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An Early Role for Wnt Signaling in Specifying
Neural Patterns of Cdx and Hox Gene
Expression and Motor Neuron Subtype Identity
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The link between extrinsic signaling, progenitor cell specification and neuronal subtype identity is central to the
developmental organization of the vertebrate central nervous system. In the hindbrain and spinal cord, distinctions in
the rostrocaudal identity of progenitor cells are associated with the generation of different motor neuron subtypes.
Two fundamental classes of motor neurons, those with dorsal (dMN) and ventral (vMN) exit points, are generated over
largely non-overlapping rostrocaudal domains of the caudal neural tube. Cdx and Hox genes are important
determinants of the rostrocaudal identity of neural progenitor cells, but the link between early patterning signals,
neural Cdx and Hox gene expression, and the generation of dMN and vMN subtypes, is unclear. Using an in vitro assay
of neural differentiation, we provide evidence that an early Wnt-based program is required to interact with a later
retinoic acid- and fibroblast growth factor-mediated mechanism to generate a pattern of Cdx and Hox profiles
characteristic of hindbrain and spinal cord progenitor cells that prefigure the generation of vMNs and dMNs.
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Introduction

During the early development of the vertebrate central
nervous system, the position of generation of post-mitotic
neurons depends on the patterning of progenitor cells along
the dorsoventral and rostrocaudal axes of the neural tube [1-
3]. At many levels of the neuraxis, the dorsoventral pattern of
progenitor cells, which later gives rise to motor, sensory, and
local circuit neurons, is initiated by the opponent signaling
activities of Sonic hedgehog (Shh) and bone morphogenetic
proteins [2,4,5]. In contrast, the rostrocaudal pattern of
neural progenitor cells that differentiate into distinct neuro-
nal subtypes is imposed, in part, by opponent retinoid and
fibroblast growth factor (FGF) signals [6-9]. Within the
hindbrain and spinal cord, the rostrocaudal positional
identity of neurons is reflected most clearly by the generation
of different motor neuron (MN) subtypes. One fundamental
distinction in MN subtype identity is the emergence of two
major classes of MNs that exhibit distinctive axonal trajec-
tions, ventral exiting motor neurons (VMNs) and dorsal
exiting motor neurons (dMNs) [10]. vMNs include most spinal
MNs as well as hypoglossal and abducens MNs of the caudal
hindbrain [1,10,11], whereas dMNs are found throughout the
hindbrain and at cervical levels of the spinal cord [10]. Each
of the many subsequent distinctions in MN subtype identity
emerge through the diversification of these two basic neuro-
nal classes [2].

Despite many advances in defining the mechanisms of MN
diversification [7,8,12-14], it remains unclear how neural
progenitors in the hindbrain and spinal cord acquire a
rostrocaudal positional character that results in the gener-
ation of dMN and vMN classes. At both hindbrain and spinal
levels, Hox genes are informative markers of the rostrocaudal
positional identity of progenitor cells. Within the hindbrain,
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distinct rhombomeres are delineated by the nested expres-
sion of 3" Hox genes [3,15], whereas the spinal expression of 5’
Hox genes distinguishes progenitor cells and post-mitotic
neurons at cervical, brachial, thoracic, and lumbar levels [1,6-
8,13,16]. Moreover, Hox genes are determinants of MN
subtype identity in both hindbrain and spinal cord. In the
hindbrain, for example, the restricted expression of Hoxbl
helps to determine the identity of facial MNs [1,17-20], and in
the spinal cord the restricted expression of Hox6, Hox9, and
Hox10 proteins establishes MN columnar subtype [7,16]. In
addition, a more complex Hox transcriptional regulatory
network specifies spinal MN pool identity and connectivity
[21]. The neural pattern of Hox expression is, in turn,
regulated by members of the Cdx homeobox gene family
[6,22-25]. Cdx genes are transiently expressed in the caudal-
most region of the neural plate prior to the onset of 5" Hox
gene expression [26-28] and appear to be direct regulators of
the expression of 5" Hoxb genes [6,23,24,27]. Thus, analysis of
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spatial profiles of Cdx and Hox gene expression may provide
clues about the identity of signals that pattern MN subtypes
in the hindbrain and spinal cord.

Several recent studies have provided insight into the signals
that impose rostrocaudally-restricted patterns of neural Cdx
and Hox expression. Retinoic acid (RA) and FGF signals
appear to have opponent roles in the rostrocaudal patterning
of Hox gene expression in the caudal hindbrain (cHB) and
spinal cord [6,8]. Mesodermal-derived RA signals promote the
expression of Hox genes characteristic of the cHB and rostral
spinal cord (rSC) [11,29,30], whereas FGF signals pattern the
expression of Hox genes at more caudal levels of the spinal
cord. At an earlier developmental stage, neural progenitors
have been shown to acquire caudal forebrain, midbrain, and
rostral hindbrain positional identities in response to graded
Wnt signaling at the gastrula stage [31,32]. It is unclear,
however, whether an early phase of Wnt signaling is also
required to establish Cdx and Hox gene expression profiles
characteristic of the cHB and spinal cord, in turn specifying
the generation of dMN and vMN subtypes.

This study uses in vitro assays of neural cell differentiation
to obtain evidence that early Wnt signaling does indeed have
a crucial role in specifying the identity of hindbrain and
spinal cord progenitor cells as revealed by profiles of Cdx and
Hox gene expression. This early influence of Wnt signaling is
later refined by retinoid and FGF signals to impart additional
rostrocaudal distinctions in Hox expression that correlate
tightly with the generation of dMNs and vMNs. Our findings
therefore define a crucial early role for Wnt signaling in
inducing profiles of Cdx and Hox expression that prefigure the
differentiation of dMN and vMN subtypes in the developing
hindbrain and spinal cord.

Results

Transcriptional Markers of Progenitor Cell Position and
MN Subtype

To explore how progenitor cells of different rostrocaudal
regional identity differentiate into dMNs and vMNs, we
analyzed a panel of transcription factors that are expressed in
different temporal and spatial patterns in the developing
hindbrain and spinal cord.

In the hindbrain, progenitor cells do not express Cdx genes
[22,26]. Cells in rthombomeres (r)3 and r5—here defined as
the rostral hindbrain (rHB)—express Krox20 (FigurelD, [33])
and generate both dMNs defined by the expression of Thx20"/
IsI" and vMNs defined by the expression of Hb9'/IsI" (Figure
1D, [34-36]). In contrast, progenitor cells in r7 and r8—here
defined as the cHB—express Hoxb4 but not Hoxb8 or Hoxc9
(termed Hoxb4'/h8 /c9~ cells and all monitored by in situ
hybridization) (Figure 1A, 1B, and 1D) and generate Tbhx20"1
IsI" dMNs. (Figure 1C, and 1D, [34-36]).

