi:10.1371/journal.pbio.0050171.t001
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1). This may in part reflect differences between these two
datasets in SNP density, SNP discovery scheme, ascertain-
ment, and sample size. Stochastic factors can also produce
fluctuations in the magnitude of signals across different
datasets, whereas conservative cutoffs decrease the chances of
rediscovering the same regions. However, the biggest differ-
ence may reflect different population groups, especially in
the case of Africa: the Perlegen samples consist of African
Americans, who have admixed substantially with Europeans
[40,41], thereby reducing the signature of selection when
comparing African Americans with Europeans, whereas the
HapMap sample consists of Yorubans from Nigeria, and
hence are more representative of African genetic diversity. In
fact, there is more overlap between the Perlegen and HapMap
data for AC comparisons than for AE comparisons (fractions
of overlap for the Eur-AE and Chn-AC lists are 0.13 and 0.19
in the HapMap data, and 0.26 and 0.40 in the Perlegen data,
respectively, Table 2), which probably reflects the fact that the
AC comparisons are less influenced by the European
admixture in African Americans. Overall, the signals of
selection from the HapMap data are probably more reliable
because, aside from including native Africans, the HapMap
data also has higher SNP density and larger sample sizes.

Overlap within Candidate Region Sets
Table 2 shows that the overlap profile between candidate

region lists, e.g., Eur-AE and Eur-CE, are similar across the
HapMap, Perlegen, and combined sets: there is extensive (p ,

0.005) overlapping between the Eur-AE and the Chn-AC
regions, supporting the notion that a common population
ancestral to Europeans and Asians experienced shared
selection pressures before or during the out-of-Africa
migration. On the other hand, substantial numbers of
candidate regions from the CE comparisons overlap with
regions from the same populations in the AE or AC
comparisons, e.g., Eur-AE or Chn-AC (28% ; 53%), but are
almost absent from the lists of the opposite population (0% ;

5%). Such signals are population specific and likely happened
after the divergence of the two non-African populations.

Overlapping of ln(Rsb) Signals with LRH and Integrated
Haplotype Score Signals
Although our approach is designed to be most powerful for

sweeps at or near fixation, it is interesting to see whether the
method detects signals of partial sweeps as well. To inves-
tigate this, a long-range haplotype (LRH) test was constructed
and applied to the ln(Rsb) candidates (see Methods). The LRH
test assigns three p-values (p75, p95, and pmean) based on
different criteria to each candidate region (see Methods). A
high proportion of candidate regions are significant for
positive selection under the LRH test, ranging from 0.193 to
0.556 in different candidate region sets (Table S1).
We also determined the overlap between candidate regions

defined by the ln(Rsb) statistic to those identified previously
by the integrated haplotype score (iHS) statistic, which was
shown to be most powerful for detecting partial sweeps [21].
A significant percentage of the candidate regions from the
ln(Rsb) method overlap with candidate regions identified by
the iHS method (30% ; 74%, p , 0.001, Table 2). Given this
substantial overlap, are there any differences in the proper-
ties of the ln(Rsb) and iHS candidate regions? To investigate
this, we compared the major allele frequency spectra of SNPs
between the iHS candidate regions, which are all 100 kb in
size, and the 100-kb intervals around the centers of the
ln(Rsb) candidate regions (Figure 6). The Perlegen genotype
data were used for this comparison because of the more
consistent ascertainment scheme. The allele frequency
spectra of both iHS and Rsb regions differ substantially from
that of the whole genome (Figure 6), exhibiting a deficiency of
intermediate-frequency alleles and an excess of common/rare
variants, a hallmark signature of positive selection. The Rsb
spectra also deviate from the iHS spectra, with a slight excess
of alleles near fixation (0.9 , allele frequency , 1) and a
much higher abundance of fixed alleles (allele frequency¼ 1);

Figure 5. Power of the Two ln(Rsb)-Based Tests for Different Values of f (the Strength of the Bottleneck Experienced by the Derived Population)

(A) The power plot for test I, which uses ratio of tSNPs as the test statistic (see Methods). The critical value is set by independent neutral simulation at a
level of 0.01. Curves in red show the power to detect selection that occurs in the central 1 Mb. Curves in blue show the power to detect selection that
occurs outside the central 1 Mb, but within 200 kb. Dashed curves in green are the overall power for the entire simulated 2-Mb segment.
(B) The power plot for test II, the ad hoc test. A case is called significant only if the selected site lies within a candidate region.
doi:10.1371/journal.pbio.0050171.g005
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on the other hand, iHS tends to have an excess of alleles
between frequency 0.7 and 0.9, which is particularly evident
in the European comparison (Figure 6). This clearly demon-
strates the different specificity of these two methods: the
ln(Rsb) method detects more fixed and nearly fixed selective
sweeps, whereas the iHS approach has higher power to detect
partial sweeps. It should be noted that the frequency of fixed
alleles in the iHS spectra does not differ from that of the
whole genome, whereas the frequency of fixed alleles in the
ln(Rsb) spectra greatly exceeds that of the whole genome.
This suggests that there may be a high proportion of recent
sweeps that have reached fixation in individual populations.