Cells that give rise to the spinal cord can, at Hamburger
and Hamilton (HH) stages 6-8, be defined by their profile of
CdxB and CdxC expression (Figure 2 and [22,26]). Later, at
stage 17, a complex spatial pattern of Hox gene expression
defines progenitor cells of different regional identities
(Figure 1). Spinal progenitor cells at prospective cervical/
brachial levels adjacent to somites 6-19 (here termed
“rostral” spinal cord [rSC])—express Hoxb4 and Hoxb8, but
do not express Hoxc9 (termed Hoxb4 /68" /c9™ cells) (Figure 1A,
1B, and 1D). MN progenitor cells at this level generate Hb9"/
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Is11™ vMNs, but only a few Thx20MsI™ dMN’s (Figure 1C, 1D
and [34-36]). Progenitor cells at thoracic levels of the spinal
cord—adjacent to somite 20-30 (here termed “caudal” spinal
cord [cSC])—express Hoxb4, HoxbS8, and Hoxc9 (termed Hoxb4"/
b8 /c9" cells) (Figure 1A, 1B, and 1D) and generate Hb9 /IsI™
VMNSs that can be distinguished from those found at more
rostral levels by their expression of Hoxc9 (Hb9™/IsI"/Hoxc9™
MNs) (Figure 1C and 1D, [7]). Since most of these markers are
also expressed by non-neural cells, we used Sox proteins as
general neural markers: Sox1 at stage 17 [37,38] and Sox2 in
combination with Sox3 at stage 8 as presumptive neural
markers [39,40]. In addition, we used Otx2 as a marker for
neural cells located rostral to the midbrain/hindbrain
boundary [41,42].

Hindbrain and Spinal Cord Progenitor Cells Acquire
Rostrocaudal Regional Identity at Early Somite Stages

To study the patterning of Cdx and Hox genes by neural
progenitor cells and its link to the differentiation of MN
subtypes, we used in vitro differentiation assays that
employed stage 4-8 prospective hindbrain and spinal cord
explants, and stage 4 prospective forebrain (FB) explants. In
stage 4 caudal (C) explants, cells have been exposed to
caudalizing signals at the time of their isolation [31,32], and
these explants were used to examine the signals that specify
hindbrain and spinal cord character. Cells in stage 4 FB
explants have not been exposed to caudalizing signals at the
time of their isolation [31,32], and these explants were used in
attempts to reconstitute more completely the events that
direct the generation of dMNs and vMNs from “naive” neural
cells.

Prior to stage 8, the caudal neural plate is either specified
as 1SC or ¢SC (HH 5-7), but no explants generating cells of
cHB character can be isolated (unpublished data). By stage 8,
however, cells in explants isolated at a position just rostral to
the regressing Hensen’s node (RN explants) did not express
CdxB and CdxC (Figure 2) and generated cells characteristic of
the cHB that expressed Hoxb4 alone (Hoxb4 /b8 /c9~ cells (85
+ 10% of total cell number) after 40 h in culture (Figure 3B).
In contrast, cells in stage 8 explants isolated at the level of the
node (NL explants) expressed CdxB and CdxC (Figure 2). These
explants also generated cells that expressed Hoxb4 and Hoxb8
in the absence of Hoxc9 (Hoxb4+/b8+/cT cells; 96 £ 2% of total
cell number), a marker profile characteristic of the rSC
(Figure 3C). Cells in stage 8 explants isolated caudal to the
node (CN explants) also expressed CdxB and CdxC (Figure 2),
and generated Hoxb4'/b8 Ic97cells (88 = 7% of total cell
number), a profile characteristic of the cSC (Figure 3D). Thus
by stage 8, prospective hindbrain and spinal cord progenitor
cells appear to have acquired a coarse rostrocaudal regional
identity.

To determine whether the Hox gene profiles generated in
stage 8 neural plate explants were correlated with the
emergence of dMNs and vMNs, we exposed explants to the
diffusible N-terminal fragment of the Shh protein (Shh-N)
that exhibits MN-inducing activity [43,44]. In the presence of
Shh-N (15 nM) for ~50 h, stage 8 RN explants generated
many Thx20 IsI" dMNs (22 + 7% of total cell number) and
very few Hb9*/Is1" vMNs (1 = 0.5% of total cell or number), a
profile of MNs characteristic of the cHB (r7 and rostral r8)
(Figure 4B). Under these conditions, NL explants generated
very few Tbx20MIsI" dMNs (1.5 = 1% of total cell number)
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Figure 1. Profiles of Hox Gene Expression, dMNs, and vMNs in the Hindbrain and Spinal Cord

(A) Schematic figure of the caudal embryonic neural tube divided into four distinct regions along the rostrocaudal axis: rHB; r7 and r8 defined as cHB;
the region of the spinal cord located at the level of somite 6-19 defined as the rSC; and the region located caudal to somite 19 defined as cSC.

(B) In a stage 17 (30-somite) chick embryo, the rostral borders of Hoxb4, Hoxb8, and Hoxc9 expression are located just caudal to the otic vesicle (OV) (at
the level of the r6/7 border), at the level of somite 5/6, and at the level of somite 19/20, respectively. Hoxb4 expression in the absence of Hoxb8 and
Hoxc9 is characteristic of cells in the cHB (r7 and r8). Expression of Hoxb4 and Hoxb8 in the absence of Hoxc9 is characteristic of the rSC domain, and
expression of Hoxb4, Hoxb8, and Hoxc9 is characteristic of cells in the cSC domain.

(Q) In stage 20 (42-somite) chick embryos, the rostral boundaries of expression of Hoxb4, Hoxb8, and Hoxc9 in the neural tube are maintained as in a
stage 17 embryo (= 1-somite). Tbx20"/IsI" dMNs are present at high numbers in the cHB and at lower numbers in the rSC. No Tbx20"/IsI* dMNs are
found in the cSC. In contrast, Hb9"/IsI" vMNs are present at high numbers in both rSC and cSC, and at lower numbers in r8 of the cHB. Hoxc9 protein is
expressed in a subset of Hb9"/IsI” vMNs in the cSC and thus, distinguishes vMNs in the ¢SC from vMNs in the rSC.

(D) Horizontal bars represent rostrocaudal restrictions (applied to Figure 1A) of marker genes expressed by neural progenitor cells in the stage 17 neural

tube, and by MNs in stage 20 embryos.
DOI: 10.1371/journal.pbio.0040252.9001

and many Hb9™/IsI" vMNs (25 + 4% of total cell number).
Few, if any, of the induced Hb9 " /IsI™ vMNs co-expressed
Hoxc9 (0.3 £ 0.3% of total cell number), indicative of an rSC
positional character (Figure 4C). CN explants did not
generate Tbx20"/IsI" dMNs but did generate Hb9"/IsI” vMNs
(27 = 7% of total cell number), most of which expressed
Hoxc9 protein (80 * 6% of Hb9™ cells)—a profile character-
istic of the thoracic spinal cord (Figure 4D). Thus, by stage 8,
progenitor cells that occupy different rostrocaudal positions
within the caudal neural plate, defined in part by their Cdx
profiles, are specified as hindbrain and spinal cord cells of
either rostral or caudal regional character, and have acquired
sufficient positional information to differentiate into dMNs
and vMNs in a position-appropriate manner.
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Spinal Cord Cells of Caudal Character Are Specified at the
Late Gastrula Stage

To examine when the early pattern of Cdx and Hox profiles
characteristic of hindbrain and spinal cord progenitor cells is
established, we first monitored the generation of cells
expressing CdxB and CdxC by in situ hybridization in stage 4
C explants cultured for 15 h in vitro, corresponding to a stage
8 embryo. We tracked the rostrocaudal orientation of these
explants by labeling cells at the caudal margin with Dil
crystals. Under these conditions, CdxB" and CdxC" cells (36 +
11% of total cell number) were generated in a caudal domain
of the explants (Figure 5D), adjacent to the Dil labeling. To
examine the rostrocaudal identity of the Cdx" cells, we
monitored the generation of Hoxb4", Hoxb8", and Hoxc9" cells
by in situ hybridization in stage 4 C explants cultured for 44
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Figure 2. Expression Pattern of CdxB and CdxC

Whole mount in situ hybridization of CdxC and CdxB in HH stage 8
embryos (4-somite). Expression of CdxC and CdxB is limited to levels
adjacent and caudal to the node. The node is indicated by the red
arrowhead.