Genes in the Candidate Regions
One important question is whether signatures of selection

are enriched in genic versus non-genic regions. We used the
Refseq gene coordinates to define genic regions; because the
genic regions thus defined constitute a large proportion (;1/
3) of the whole genome, we asked whether our candidate
regions span more genic regions than expected by chance
(Methods). The fraction of the total physical distance
encompassed by the candidate regions that are genic ranges
between 0.317 and 0.420 for different candidate region lists.
For most cases, there is neither an excess nor a deficit of genic
regions in the candidate regions, except there is a significant
enrichment of genic regions in the EUR-CE candidate regions
from the Perlegen data (54.8%, p ¼ 0.005). This seemingly
disagrees with the expectation that positive selection should
happen more often in genes. One possible explanation is that
our method detects selection sweep patterns that influence a

large interval around the causal locus, which may not be gene
rich. Another possibility is that regulatory regions outside
genes might also have experienced substantial recent positive
selection.
Our approach captured some genes that have previously

been shown to exhibit strong signatures of positive selection.
These include drug-metabolizing genes CYP3A4 and CYP3A5
(Europeans [9]), skin pigmentation genes MYO5A (Europeans
[21,42]) and SLC24A5 (Europeans [12]), immune system
transcription factor interleukin 4, sepsis resistant gene
Caspase12 (Chinese, Europeans [11]), the lactose tolerance
gene (Europeans [8]), and the dietary calcium absorption-
related ion channel gene TRPV6 (Chinese, Europeans [43,44]).
Rediscovery of such positive examples supports the high
power of our approach. When looked at in more detail, these
genes all show the pattern expected for sweeps near to
fixation. It is also notable that the sweep signals of two genes,
CASP12 and SLC24A5, were not detected by the iHS approach
[21], but are among the strongest signals found in our study.
An intriguing question is what kinds of genes were involved

in recent, local positive selection and therefore have had a
potentially strong impact on recent human evolution. We
performed a gene ontology (GO) analysis to determine
whether any categories of genes are overrepresented in our
candidate regions (Table 3, Methods). One GO category,
interleukin-1 receptor antagonist activity, is found to be
highly significantly overrepresented (raw p-values ¼ 4.62 3

10�9, 2.94 3 10�12. When controlled for multiple testing, the
false discovery rate [FDR] is 0.0021). However, all six of the
genes in this GO category cluster in a 400-kb region in

Table 2. Pairwise Overlapping Test of Different Candidate Region Lists of Positive Selection
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Eur-AE-comb (216) 0.00 0.19 0.05 0.00 0.67 0.19 0.08 0.01 0.39 0.14 0.04 0.00 0.02 0.30 0.06

Chn-AC-comb (143) 0.29 0.00 0.00 0.07 0.31 0.87 0.00 0.14 0.14 0.47 0.00 0.04 0.05 0.10 0.45

Eur-EC-comb (23) 0.48 0.00 0.00 0.00 0.52 0.00 0.87 0.00 0.17 0.00 0.43 0.00 0.00 0.74 0.04

Chn-CE-comb (19) 0.05 0.53 0.00 0.00 0.00 0.53 0.00 0.68 0.05 0.47 0.00 0.53 0.11 0.00 0.53

Eur-AE-Hapmap (298) 0.48 0.15 0.04 0.00 0.00 0.26 0.07 0.00 0.13 0.07 0.03 0.00 0.03 0.30 0.05

Chn-AC-Hapmap (240) 0.17 0.52 0.00 0.04 0.32 0.00 0.00 0.09 0.08 0.19 0.00 0.03 0.03 0.07 0.28

Eur-EC-Hapmap (62) 0.27 0.00 0.32 0.00 0.35 0.00 0.00 0.00 0.05 0.00 0.11 0.00 0.02 0.31 0.05

Chn-EC-Hapmap (49) 0.04 0.41 0.00 0.27 0.00 0.45 0.00 0.00 0.06 0.27 0.00 0.08 0.04 0.00 0.53

Eur-AE-Perlegen (147) 0.57 0.14 0.03 0.01 0.26 0.12 0.02 0.02 0.00 0.26 0.05 0.00 0.01 0.14 0.06

Chn-AC-Perlegen (115) 0.27 0.58 0.00 0.08 0.17 0.40 0.00 0.11 0.33 0.00 0.00 0.07 0.07 0.11 0.37

Eur-EC-Perlegen (25) 0.32 0.00 0.40 0.00 0.32 0.00 0.28 0.00 0.28 0.00 0.00 0.00 0.08 0.48 0.08

Chn-EC-Perlegen (22) 0.00 0.27 0.00 0.45 0.00 0.27 0.00 0.18 0.00 0.36 0.00 0.00 0.14 0.00 0.32

YRI-iHS (253)a 0.02 0.03 0.00 0.01 0.04 0.03 0.00 0.01 0.01 0.03 0.01 0.01 0.00 0.06 0.06

CEU-iHS (238)a 0.27 0.06 0.07 0.00 0.37 0.07 0.08 0.00 0.09 0.05 0.05 0.00 0.06 0.00 0.08

ASN-iHS (245)a 0.05 0.26 0.00 0.04 0.06 0.27 0.01 0.11 0.04 0.17 0.01 0.03 0.06 0.07 0.00

Each row or column indicates a candidate region list defined either in this study or by the iHS method (Voight, et al. [21]). The entries designate the proportion of overlapping regions over
the total number of candidates in each candidate region list given in the left column. Bold font indicates p-value � 0.005. ASN, Asian; Eur: European, CEU, Utah residents with Northern
and Western European ancestry; Chn: Chinese; YRI, Yoruban.
aCandidate lists from Voight et al (2006) [21].
doi:10.1371/journal.pbio.0050171.t002
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Chromosome 2. It is therefore not clear whether the signal of
local selection comes from one or from multiple genes in this
GO category. Other categories that show significant enrich-
ment include those for genes involved in growth factor
activity, cytokine activity, monooxygenase activity, cerami-
dase activity, calmodulin binding, various transporter and
cofactor transporter activities, and vitamin transport. Cyto-
kine and growth factor activity genes are involved in cell
proliferation, development, and bone morphology, which
might contribute to morphological differences between
groups. Significant GO groups, such as cofactor transporter
activity and vitamin transport, may have been involved in the
adaptation to new food sources, or agriculture.

In contrast to a previous study of local selection [21], we did
not detect significant enrichment of gamatogenesis or related
genes, nor did the olfaction or chemosensory perception

genes emerge as overrepresented groups. This may reflect
differences between the tests used in the GO analysis, but may
also suggest that the selective pressures that acted on these
functional groups differ, one type being more ancient or
more dramatic and causing complete or nearly complete
sweeps, the other representing more recent and/or weaker
selection and hence partial sweeps. It should be noted,
however, that GO analysis for genome candidate regions is
biased and limited in power for several reasons. First,
functionally related genes are often spatially close to each
other; significant results may thus arise via physical associa-
tion rather than independent selection. Second, in each GO
category, there are usually a very small number of member
genes, and the multiple testing corrections can easily mask
already weak signals. Third, in each candidate region, there
may be more than one gene, and it is not clear which one

Figure 6. Comparisons of the Major Allele Spectra between the iHS and Rsb Candidate Regions, and the Genetic Diversity Pattern in the SLC24A5

Region

(A and B) The frequency spectra of the major alleles for SNPs are compared between the iHS candidate regions (in blue) and the 100-kb regions around
the centers of the Rsb candidate regions (in orange) in either (A) Europeans or (B) Chinese. Overlapping parts are in dark purple. For comparison, the
corresponding major allele–frequency spectra for the whole genome are shown as black curves.
(C) shows, as an example, the genetic diversity pattern for the 200-kb region around the SLC24A5 gene in Africans (Afr; upper section) and in Europeans
(Eur; lower section), from the HapMap phase I data. Rows denote individual chromosomes, and columns denote the SNP sites.
doi:10.1371/journal.pbio.0050171.g006

PLoS Biology | www.plosbiology.org July 2007 | Volume 5 | Issue 7 | e1711597

Positive Selection in the Human Genome



hosted the selection event (or, indeed, there may even be
more than one selection event in a candidate region). To gain
more insights, each gene should be checked individually.

Discussion

Much progress has been made recently in developing
methods to detect the signature of local positive selection in
genomic data [18–23]. In this study, we offer three improve-
ments and advances on existing methods. First, we have
established a fast and simple counting algorithm to estimate
EHH-derived statistics, such as iES, directly from dense
genotype data from unrelated individuals without prior
estimation of haplotype frequencies. The results of the
counting algorithm are in good agreement with analytical
estimation based on phased data. More importantly, with the
counting algorithm, one can already achieve high test power
for detecting recent, strong selective sweeps. Furthermore, by
avoiding the intensive computation needed to estimate
haplotypes from genotypic data, the counting algorithm
provides superior flexibility for data updating, error check-
ing, bootstrapping, and analyses of other sources of high-
density SNP data, such as those produced by genotyping
chips.