DOI: 10.1371/journal.pbio.0040252.9002

h. Stage 4 C explants cultured for 44 h generated Krox20"
cells (45 = 15% of total cell number), characteristic of the
rHB away from the Dil label and, in a separate caudal domain
(adjacent to the Dil label) Hoxb4 68" Ic9" cells (52 + 12% of
total cell number) characteristic of the ¢SC (Figures 7B and
5E). Thus, the generation of CdxB'/C" cells and Hoxb4'1b8"1c9"
cells in a similar caudal domain of the explants supports the
view that the expression of Cdx genes in neural plate cells is
restricted to prospective spinal cord cells. In contrast, only a
small domain of the explants generated Hoxb4 /b8"/c9™ cells
(12 £ 8% of total cell number), a marker profile character-
istic of the rSC. Moreover, these explants lacked cells that
expressed Hoxb4 alone (Hoxb4' /b8 /c9™ cells) (Figures 5E and
7B), characteristic of the cHB. These results provide evidence
that, at stage 4, prospective caudal neural plate cells are
specified as cells of rHB and c¢SC character, and only later
acquire cHB or rSC character.

We next examined whether prospective rHB and c¢SC cells
have acquired sufficient rostrocaudal positional information
by stage 4 to permit them to differentiate into dMNs or vMNs
when exposed to Shh-N. To test this possibility, we cultured
stage 4 C explants for 28 h to allow cells to acquire a stable
rostrocaudal positional identity, and then for an additional
38 h in the presence of Shh-N (15 nM) (combined culture time
corresponding to a stage 20, ~40-somite embryo). In the
presence of Shh-N, Thx20"/IsI" dMNs (1 = 1% of total cell
number) and Hb9"/IsI" vMNs (16 = 2% of total cell number)
were generated in separate domains of the explants (Figure
6B). A majority of the vMNs expressed Hoxc9 (10 = 2% of
total cell number)—a profile characteristic of vMNs at
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thoracic levels of the spinal cord (Figure 6B). These results
indicate that by stage 4, cells in the prospective caudal neural
plate have acquired a positional character that permits them
to differentiate into dMNs and vMNss.

Joint Wnt and FGF Signaling at Late Gastrula Stages
Specifies Spinal Cord Character

We next addressed the identity of the secreted signals that
might be involved in the early specification of cells of spinal
cord character. Several Wnt and Fgf genes are expressed in
and around the prospective caudal neural plate [45-47], and
the specification of rHB cells at stage 4 requires convergent
Wnt and FGF signaling [32,48]. To examine whether
combined Wnt and FGF signaling is required for the
specification of cells of spinal cord positional character, we
cultured stage 4 C explants in the presence of a soluble
fragment of the Frizzled receptor 8 protein (Frz8CRD-IgG),
an antagonist of Wnt signals [32,49,50], or with SU5402, an
antagonist of FGF receptor signaling [49,51,52] and moni-
tored the expression of Cdx and Hox genes.

In the presence of Frz8CRD-IgG or SU5402 (5 uM) for 15 h,
the expression of both CdxB and CdxC was blocked (Figure 5F
and HH). After 44 h under these conditions, the generation of
cells of both rHB (Krox20™) and of spinal cord (Hoxb4 /b8 /c9~
and Hoxb4'/b8"/c9") character was almost completely blocked
(3 = 3% caudal cells remaining versus 64 * 10% in the
controls) (Figure 5G and 5I). Instead, Otx2" forebrain-like
cells were generated (79 * 9% of total cell number versus 0%
in the controls) (Figure 5G and 5I). These results support the
idea that the specification of cells of spinal cord positional
character also involves convergent Wnt and FGF signaling.

To test whether Wnt signaling in prospective tHB and ¢SC
cells is required for the generation of vMNs and dMNs, stage 4
C explants were cultured in the presence of mFrzZ8CRD-IgG,
and after 28 h Shh-N (15 nM) was added for a further 38 h.
Under these conditions, the generation of Thx20"/IsI" dMNs
and Hb9'/IsI" and Hoxc9"/Hb9" vMNs was blocked (0% of
total cell number), and instead IsI'/7Thx20 /Hb9 /Hoxc9~
neurons, characteristic of the ventral forebrain [53,54], were
generated (18 £ 3% of total cell number) (Figure 6C). Thus,
exposure of prospective caudal neural plate cells to Wnt
signals is required for the generation of vYMNs and dMNs.

High-Level Wnt Signaling Promotes Spinal Cord Character

We next examined whether differences in the level or
duration of exposure to Wnt and FGF signals contribute to
the early distinction in hindbrain and spinal cord character.
To test this possibility, we exposed stage 4 C explants to
exogenous Wnt and FGF signals for 15 h or 44 h in vitro. In
explants exposed to Wnt3A (75 ng/ml) and FGF4 (60 ng/ml)
simultaneously for 15 h, CdxB* and CdxC" cells were generated
throughout the entire explant (Figure 5]). After 44 h of
culture under these conditions, the generation of Krox20"
cells was largely suppressed (3 * 2% of total cell number
versus 45 * 15% in the controls) and most cells acquired a
Hoxb4 /68" /c9" ¢SC character (96 *+ 2% of total cell number
versus 52 £ 12% in the controls) (Figure 5K). To examine
whether mesodermal cells were generated under these
conditions, we monitored the expression of MoxI[55], which
is expressed in caudal paraxial mesoderm and of Brachyury
(Bra) [56], which at caudal levels is expressed in both the
mesoderm and in cells of the forming caudal neural plate
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Figure 3. Hindbrain and Spinal Cord Progenitor Cells Acquire Rostrocaudal Regional Identity at the Early Somite Stage

(A) Schematic drawing of a stage 8 chick embryo. The boxed regions indicate neural plate explants cultured in vitro for 40 h.

(B-D) Sox1 was used as a general neural marker. Bars represent mean = s.e.m. number of cells in Hoxb4'/b8 /c9~, Hoxb4"/b8"/c9~, and Hoxb4'/b8"/
9" domains, respectively, as percentage of total cell number. Each row represents consecutive sections from a single explant.

(B) Explants isolated from the RN generated Hoxb4 /b8 /c9~ cells and few Hoxb4'/b8"/c9™ cells (n = 8 explants).

(C) Explants isolated at the NL generated Hoxb4'/b8'/c9~ cells (n = 15 explants).

(D) Explants isolated from the CN generated Hoxb4 /b8"/c9" and only a few Hoxb4'/b8"/c9~ cells (n = 12 explants). Scale bar represents 100 pm.

DOI: 10.1371/journal.pbio.0040252.g003

(Figure S3G). No MoxI cells and no, or very few, Bra" cells
were induced (Figure S3D), indicating that the few Bra' cells
represent caudal neural cells and not mesodermal cells.
Exposure to FGF4 (60-120 ng/ml), or Wnt3A (150 ng/ml) alone
did not increase the number of cells expressing Cdx genes, nor
did it change the ratio of Krox20" and Hoxb4 /b8 /c9" cells
(Figure S1 and unpublished data). These results are consistent
with the view that exposure of cells to prolonged or higher
level Wnt and FGF signaling promotes the specification of
cells of spinal cord rather than midbrain or hindbrain
character.

RA Imparts Caudal Character to Hindbrain Cells and
Rostral Character to Spinal Cord Cells

How then, are rostral and caudal sub-domains of the
hindbrain and spinal cord established? Since Wnt signaling
contributes to the distinction in specification of prospective
rHB and cSC cells at gastrulation stages, we examined first
whether exposure of prospective hindbrain and spinal cord
cells to Wnt signals beyond stage 8 was required for the later
specification of cHB and rSC cells. Stage 8 caudal neural plate
explants exposed to FrzZ8CRD-IgG still generated cells of cHB
and spinal cord character (unpublished data); indicating that
prolonged exposure to Wnt signals is not required for the
generation of these two sub-domains of the caudal neural
tube.

By stage 8, the retinoid acid synthesizing enzyme retinal-
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dehyde dehydrogenase 2 (RALDH2) is expressed in the
paraxial mesoderm adjacent to the prospective cHB and
rSC [57-59]. RA signaling might therefore promote the
generation of cells of cHB and rSC character by acting on
neural cells that have already acquired an initial caudal
character, through convergent Wnt and FGF signaling. To
test this idea, we exposed stage 4 C explants to RA, and used
the combinatorial expression of Hoxb4, Hoxb8, and Hoxc9 to
distinguish cells of cHB, and rSC or ¢SC character. Since Cdx
expression does not distinguish between cells of rSC and ¢SC
character, we did not monitor Cdx expression in these
experiments. To map prospective rHB and ¢SC cells in these
explants, we tracked their rostrocaudal orientation by label-
ing cells at the caudal margin with Dil crystals. We found that
Hoxb4'1b8"1c9" cells derive from the caudal-most region of the
explants, whereas Krox20™ cells derive from a rostral domain
of the explants (Figure 7B).

In the presence of RA (10 nM), no Krox20" cells of rHB
character were generated in the rostral domain of the
explants—the domain lacking Dil-labeled cells. Instead,
Hoxb4'/b8 /c9~ cells characteristic of the cHB (47 = 10% of
total cell number versus 0% in the controls) were generated
in this domain (Figure 7C). In the caudal domain of the
explants—the domain adjacent to Dil-labeled cells—the
presence of RA (10 nM) blocked the generation of Hoxb4"/
b8"/c9" cells characteristic of the ¢SC (0% of total cell number
versus 52 * 12% in controls), and instead, Hoxb4 /8" /c9™ cells
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to Shh-N

(A) Schematic of a stage 8 chick embryo. The boxed regions indicate isolated neural plate explants cultivated alone for 4 h and then exposed to Shh-N

(15 nM) for an additional ~50 h.

(B-D) Bars represent mean *+ s.e.m. number of Tbx20"/IsI*, Hb9"/IsI", and Hb9*/Hoxc9" cells, respectively, as percentage of total cell number. Each row

represents consecutive sections from a single explant.

(B) Explants isolated from the RN generated Tbx20"/1sI" cells and a few Hb9'/IsI" cells (n =9 explants).
(C) Explants isolated at the NL generated Hb9'/IsI" cells, only a few Tbx20"/IsI" cells, and no Hb9"/IsI””Hoxc9" cells (n = 12 explants).
(D) Explants isolated from the CN generated Hb9'/IsI* cells of which 80 * 6% expressed Hoxc9 but no Tbx20™/IsI* cells appeared (n= 10 explants). Scale

bars represent 100 um (Isl) and 50 pum (double labels), respectively.
DOI: 10.1371/journal.pbio.0040252.9g004

characteristic of the rSC (55 £ 10% of total cell number
versus 12 = 8% in controls) were generated (Figure 7C).
Furthermore, RA was unable to induce caudal character in
stage 4 prospective FB cells that had not been exposed to
caudalizing signals [31] (Figure S2E). These results provide
evidence that RA promotes the generation of Hoxb4' /bS8 /c9~
cHB cells by blocking Krox20 and inducing Hoxb4 expression
in caudalized prospective Krox20" rHB cells. In addition, they
show that RA induces Hoxb4 /68/c9~ rSC cells by preventing
Hoxc9 expression in prospective c¢SC cells.

FGF Signaling Contributes to the Distinction between
Cells of cHB and rSC Character

We next examined how the distinction between cHB and
rSC cells is established. RA promotes the generation of cHB
cells, and FGFs promote the expression of Hox genes
characteristic of the caudal region of the spinal cord [8,46].
Moreover, RA and FGF signals act in an opponent manner
during rostrocaudal patterning of Hox gene expression and
MN progenitor cell specification [6,8]. These observations led
us to examine the possibility that FGF and RA signals
converge during the initial assignment of cHB and rSC
positional character.

We exposed stage 4 C explants to both RA (10 nM) and
FGF4 (30 ng/ml) and assayed their Hox profile after 44 h. The
generation of Hoxb4'/b8 /c9~ cHB cells was suppressed (1 =

@ PLoS Biology | www.plosbiology.org

1% of total cell number versus 47 = 10% in explants cultured
with RA alone), and most cells (92 £ 3% of total cell number
versus b5 = 10% in explants cultured with RA alone)
expressed Hoxb4 and Hoxb8, a profile indicative of rSC
character. A few Hoxb4' b8 1c9" cells (7 + 4% of total cell
number versus 0% in explants cultured with RA alone),
characteristic of ¢SC character were also detected (Figure
7D). Thus, in the presence of RA, prolonged exposure to FGF
signals promotes the generation of cells of rSC at the expense
of cHB character. This finding supports the idea that the
status of FGF signaling biases whether RA exposure induces
Hox gene profiles characteristic of cHB or rSC.

Combinatorial Wnt, RA, and FGF Signals Impose Hindbrain
and Spinal Cord Character in Naive Neural Cells

As a further test of the sufficiency of Wnt, FGF, and RA
signals in establishing hindbrain and spinal cord pattern, we
examined whether a combination of these factors can
establish appropriate Cdx and Hox gene profiles in naive
rostral forebrain cells that appear not to have been exposed
to caudalizing signals in ovo.

Stage 4 FB explants cultured alone for 44 h generated
Sox1710tx2" cells (94 = 4% of total cell number) (Figures 9B
and S2B). Wnt3A, FGF4, or RA added separately, or FGF4 and
RA added in combination, did not induce cells of caudal
neural character (Figure S2; see also [31,32]). Stage 4 FB
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Figure 5. Cells of Spinal Cord Character Are Induced by Combinatorial Wnt and FGF Signaling at the Late Gastrula Stage

(A and B) Caudal (C) neural plate tissue explants (black box) were isolated from HH stage 4 embryos and embedded in collagen matrix where their
rostrocaudal orientation was maintained during in vitro cultivation for 15 h, corresponding to a stage 8 embryo (A, D, F, H, and J) or for 44 h,
corresponding to a stage 17 ~30-somite embryo (B, E, G, |, and K).

(C) Schematic drawing indicating the expression pattern of Wnt (red) and Fgf genes (green) in the primitive streak and caudal ectoderm, and in the
node and primitive streak, respectively. Black dotted line indicates the presumptive neural plate.

(D-K) Each row represents consecutive sections from a single explant.

(D, F, H, and J) Sox2/3 was used as a presumptive neural marker.

(D) Stage 4 C explants were Dil-labeled and cultured alone. Cells in the caudal domain of the explants, close to the Dil-labeled cells, expressed CdxB and
CdxC (n = 12 explants). White arrowhead indicates the Dil-labeled cells.

(E, G, I, and K) Sox1 was used as a general neural marker.