Second, distinguishing signals of selection from extreme
patterns produced by neutrality has been a major obstacle in
the study of positive selection; highly variable patterns given
by certain demographic factors, such as bottlenecks and
population structure, further obscure the signals [1,6]. Here,
we show that by using the standard transformed ln(Rsb)
statistic, neutral simulation distributions remained largely
invariant over a wide range of demographic parameter values
and various ascertainment schemes. The ln(Rsb) distribution

thus is robust to departures from neutrality due to various
demographic events or other factors that are expected to
have an equal impact across the genome. Moreover, the
observed standardized ln(Rsb) distributions departed mark-
edly from neutral simulations, providing strong evidence that
recent positive selection has indeed been occurring in our
species. It should be emphasized that the method we used to
match the empirical distribution to the neutral distribution
(namely, matching the two quartile points) is conservative
and masked any signals of selection in Africans. Nonetheless,
we defined the signal cutoffs through a rigid statistical
procedure, and they are thus likely to represent the lower
boundary of the fraction of recent positive selection in the
human genome.
Third, we introduce a new statistic, ln(Rsb), designed to

complement existing statistics such as iHS [21]. The iHS
statistic compares EHH between alternative alleles at a SNP,
and hence has low power when one allele is at high frequency
(and no power if an allele is fixed). However, the Rsb statistic,
which compares EHH for the same SNP in two different
populations, can provide evidence of selection in such cases.
A power test demonstrates that tests based on ln(Rsb) possess
high power for detecting strong selective sweeps that have
reached fixation. Furthermore, our method detected numer-
ous genes that have been previously shown to have strong
evidence of selection, including CYP3A, MYO5A, SLC24A5,
IL4, CASP12, and LCT [8,9,11,12,21,42,45], most of which are
near or at fixation. It is especially notable that SLC24A5 and
CASP12, which were not detected by the iHS test, gave strong
signals in the ln(Rsb) test, supporting the reliability and
power of this approach. Nonetheless, our approach failed to
detect some other genes that previously showed strong
evidence of selection, such as PDYN, MATP, and the 17q21

Table 3. Summary of the Gene Ontology Analysis Results

GO Roots GO Category GO Group ID Genes

in Group

Positive Genes

in Group

Raw p-Value FDR

molecular_function Interleukin-1 receptor antagonist activity GO:0005152 6 6 4.62 E�09 2.12 E�03

molecular_function Monooxygenase activity GO:0004497 66 13 0.0000 0.0021

molecular_function Growth factor activity GO:0008083 133 17 0.0000 0.0021

molecular_function Oxidoreductase activity, acting on paired

donors, with incorporation or reduction

of molecular oxygen, reduced flavin or

flavoprotein as one donor, and incorporation

of one atom of oxygen

GO:0016712 3 3 0.0001 0.0021

molecular_function Calmodulin binding GO:0005516 81 12 0.0001 0.0038

molecular_function Oxygen binding GO:0019825 20 6 0.0001 0.0038

molecular_function Ceramidase activity GO:0017040 4 3 0.0003 0.0074

cellular_component Microsome GO:0005792 79 11 0.0004 0.0133

cellular_component Vesicular fraction GO:0042598 80 11 0.0004 0.0133

molecular_function Oxidoreductase activity, acting on paired donors,

with incorporation or reduction of molecular oxygen

GO:0016705 59 9 0.0006 0.0157

molecular_function Vitamin transporter activity GO:0051183 5 3 0.0006 0.0157

molecular_function Cofactor transporter activity GO:0051184 6 3 0.0013 0.0284

molecular_function Phosphotransferase activity, alcohol group as acceptor GO:0016773 508 35 0.0017 0.0304

molecular_function Cytokine activity GO:0005125 171 16 0.0018 0.0304

molecular_function Hydrolase activity, acting on carbon- nitrogen

(but not peptide) bonds

GO:0016810 66 9 0.0014 0.0309

Redundant GO groups of similar information were removed.
doi:10.1371/journal.pbio.0050171.t003
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inversion [13,46,47], probably because these genes/regions
have been subject to partial sweeps. Nonetheless, both the
LRH test and the overlap with iHS candidates revealed that
our approach should have considerable power to detect even
partial selection sweeps. One potential problem is that the
ln(Rsb) statistic has low power when selection was shared by
all human populations, e.g., before or during the initial
migration out of Africa. A more comprehensive view on
recent positive selection in our species should be obtained by
combining signals and investigating candidates from this
study with those from other approaches such as iHS [21].

Our approach has identified approximately 500 candidate
regions in the combined list, after excluding redundancy
from overlaps. However, it is very unlikely that there was a
separate selection event for each of these signals; multiple
genes controlling a complex trait, such as pigmentation, may
have been co-selected. Strong single selection events might
also influence multiple genes, thereby producing multiple
candidate regions. There is also substantial overlapping of
candidate regions between Chinese and Europeans (0.19 ;

0.33), which further indicates either shared selection events
or parallel selection. Analyzing interactions between genes
under selection pressures should provide further insights into
human evolution.

Finally, we detected some different GO groups that are
enriched in our candidate regions. Some might help explain
interpopulation differences in morphology, while others
might have been involved in adaptation to novel food
resources, pathogens, etc. Further detailed investigation of
interesting candidate genes identified by this study should
provide insights into the role and nature of adaptive events in
the recent history of our species.

Materials and Methods

SNP databases. We used two publicly available SNP datasets, the
approximately 1.5 million SNPs from Perlegen Science [14] and the
approximately 3.8 million SNPs from the international HapMap
Project [15]. Perlegen identified SNPs mainly by resequencing a
discovery panel of 24 individuals, and genotyped 23, 24, and 24
unrelated individuals from African Americans, European Americans,
and Han Chinese, respectively. Ascertainment of HapMap SNPs was
heterogeneous and complicated [48]; genotypes were obtained for
family trios in both Yorubans and Europeans, and unrelated
individuals from both Han Chinese and Japanese. For the evaluation
of the counting algorithm and the LRH test, we used the HapMap
phase I data, for which the whole-chromosome phases were provided
for about 1 million SNPs. Only SNPs that overlapped among all four
populations were included in the analyses.

LRH test. We used the HapMap phase I data, for which the
haplotypes are available, for long-range haplotype (LRH) tests. The
LRH statistic calculated here is similar to the iHS statistic introduced
by [21]. Briefly, EHHA was first calculated for both alleles of a SNP,
extending in both directions from the SNP until EHHA decreased to
0.05. The area under the EHHA curve was determined by integration
to give the integrated EHHA (iEA), and the relative iEA within
population (Raw) was calculated as:

Rawj ¼ iEAj1=iEAj2 ð6Þ

where the subscripts 1 and 2 denote the alternative alleles for SNP j.
Singletons were removed from the analysis. Because the iEA
calculation is sensitive to large gaps between successive SNPs, SNPs
whose EHH decay plot hit gaps greater than 50 kb were removed
from further analysis. The Raw values were then binned by major
allele frequency. Within each bin, Raw values were ranked and
assigned corresponding percentile values (LRHp). We then evaluated
the percentages of SNPs with LRHp above the 5% or 25% threshold,
and also the average LRHp for each candidate region, and derived

three corresponding p-values: p95, p75, and pmean by comparing them
to 1,000 iterations of random genome regions of the same size.

The iES calculation. The calculation of the statistic iES starts by
estimating EHHS around a core SNP as described in the Results.
EHHS thus defined starts from one and decays towards zero as
flanking sites are included that are progressively farther from the
core SNP (Figure 2A). In this study, we calculated EHHS until it
reached 0.1.

The iES statistic then integrates the area under the EHHS curve:

iESi ¼
Xb
j¼aþ1

ðEHHSi;j�1 þ EHHSi;jÞðPosj � Posj�1Þ
2

ð7Þ

where a and b are the two ending positions where EHHS drops below
0.1, and Posi is the physical position of site j.

Treatment of missing data for the counting algorithm. Missing
genotypes were assigned as probability vectors conditioned on nearby
genotypes as follows:

gj ¼ P9ðj;j�1Þgj�1 ð8Þ

where gj is the missing genotype, gj�1 is the vector of genotype
probabilities (g11, g12, g22) in the preceding site, e.g., taking (1, 0, 0) if
gj�1 is homozygous A1A1 for the first allele, and P9(j,j�1) is the matrix of
conditional probability of genotype j given j� 1, defined by the non-
missing data.

Influence of recombination rate and SNP density. Because iES is
sensitive to large gaps in the distribution of SNPs, SNPs close to such
regions were excluded from analysis. To identify such SNPs, gaps
larger than 200 kb were identified, and if any iES value within 200 kb
of a gap exceeded 300,000, then the gap boundary was extended by
200 kb and the procedure repeated until no extreme iES values were
found. Gaps derived from the three different populations were
merged to give universal gaps, and SNPs within these gaps were
discarded.

To investigate how Rsb is influenced by varying recombination
rates and SNP densities, Rsb was plotted against local recombination
rate and SNP density, and correlations were calculated. Recombina-
tion rates were taken from the 1-Mb deCODE map [49]. SNP density
was defined as the number of SNPs within a 20-kb window centered at
each SNP.

Neutral and positive selection simulations. A series of neutral
demographic models were simulated, ranging from the simplest
constant population-size model to complex models matching real
data in multiple aspects [35]. The basic model (model 1) used Ne
¼10,000 for all three populations, with the mutation rate l and
recombination rate c assigned values of 1.5 3 10�8 and 1.3 3 10�8

site�1generation�1, respectively. The migration out of Africa and
subsequent split between Asians and Europeans were set to be 3,500
and 2,000 generations ago, respectively. Based on this, further models
doubled the recombination rate (model 2) or mutation rate (model 3),
or split the ancestral population directly into three individual
populations 3,500 generation ago (model 4). Two additional models
added brief, severe bottlenecks immediately after population split-
ting (lasting for 100 generations, during which the population size
shrank to 1%) either during the out-of-Africa migration and the
origin of Europeans (model 5), or during the out-of-Africa migration
and the origin of all three populations (model 6). The effect of
population expansion was also studied by retaining the present
population sizes and other configurations from the basic model while
decreasing the population sizes back in time (model 7, present
population sizes all set to 100,000; African population size changes to
24,000 at 200 generation ago; European and Chinese population sizes
both change to 7,700 at 350 and 400 generations ago, respectively;
and the ancient, common ancestor population size set to 12,500 at
17,000 generations ago). The effect of population structure was
analyzed by modeling a hypothetical European population that split
into two isolated groups (ratio of group sizes of 7:3) between 20 and
1,500 generations ago (model 8). Finally, we analyzed models
featuring the complete best-fitting conditions, but one without
migration and with uniform recombination rates (model 9), one with
migration and uniform recombination rates (model 10, the standard
model), and one without migration, but featuring heterogeneous
recombination rates and recombination hotspots (model 11 [35]).