(E) Cells in the rostral domain of 4 C explants cultured alone expressed Krox20, whereas Hoxb4'/b8"/c9" cells appeared in the caudal domain of the
explants. A small domain of Hoxb4 /b8"/c9™ cells, but no domain of cells expressing Hoxb4 alone, were generated (n = 30 explants).

(F) Explants cultured in the presence of mFrz8CRD-IgG conditioned medium (300 pl/ml culture medium) generated Sox2/3" neural cells but no CdxB or
CdxC positive caudal neural cells (n =11 explants).

(G) Explants cultured in the presence of mFrz8CRD-IgG conditioned medium (300 pl/ml culture medium) generated Otx2" but no, or few, caudal neural
cells (n = 12 explants).

(H) Explants cultured in the presence of SU5402 (5 uM), an inhibitor of FGF signaling, generated Sox2/3™ neural cells but no CdxB or CdxC positive caudal
neural cells (n = 8 explants).

(I) Explants cultured in the presence of SU5402 (5 uM), an inhibitor of FGF signaling, generated Otx2" but no, or few, caudal neural cells (n =9 explants).
(J) Simultaneous exposure to Wnt3A (~75 ng/ml) and FGF4 (60 ng/ml) resulted in the generation of cells that expressed CdxB and CdxC in the entire
explant (n = 17 explants). Scale bar represents 100 pum.

(K) Exposure to Wnt3A (~75 ng/ml) and FGF4 (60 ng/ml), in combination, almost completely blocked the generation of Krox20" rHB cells, and only

Hoxb4'/b8"/c9" spinal cord cells were generated (n = 17 explants). Scale bar represents 100 um.

DOI: 10.1371/journal.pbio.0040252.g005

explants exposed to Wnt3A and FGF4 in combination for 15
h, corresponding to stage 8, generated CdxB' and CdxC" cells
(95 £ 4 % of total cell number) (Figure 8C). After 44 h of
culture, Hoxb4'/b8/c9" cSC cells (96 £ 2% of total cell
number) and only a few Krox20" cells (4 = 1% of total cell
number) were generated (Figure 9C). Thus, combined Wnt
and FGF signals establish Cdx and Hox gene profiles indicative
of ¢SC identity in prospective FB cells.

We next examined whether, in the presence of Wnt and
FGF signals, RA can induce the generation of cHB or rSC
cells. In the combined presence of Wnt3A (150 ng/ml), FGF4
(30 ng/ml), and RA (10 nM) for 15 h, stage 4 FB explants
generated CdxB" and CdxC' cells (97 = 3% of total cell
number) (Figure 8D). After 44 h of culture, Hoxb4 /68"/c9™ rSC
cells (91 * 5% of total cell number) and some Hoxb4' /b8 /c9"

@ PLoS Biology | www.plosbiology.org

1444

cSC cells (9 = 5% of total cell number), but no Hoxb4' /b8 /c9~
cells of cHB character, were generated (Figure 9D). Thus, Wnt
signals in combination with RA and FGF signals predom-
inantly induce a Hox gene profile characteristic of the rSC.
Next, we tested whether combined exposure to Wnt3A (150
ng/ml) and RA (10 nM) induces cHB cells. No CdxB" and CdxC"
cells were generated after 15 h of culture (Figure 8E). After 44
h of culture, many Hoxb4 /b8 /c9~ cHB cells (92 = 3% of total
cell number versus 0% in control explants), few (3 = 3% of
total cell number) Hoxb4' /68"/c9 ~, and no Hoxb4'1b68"1c9" cells
characteristic of the rSC and ¢SC, were generated (Figure 9E).
Moreover, in the presence of SU5402 (3 pM), Wnt3A (150 ng/
ml) and RA (10 nM) still induced Hoxb4/68 /c9/ cHB cells (97
+ 29% of total cell number) but no Hoxb4 /b8 /c9 cells,
suggesting that the convergent activities of Wnt and RA
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Figure 6. Wnt Signaling Is Required for the Generation of dMNs and vMNs in the Hindbrain and Spinal Cord

(A) Caudal (C) neural plate tissue explants (black box) were isolated from HH stage 4 embryos. Explants were cultured alone or in the presence of
mFrz8CRD-IgG for 28 h and then exposed to Shh-N (15 nM) for an additional 38 h.

(B-C) Bars represent mean = s.e.m. number of Tbx20"/IsI", Hb9%/IsI", Hb9"/Hoxc9™, and IsI1" cells, respectively, as percentage of total cell number. Each
row represents consecutive sections from a single explant.

(B) Stage 4 C explants cultured with Shh-N alone generated Tbx20"/IsI* cells in the rostral domain of the explant and Hb9'/IsI* cells and Hb9"/Hoxc9™"
cells in the caudal domain of the explant (n = 18 explants).

(C) Explants cultured in the presence of mFrz8CRD-IgG conditioned medium (500 pl/ml culture medium) and Shh-N generated Isl1/2" cells but no
Tbx20", Hb9™, or Hoxc9" cells (n =7 explants). Scale bars represent 100 pum (Isl1/2) and 50 pm (double labels), respectively.

DOI: 10.1371/journal.pbio.0040252.9006
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Figure 7. RA Induces cHB Cells, and RA and FGF, in Combination, Induce rSC Cells

(A) Schematic drawing of a stage 4 embryo. Dotted line indicates the presumptive neural plate. Black box indicates caudal (C) neural plate explant
isolated and cultured in vitro for 44 h. The red mark indicates the caudal margin of the explant labeled with Dil. Bars represent mean = s.e.m. number of
cells in Krox20" Hoxb4'/b8 /c9~, Hoxb4'/b8"/c9~, and Hoxb4'/b8"/c9" domains, respectively, as percentage of total cell number.

(B-D) Each row represents consecutive sections from a single explant.

(B) Control stage 4 C explants generated Krox20™ cells in the rostral, and Hoxb4 /b8 /c9" cells were generated in the caudal region of the explant,
adjacent to the Dil-labeled cells. A small domain of Hoxb4'/b8'/c9™ cells was generated in the medial region but no domain of cells expressing Hoxb4
alone was generated (n = 7 explants).

(C) RA (10 nM) blocked the generation of Krox20" and induced Hoxb4 /b8 /c9 cells in the rostral region. Adjacent to the Dil-labeled cells in the caudal
region of the explant, Hoxb4 /b8 /c9~ cells, but no Hoxb4'/b8"/c9" cells, were generated (n = 6 explants).

(D) RA (10 nM) and FGF4 (30 ng/ml), in combination, generated Hoxb4'/b8"/c9~ cells in both the rostral and caudal regions. No, or a few, Hoxb4'/b8"/
c9" cells appeared, and no Krox20" or Hoxb4'/b8 /c9~ cells were generated (n = 5 explants). Scale bar represents 100 pm.

DOI: 10.1371/journal.pbio.0040252.g007
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Figure 8. Wnt and FGF, in Combination, Induce Cdx Gene Expression in
Prospective FB Cells

(A) Schematic drawing of a stage 4 embryo. Dotted line indicates the
presumptive neural plate. Red box indicates prospective FB explants
used for in vitro studies.

(B-D) Sox2 and Sox3, in combination, were used as general presumptive
neural markers. Each row represents consecutive sections from a single
explant.

(B) Control stage 4 FB explants generated Sox2"/3" but no CdxC'/CdxB"
presumptive neural cells (n = 24 explants).

(C) Stage 4 FB explants cultured in the presence of Wnt (~150 ng/ml)
and FGF (60 ng/ml) simultaneously generated CdxC'/CdxB" presumptive
caudal neural cells (n = 26 explants).

(D) 4 FB explants cultivated in the presence of Wnt3A (~150 ng/ml), RA
(10 nM), and FGF (30 ng/ml) generated CdxC'/CdxB" presumptive caudal
neural cells (n = 18 explants).

(E) 4 FB explants cultivated in the presence of Wnt3A (~150 ng/ml) and
RA (10 nM) did not generate CdxC'/CdxB" presumptive caudal neural
cells (n =14 explants).

DOI: 10.1371/journal.pbio.0040252.g008

signaling are sufficient to induce cHB cells (Figure 9F). No
combination of Wnt3A-, RA-, and FGF4-induced MoxI" cells
characteristic of caudal paraxial mesoderm, and only Wnt3A
and FGF4 in combination, induced a few Bra® cells (Figure
S3B and S3C, unpublished data). These results provide
evidence that Wnt signals, in combination with RA and/or
FGF, are sufficient to reconstruct Cdx and Hox gene profiles
indicative of cHB and both rSC and c¢SC in naive prospective
FB explants.

We also addressed whether Hox gene profiles induced by
Wnt, RA, and/or FGF signals in naive prospective FB cells
predict the later generation of dMNs and vMNs. We
cultivated stage 4 FB explants in the presence of Wnt, RA,
and/or FGF signals for 44 h, to allow hindbrain and spinal
cord progenitor cells to acquire their rostrocaudal positional
identity, and for an additional 22 h in the absence or
presence of Shh-N (15 nM) to induce MN differentiation.
Stage 4 FB explants, grown both in the absence or presence of
Shh-N (15 nM), generated Otx2" neural progenitor cells and
IsI"ITbx207/Hb9 /Hoxc9™ ventral FB neurons (Figure 10B and
Table 1, [54]). Stage 4 FB cells exposed to FGF4 (60 ng/ml) and
Wnt3A (150 ng/ml), which generate Hoxb4 /68" /c9" ¢SC

@) PLos Biology | www.plosbiology.org
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progenitor cells, generated Hb9IsI™ and Hoxc9/Hb9" vMN's
in the presence of Shh-N (15nM) (Figure 10E and Table 1). We
also determined which MN subtypes are generated from the
Hoxb4'/68"'/c9~ 1SC progenitor cells, induced by Wnt3A (150
ng/ml), FGF4 (30 ng/ml), and RA (10 nM). Addition of Shh-N
(15 nM) induced a large number of Hb9*/IsI" MNs, but few
Hb9 THoxc9" or Thx20 MlsI" MNs—a MN profile characteristic
of the rSC (Figure 10D and Tablel). Finally, we assessed the
MN subtype generated from stage 4 FB cells which generate
Hoxb41b8 /c9~ cHB progenitor cells, upon Wnt3A (150 ng/ml)
and RA (10 nM) exposure. Addition of Shh-N (15 nM) induced
Thx20*IsI*, but only a few Hb9™/IsI” MNs and no Hb9"/
Hoxc9" MNs (Figure 10C and Tablel)—a profile character-
istic of cHB (r7 and r8) MNs (Figure 1C and 1D).

Collectively, these findings provide evidence that Wnt
signals in combination with RA and/or FGF exposure, induce
Hox profiles in neural cells that predict the later position-
specific emergence of dMNs and vMNs characteristic of the
hindbrain and spinal cord. These observations support the
idea that early exposure to Wnt signals, together with later
RA and FGF signals imposes Hox profiles that anticipate the
patterned generation of dMN and vMN subclasses in the
developing hindbrain and spinal cord.

Discussion

This study has examined the link between extrinsic
patterning signals, regionally restricted profiles of tran-
scription factor expression in neural progenitor cells, and
the specification of MN subtype along the rostrocaudal axis of
the hindbrain and spinal cord. Our results support four main
conclusions: (i) Wnt signaling is required to specify cells of
spinal cord character, (ii) the initial specification of spinal
cord progenitor cells appears to require prolonged, or higher
level Wnt signaling than does the specification of cells of
hindbrain character, (iii) early Wnt signaling provides a
positional context for the later actions of RA and FGF signals
in specifying the rostrocaudal regional identity of hindbrain
and spinal cord cells, and (iv) the interplay of Wnt, retinoid,
and FGF signals establish distinction in progenitor cell Cdx
and Hox profiles that anticipate the rostrocaudal position of
generation of dMNs and vMNs in the hindbrain and spinal
cord. Below, we discuss the evidence that supports each of
these conclusions.

Interplay between Early Wnt and Later FGF and RA Signals
in the Assignment of Caudal and Neural Fates

The generation of different subclasses of MNs along the
rostrocaudal axis of the hindbrain and spinal cord depends
on two crucial early steps of caudal neural development: first,
the early specification of cells of hindbrain and spinal cord
character, and second, the subsequent refinement of rostro-
caudal regional character of hindbrain and spinal cord
progenitor cells. Wnt signaling has been implicated in the
generation of caudal neural cells [48,60-69], and results in
chick have provided evidence that FGF and graded Wnt
signaling in neural cells specify cells of caudal forebrain,
midbrain, and rostral hindbrain character [32,66]. The
present study provides evidence that early Wnt signaling is
also essential to impose caudal hindbrain and spinal cord
character on neural progenitor cells. The results also support
the view that the specification of spinal cord progenitor cells
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Figure 9. Combinatorial Wnt, RA, and FGF Signaling Reconstruct Hox Gene Profiles Characteristic of the cHB and Spinal Cord
(A) Schematic drawing of a stage 4 chick embryo. Dotted line indicates the presumptive neural plate. Red box indicates FB explants isolated and

cultured in vitro for 44 h.

(B-F) Sox1 was used as a general neural marker. Bars represent mean *+ s.e.m. number of cells in Otx2", Hoxb4'/b8 /c9~, Hoxb4'/b8"/c9 ", and Hoxb4'/
b8'/c9" domains, respectively, as percentage of total cell number. Each row represents consecutive sections from a single explant.

(B) Control stage 4 FB explants generated Sox17/0tx2" but no caudal neural cells (n = 24 explants).

C) Stage 4 FB explants cultured in the presence of Wnt (~150 ng/ml) and FGF (60 ng/ml) generated Hoxb4'/b8"/c9" cells and only a few Krox20" cells

n = 24 explants).

n = 18 explants).

(
(
(D) Cultivation in the presence of Wnt3A (~150 ng/ml), RA (10 nM), and FGF (30 ng/ml) generated Hoxb4'/b8"/c9 ™ cells and a few Hoxb4' /b8 /c9" cells
(
(

E) Cultivation in the presence of Wnt3A (~150 ng/ml) and RA (10 nM) generated Hoxb4 /b8 /c9~ cells and no, or only a few, Hoxb4 ' /b8"/c9 ™ cells (n =

28 explants).

(F) Exposure to Wnt3A (~150 ng/ml) and RA (10 nM) in the presence of SU5402 (3 uM), an inhibitor of FGF signaling, generated Hoxb4 /b8 /c9~ cells (n

= 12 explants). Scale bar represents 100 pm.
DOI: 10.1371/journal.pbio.0040252.g009

requires prolonged, or higher level Wnt signaling than is
required for the specification of cells of hindbrain character,
and they are consistent with previous findings that Cdx genes
respond to Wnt signals and act upstream of 5" Hox genes in
neural progenitor cells [23,70-75]. Thus, taken together, our
results support the idea that in the presence of FGF signals,
graded Wnt signaling imposes midbrain, hindbrain, and
spinal cord character on prospective caudal neural plate cells.