All of the above neutral models except model 11 were simulated
with the ms coalescent simulation package [50]. Model 11, which uses
heterogeneous recombination rates, was simulated with Cosi [35].
Two hundred fragments of 2 Mb were generated for each model, and
only SNPs in the central 1 Mb were used for iES/ln(Rsb) calculations.
The iES and ln(Rsb) calculations were carried out by first randomly
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pairing the simulated chromosomes to form pseudo-genotype data,
and than applying the counting algorithm .

The ascertainment scheme approximating that of the Perlegen
dataset was applied to the simulated data from models 1 through 10.
Basically, the genotyping sample panels (23 Africans, 24 Chinese, and
24 Europeans) and discovery panel (six Africans, seven Chinese, and
seven Europeans) were generated simultaneously, and each SNP from
the genotyping sample was included only if it was polymorphic in the
diversity panel. In addition, three different ascertainment processes
were simulated for the standard mode. The first (model 10-asc1)
assesses the influence of low-quality sequence data by using a very
small discovery panel (two Africans, three Chinese, and three
Europeans); the second (model 10-asc2) assesses a skewed constitution
in the discovery panel (two Africans, four Europeans, and seven
Chinese); the third model randomly eliminated 90% of the genotyp-
ing SNPs to match the empirical SNP density.

Simulations of selective sweeps were performed using the two-
population model described in Thornton and Jensen [37]. This model
simulates a selective sweep in a derived population that has
experienced a population bottleneck, and also generates data from
an ancestral, equilibrium population. The bottleneck parameters are
tr, the time at which the population recovered from the bottleneck, d,
the duration of the bottleneck, and f, the relative size of the
population during the bottleneck. The parameters tr and d are
measured in units of 4Ne generations. The sweep parameters are, a¼
2Nes, the strength of selection, X, the location of the selected site, and
s, the time in the past when the beneficial allele reached fixation in
the population. Genome scan datasets consisting of 100 loci were
simulated, with ten loci experiencing a selective sweep. Loci were 2
Mb in length, with h¼ 0.001/site, and q¼ 4Ner¼ 0.00052/site. For loci
experiencing a sweep, X was assigned uniformly at random along the
2 Mb. The parameters tr, d, and s were fixed at 0.0075, 0.055, and
0.0076, respectively. We varied f to represent bottlenecks of different
severity, with f¼ 0.1, 0.2, and 0.4. The strength of selection was varied
from alpha ¼ 100, 1,000, and 1,500. The cutoff for tSNPs and the
critical value of the ratio of tSNPs in test 1 were obtained by
simulating 5,000 independent neutral loci as above for each f ¼ 0.1,
0.2, and 0.4. For both the ancestral and the derived populations, we
sampled 60 chromosomes. The ancestral population was used to
represent Africans and the derived to represent an out-of-Africa
population. Ascertainment is similar to the neutral simulation,
except there are only two populations. The discovery panel used 12
chromosomes from either population, and either genotyping panel
included 48 chromosomes.

Defining cutoffs. The full model (model 10) distribution and the
empirical data were transformed and superimposed by matching the
first and third quartile points as follows:

lnðRsbÞ9 ¼
lnðRsbÞ � Q1stþQ3rd

2

Q3rd � Q1st ð9Þ

where Q1st and Q3rd are the first and third quantile values of ln(Rsb).
The neutral model was treated as the null hypothesis, and threshold
values were positioned on the null distribution at the desired
significance levels.

Noise reduction by bootstrapping. The full Perlegen and HapMap
genotyping panels were bootstrapped over individuals for 50 times
each, and iES and Rsb were calculated for each SNP in each bootstrap
resample, providing an estimated standard deviation of the ln(Rsb)
value for every SNP. As inconsistent signals are more likely to come
from SNPs with large variances in ln(Rsb), we constructed the
distribution of SD(ln(Rsb))/ln(Rsb) for SNPs above the cutoffs, and
discarded those SNPs in the bottom 50% of this distribution. The
remaining SNPs are defined as tSNPs.

Testing enrichment of evidence for selection in genic regions. We
investigated whether genic regions exhibit more evidence of local
selection than non-genic regions. We calculated the proportion of the
full length of candidate regions in each candidate region list that
overlapped genes, and obtained p-values by comparing the observed
proportions to those observed in 1,000 samples of random genome
regions of the same size.

Overlapping of candidate regions between datasets. Pairwise
overlapping was calculated between the candidate regions from the
HapMap, Perlegen, and combined datasets. We also checked the
overlapping of our combined candidate regions against a previous
genome scan for positive selection [21]. Significance of the number of
overlapping regions was evaluated by comparing the observed
overlap to 1,000 iterations of random samples of two sets of regions
with the same size as the candidate regions.

Gene ontology analysis. Candidate regions obtained from the

HapMap and Perlegen data were merged to produce a single
universal set of genomic regions exhibiting evidence of recent local
selection. This list was used to investigate the types of genes involved
in local selection. We used the FUNC GO analysis package for this
purpose (http://func.eva.mpg.de [51]). BioMart (http://www.biomart.
org/index.html) was used to assign GO IDs for genes listed in the
ENSEMBL known-gene database. The AmiGO gene ontology data-
base (http://amigo.geneontology.org) was used to construct the GO
tree. The hypergeometric test was used to find GO categories that are
overrepresented in the candidate regions.

Supporting Information

Figure S1. Comparisons of the log(Rsb) Distributions between
Neutral Model 1 and Neutral Model 10

Upper row: the QQ plots. In every QQ plot, quantile points of model
10 are plotted on the x-axis. Lower row: standardized ln(Rsb)
histograms are superimposed onto one another. The blue curve
designates model 10, and the red curve designates model 1.

Found at doi:10.1371/journal.pbio.0050171.sg001 (99 KB PPT).

Figure S2. Comparisons of the log(Rsb) Distributions between
Neutral Model 2 and Neutral Model 10

Upper row: the QQ plots. In every QQ plot, quantile points of model
10 are plotted on the x-axis. Lower row: standardized ln(Rsb)
histograms are superimposed onto one another. The blue curve
designates model 10, and the red curve designates model 2.

Found at doi:10.1371/journal.pbio.0050171.sg002 (71 KB PPT).

Figure S3. Comparisons of the log(Rsb) Distributions between
Neutral Model 3 and Neutral Model 10

Upper row: the QQ plots. In every QQ plot, quantile points of model
10 are plotted on the x-axis. Lower row: standardized ln(Rsb)
histograms are superimposed onto one another. The blue curve
designates model 10, and the red curve designates model 3.

Found at doi:10.1371/journal.pbio.0050171.sg003 (71 KB PPT).

Figure S4. Comparisons of the log(Rsb) Distributions between
Neutral Model 4 and Neutral Model 10

Upper row: the QQ plots. In every QQ plot, quantile points of model
10 are plotted on the x-axis. Lower row: standardized ln(Rsb)
histograms are superimposed onto one another. The blue curve
designates model 10, and the red curve designates model 4.

Found at doi:10.1371/journal.pbio.0050171.sg004 (70 KB PPT).

Figure S5. Comparisons of the log(Rsb) Distributions between
Neutral Model 1 and Neutral Model 10

Upper row: the QQ plots. In every QQ plot, quantile points of model
10 are plotted on the x-axis. Lower row: standardized ln(Rsb)
histograms are superimposed onto one another. The blue curve
designates model 10, and the red curve designates model 5.

Found at doi:10.1371/journal.pbio.0050171.sg005 (70 KB PPT).

Figure S6. Comparisons of the log(Rsb) Distributions between
Neutral Model 6 and Neutral Model 10

Upper row: the QQ plots. In every QQ plot, quantile points of model
10 are plotted on the x-axis. Lower row: standardized ln(Rsb)
histograms are superimposed onto one another. The blue curve
designates model 10, and the red curve designates model 6.

Found at doi:10.1371/journal.pbio.0050171.sg006 (70 KB PPT).

Figure S7. Comparisons of the log(Rsb) Distributions between
Neutral Model 7 and Neutral Model 10

Upper row: the QQ plots. In every QQ plot, quantile points of model
10 are plotted on the x-axis. Lower row: standardized ln(Rsb)
histograms are superimposed onto one another. The blue curve
designates model 10, and the red curve designates model 7.

Found at doi:10.1371/journal.pbio.0050171.sg007 (70 KB PPT).

Figure S8. Comparisons of the log(Rsb) Distributions between
Neutral Model 8 and Neutral Model 10

Upper row: the QQ plots. In every QQ plot, quantile points of model
10 are plotted on the x-axis. Lower row: standardized ln(Rsb)
histograms are superimposed onto one another. The blue curve
designates model 10, and the red curve designates model 8.
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Found at doi:10.1371/journal.pbio.0050171.sg008 (70 KB PPT).

Figure S9. Comparisons of the log(Rsb) Distributions between
Neutral Model 9 and Neutral Model 10

Upper row: the QQ plots. In every QQ plot, quantile points of model
10 are plotted on the x-axis. Lower row: standardized ln(Rsb)
histograms are superimposed onto one another. The blue curve
designates model 10, and the red curve designates model 9.

Found at doi:10.1371/journal.pbio.0050171.sg009 (70 KB PPT).