The signals and mechanisms that act in the subsequent step
to impose rostrocaudal regional identity on hindbrain and
spinal cord progenitor cells have been examined previously.
From early somite stages, RA supplied by the paraxial
mesoderm and newly formed somites, promotes the expres-
sion of Hox genes characteristic of the cHB and rostral levels

@ PLoS Biology | www.plosbiology.org

of the spinal cord [6,8,29,31,67,76,77]. FGF signals derived
from the regressing primitive streak promote the expression
of progressively more caudal Hox-c proteins in a concen-
tration-dependent manner [7,8]. Thus, RA and FGF signals
act in an opponent manner to impose rostrocaudal regional
identity on hindbrain and spinal cord progenitor cells [6,78].
Our findings extend these results by showing that early Wnt
signaling establishes a positional context for the later actions
of RA and FGF signals in specifying hindbrain and spinal
cord cells of rostral and caudal regional identity.
Collectively, our results suggest a model of how hindbrain
and spinal cord cells of early rostrocaudal regional identity
are generated (Figure 11). At gastrula stages, prospective
caudal neural plate cells are exposed to Wnt signals derived

August 2006 | Volume 4 | Issue 8 | €252



Specification of Caudal Neural Pattern

A Stage 4 4 3
| Isl1/2 || Tbx20 Is11/2 || Is1/2 || Hoxcd | 5 S 2 L
=)
e, S
250 Q’ 83 6\9 *
= 3 18 F & ¢
5 _m30'
:§ 4
S 101 i_
R
50 -

Wnt3A + RA
Shh

Wnt3A + RA
+ FGF4
Shh

Wnt3A + FGF4
Shh

Figure 10. Hox Gene Profiles Induced by Wnt, RA, and/or FGF Signals Predict Later MN Subtype

(A) Schematic drawing of a stage 4 embryo. Dotted line indicates the presumptive neural plate. Red box indicates prospective FB explants used for in
vitro studies.

(B-E) Explants were cultured alone or exposed to Wnt, RA, and/or FGF4 for 44 h, then washed and exposed to Shh-N (15 nM) for an additional 22 h. Bars
represent mean * s.e.m. number of Tbx20"/IsI", Hb9"/IsI*, and Hb9*/Hoxc9" cells, respectively, as percentage of total cell number.

(B-E) Each row represents consecutive sections from a single explant.

(B) Stage 4 FB explants cultured alone, before exposure of Shh-N, generated IsI" cells but no Tbx20", Hb9", or Hoxc9" cells (n = 6 explants).

(C) Stage 4 FB explants cultured in the presence of Wnt3A (~150 ng/ml) and RA (10 nM), before exposure of Shh-N, generated Tbx20"/IsI" cells but no,
or very few, Hb9"/IsI" cells and no Hoxc9" cells (n = 12 explants).

(D) Cultivation in the presence of Wnt3A (~150 ng/ml), RA (10 nM), and FGF4 (30 ng/ml), before exposure of Shh-N, generated Hb9'/IsI* cells and only a
few Tbx20"/IsI" and Hb9"/Hoxc9" cells (n = 14 explants).

(E) Cultivation in the presence of Wnt3A (~150 ng/ml) and FGF4 (60 ng/ml), before exposure of Shh-N, generated Hb9'/IsI" and Hb9"/Hoxc9" cells but
no Tbx20" cells (n = 9 explants). Scale bars represent 100 um (Isl) and 50 um (double labels), respectively.

DOI: 10.1371/journal.pbio.0040252.g010

from the emerging caudal paraxial mesoderm and from Hoxb4 /8"1c9" cells characteristic of caudal/thoracic spinal
epiblast cells; and to FGF signals derived from the primitive cord. At early somite stages, caudal paraxial mesoderm and
streak [32,46,47,79,80]. In response to convergent Wnt and newly formed somites located adjacent to the prospective
FGF signaling, prospective caudal neural plate cells are cHB and rSC, express high levels of Raldh2, providing a local

initially specified either as cells of rHB character or as source of RA [59,81]. Our results suggest that RA specifies

Table 1. Quantification of Transcription Factor Expression in Neural Plate Explants

Stage 4 FB - Wnt + RA Wnt + RA + FGF Wnt + FGF

— Shh + Shh — Shh + Shh — Shh + Shh — Shh + Shh
Tbx20™/IsI™ 0% 0% 0% 22 *12% 0% 0.5 + 0.5% 0% 0%
Hb9*/IsI* 0% 0% 0% 04 * 04% 0% 35 *2% 19 + 3% 20 * 4%
Hb9"/Hoxc9™ 0% 0% 0% 0% 0% 2 2% 12 * 3% 16 + 4%
Isl* 25 = 11% 9+ 4% 0.3 + 0.2% 23+ 12% 0.5 * 0.5% 38 * 6% 21 * 4% 22 * 5%

Mean * s.e.m. of total cell number.
DOI: 10.1371/journal.pbio.0040252.t001
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Figure 11. Combinatorial Wnt, RA, and FGF Signals Specify Progenitor
Cell Identity That Prefigure MN Subtype in the Developing Hindbrain and
Spinal Cord

Combinatorial actions of Wnt, FGF, and RA signals specify neural
progenitor cells expressing Hox gene profiles characteristic of the cHB,
rSC, and ¢SC that generate patterns of differentiated MNs, with dMN or
VMN exit points, characteristic of hindbrain and spinal cord, in response
to Shh signaling.

DOI: 10.1371/journal.pbio.0040252.9011

cells of r7/r8 cHB character by inducing Hoxb4 expression in
prospective THB cells and cells of rSC identity by preventing
the expression of Hoxc9 in prospective cSC cells. At these
stages, several Fgfs are expressed in the regressing Hensen’s
node and primitive streak adjacent to the developing spinal
cord [8,46,79]. We find that FGF signals maintain the
specification of ¢SC cells, and in the presence of RA, promote
the generation of rSC cells. This model is strengthened by our
data providing evidence that distinct combinations of Wnt,
RA, and/or FGF signals can reconstitute rostral and caudal
hindbrain and spinal cord character in naive prospective FB
cells in a predictable manner.

Genetic analyses have provided evidence that inactivation
of Wnt genes, expressed in the caudal regions of gastrula stage
mouse and zebrafish embryos, perturbs the development of
the caudal neural plate [60,62,63,69,82]. However, the
formation of paraxial mesoderm, which serves as a local
source of neural caudalizing signals [63,83-85], is also
impaired in these mutant embryos [45,69,86]. Thus, these
genetic studies left unresolved the issue whether the effect of
perturbed Wnt signaling on caudal neural development
reflects the impaired formation of paraxial mesoderm or
reflects direct Wnt signaling in neural cells. Our in vitro
studies establish direct effects of Wnt signals on neural tissue
in the absence of other tissues and clarify the integrative
mechanisms that control the early development of the
hindbrain and spinal cord.

FGF and retinoid signals also regulate the temporal pattern
of differentiation of caudal neural progenitor cells. FGF has
been shown to keep cells in a stem zone-like state [14,78,87],
whereas RA promotes the differentiation of neural cells
[14,78,88]. Consistent with these roles of FGF and RA,
exposure of naive neural explants, cultured with Wnt and
FGF to low levels of RA (2 nM), does not change the
rostrocaudal identity of neural progenitor cells but results in
an increased number of differentiated MNs (unpublished
data), whereas under these conditions, increased levels of
FGFs greatly reduce MN differentiation (unpublished data).
These findings fit well with the suggested opponent activities
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for FGF and RA in deciding the balance between neural cell
proliferation and differentiation [87].