Figure S10. Comparisons of the log(Rsb) Distributions between
Neutral Model 11 and Neutral Model 10

Upper row: the QQ plots. In every QQ plot, quantile points of model
10 are plotted on the x-axis. Lower row: standardized ln(Rsb)
histograms are superimposed onto one another. The blue curve
designates model 10, and the red curve designates model 11.

Found at doi:10.1371/journal.pbio.0050171.sg010 (73 KB PPT).

Figure S11. Comparisons of the log(Rsb) Distributions between
Standard Ascertainment and the Alternative Ascertainment 1 for
Model 10

Upper row: the QQ plots. In every QQ plot, quantile points of the
standard ascertainment are plotted on the x-axis. Lower row:
standardized log(Rsb) histograms are superimposed onto each other.
The blue color designates the standard ascertainment for model 10,
and the blue color designates the alternative ascertainment 1.

Found at doi:10.1371/journal.pbio.0050171.sg011 (70 KB PPT).

Figure S12. Comparisons of the log(Rsb) Distributions between
Standard Ascertainment and the Alternative Ascertainment 2 for
Model 10

Upper row: the QQ plots. In every QQ plot, quantile points of the
standard ascertainment are plotted on the x-axis. Lower row:
standardized log(Rsb) histograms are superimposed onto each other.
The blue color designates the standard ascertainment for model 10,
and the blue color designates the alternative ascertainment 2.

Found at doi:10.1371/journal.pbio.0050171.sg012 (71 KB PPT).

Figure S13. Comparisons of the log(Rsb) Distributions between
Standard Ascertainment and the Alternative Ascertainment 3 for
Model 10

Upper row: the QQ plots. In every QQ plot, quantile points of the
standard ascertainment are plotted on the x-axis. Lower row:
standardized log(Rsb) histograms are superimposed onto each other.
The blue color designates the standard ascertainment for model 10,
and the blue color designates the alternative ascertainment 3.

Found at doi:10.1371/journal.pbio.0050171.sg013 (70 KB PPT).

Figure S14. The Empirical ln(Rsb) Distributions Superimposed onto
the Null Distribution to Define the Cutoffs

The empirical ln(Rsb) distributions of the AE, AC, and CE
comparisons (a, b, and c) were matched to their corresponding null
distributions, defined by model 10, by the first and third quartile
points. The blue curves designate the null distribution, and the red
curves designate the empirical data. The cutoff positions are
indicated by the short vertical lines.

Found at doi:10.1371/journal.pbio.0050171.sg014 (59 KB PPT).

Table S1. Proportions of Candidate Region Lists That Are Significant
in the LRH Test

Pmn, P95, and P75 are related LRH tests that use the mean, number
of SNPs above 95%, or number of SNPs above 75% as the test
statistics, respectively (see Methods).

Found at doi:10.1371/journal.pbio.0050171.st001 (36 KB DOC).

Table S2. Candidate Regions for Europeans from the AE Comparison
in the HapMap Data

Found at doi:10.1371/journal.pbio.0050171.st002 (37 KB XLS).

Table S3. Candidate Regions for Chinese from the AC Comparison in
the HapMap Data

Found at doi:10.1371/journal.pbio.0050171.st003 (32 KB XLS).

Table S4. Candidate Regions for Europeans from the CE Comparison
in the HapMap Data

Found at doi:10.1371/journal.pbio.0050171.st004 (24 KB XLS).

Table S5. Candidate Regions for Chinese from the CE Comparison in
the HapMap Data

Found at doi:10.1371/journal.pbio.0050171.st005 (22 KB XLS).

Table S6. Candidate Regions for Europeans from the AE Comparison
in the Perlegen Data

Found at doi:10.1371/journal.pbio.0050171.st006 (37 KB XLS).

Table S7. Candidate Regions for Chinese from the AC Comparison in
the Perlegen Data

Found at doi:10.1371/journal.pbio.0050171.st007 (34 KB XLS).

Table S8. Candidate Regions for Europeans from the CE Comparison
in the Perlegen Data

Found at doi:10.1371/journal.pbio.0050171.st008 (19 KB XLS).

Table S9. Candidate Regions for Chinese from the CE Comparison in
the Perlegen Data

Found at doi:10.1371/journal.pbio.0050171.st009 (18 KB XLS).

Table S10. Combined Candidate Regions for Europeans from the AE
Comparisons in the Perlegen and HapMap Data

Found at doi:10.1371/journal.pbio.0050171.st010 (41 KB XLS).

Table S11. Combined Candidate Regions for Chinese from the AC
Comparisons in the Perlegen and HapMap Data

Found at doi:10.1371/journal.pbio.0050171.st011 (41 KB XLS).

Table S12. Combined Candidate Regions for Europeans from the CE
Comparisons in the Perlegen and HapMap Data

Found at doi:10.1371/journal.pbio.0050171.st012 (20 KB XLS).

Table S13. Combined Candidate Regions for Chinese from the CE
Comparisons in the Perlegen and HapMap Data

Found at doi:10.1371/journal.pbio.0050171.st013 (19 KB XLS).
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