Hox Gene Profiles of Hindbrain and Spinal Cord Progenitor
Cells Predict the Pattern of dMNs and vMNs

The patterned expression of Hox genes in neural progen-
itor cells appears to be a major determinant of the identity of
different MN populations [1,7,11,16,18]. Earlier studies have
provided evidence that RA and FGF act in an opponent
manner on caudal neural cells to establish the rostrocaudal
pattern of distinct subclasses of differentiated MNs [7-9].
dMNs and vMNSs represent two major MN subclasses that are
generated in distinct rostrocaudal patterns in the hindbrain
and spinal cord [10,89]. Our findings provide evidence that
Wnt signaling in neural progenitor cells is required for the
generation of both yYMNs and dMNs. We also show that Wnt,
RA, and/or FGF signals can induce cells with Hox gene profiles
characteristic of cHB, rSC, and c¢SC progenitor cells that
differentiate into corresponding dMNs and vMNs when
exposed to Shh-N. These findings therefore reveal a tight
link between Wnt, RA, and FGF signals, profiles of progenitor
cell Hox expression, and the rostrocaudal pattern of dMN and
vMN generation in the hindbrain and spinal cord.

Other recent studies have revealed a determinative role of
Hox genes in MN subtype specification. In the hindbrain,
Hoxbl is expressed throughout r4, and has been shown to be
required for the specification of facial branchiomotor
neurons [17-19]. Similarly, targeted expression of Hoxa3 in
the rHB leads to the generation of ectopic somatic MNs [11].
In the spinal cord, the rostrocaudal profile of genes of the
Hox6 to Hox9 paralog group have been shown to establish
distinctions in MN columnar and pool subtype [7,16]. It seems
likely, therefore, that the initial profiles of Hox expression,
shown here to depend on early Wnt signaling, are involved in
establishing domains of dMN and vMN formation. Further-
more, Hox genes appear to represent a common regulatory
target for the three classes of signaling factors—Wnts, FGFs,
and RA [90]—that conspire to regulate the position of
generation of dMNs and vMNs.

Thus, our results reveal that an early Wnt-based program is
required to interact with a later RA- and FGF-mediated
mechanism to generate a pattern of neural progenitor cells
with Cdx and Hox profiles that prefigures the generation of
two major subclasses of MNs in the developing hindbrain and
spinal cord. Further studies will reveal how these three signals
are integrated at the molecular level to regulate Cdx and Hox
gene profiles, leading to the subsequent differentiation of
dMN and vMN classes.

Materials and Methods

Embryos. Fertilized white leghorn chicken eggs were obtained
from Agrisera AB, Umea, Sweden. Chick embryos were staged
according to Hamburger and Hamilton (HH) [91].

Isolation of tissue explants. Prospective neural plate explants were
isolated from HH stage 4, 5, 6, 7 (1-somite), and 8 (3-4-somites) chick
embryos. For stage 5-8 embryos, Dispase I (Roche Diagnostics) was
used to facilitate removal of the underlying mesoderm.

Culture of tissue explants. Explants were cultured in vitro as
previously described [32]. To enable tracing the rostrocaudal
orientation of the dissected explants, rostrocaudally asymmetrical
explants were isolated and then placed in a defined orientation in
collagen matrix, where their orientation was maintained during
cultivation, fixation, and cryo-sectioning (see Figure 5A); or the caudal
margin of the explants was labeled with Dil crystals (Molecular Probes)
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during the dissection process (Figures 5D, 7B, 7C, and 7D).
Recombinant human FGF4 (R & D Systems, Minneapolis, Minnesota,
United States) was used at 30 and 60 ng/ml. The FGF receptor
inhibitor SU5402 (Calbiochem, EMD Biosciences, San Diego, Cal-
ifornia, United States) was used at 3 and 5 pM. All-trans retinoic acid
(RA) (Sigma-Aldrich, St. Louis, Missouri, United States) was used at
10-40 nM. Purified recombinant mouse Wnt3A (R & D Systems) was
used at 150 ng/ml. Soluble Wnt3A and control-conditioned media [92]
were obtained as described [32] and used at 50-100 pl/ml, which for
Wnt3A conditioned medium, mimicked the activity 75-150 ng/ml of
Wnt3A protein (R & D Systems). Soluble mouse Frizzled 8 (mFrz8CRD-
IgG) [50] and control-conditioned medium were generated as
described [32] and used at 300-500 pl/ml of culture medium. Explants
cultured with control-conditioned medium behaved like explants
cultured alone. In MN differentiation studies, Shh-N (R & D Systems)
was used at 15 nM, and cultivated explants were washed to remove
Wnt, RA, and/or FGF4 from the medium before addition of Shh-N.

In situ hybridization, immunohistochemistry, and quantification of
cells. Chick Hoxb4, Hoxb8, Hoxc9, CdxC, CdxB, Tbx20, and Mox1 (see
Figure S3, [55]) and Brachyury (Bra) (see Figure S3, [56]) expression was
detected using in situ RNA hybridization on consecutive cryo-
sections using digoxigenin-labeled probes and was carried out
essentially as described [93], before being labeled with DAPI for
quantification. Hoxc9 protein and all further markers were detected
using fluorescent immunohistochemistry. Neural tissue was detected
with rabbit anti-Sox1 antiserum, kindly provided by S. Wilson. Rabbit
anti-Otx2 was kindly provided by G. Corte. Rabbit anti-Krox20 was
obtained from Babco. Rabbit anti-Isl1/2, mouse anti-Hb9, and rabbit
anti-Hoxc9 were used as described [8,94]. Co-localization of Thx20/1sl
was determined by double labeling with RNA probe and antibody,
and co-localization of Hb9/Isl and Hoxc9/Hb9 was determined by
double labeling with antibodies. Images of consecutive sections were
collected using a Nikon (Tokyo, Japan) E800 light/epi-flourescent
microscope. Images presented are representative of the number of
explants indicated, for each experiment, in the figure legends. For
each experiment, all explants were sectioned, and cells from
consecutive sections were counted from 3-5 representative explants
using nuclear Dapi staining. Each explant usually generated ~10-18
8-pm sections, and the cell counts in Figures 3, 7, and 9 indicate the
mean percentage of total cell number * s.e.m. per section in Hox-
gene’ domains that were compared by overlay of consecutive
sections. The number of Isl1/2" cells, Tbx20" Is11/2" cells, Hb9'/ Isl1/
2" cells, and Hb9'/ Hoxc9" cells in each experiment was acquired
from two to four explants (two sections from each explant) as
described above (Figures 4, 6, and 10).

Supporting Information

Figure S1. Wnt3A or FGF4 Alone Does Not Induce More Caudal
Character in Prospective tHB Cells

(A) Schematic drawing of a stage 4 embryo. Dotted line indicates the
presumptive neural plate. Boxed region indicates caudal (C) neural
plate explants used for in vitro studies.

(B-D) Stage 4 C explants cultured alone (B), in the presence of FGF4
(120 ng/ml) (n= 18 explants) (C), or Wnt3A (150 ng/ml) (n=9 explants)
(D) for 44 h generated a domain of Krox20" cells (30%-60% of total
cell number) and a domain of Hoxb4 /Hoxb8 /Hoxc9" cells (40%-70%
of the total cell number). Each row represents consecutive sections
from a single explant. Scale bar represents 100 um.

Found at DOI: 10.1371/journal.pbio.0040252.sg001 (3.2 MB TIF).

Figure S2. Wnt, FGF or RA Signals Alone Do Not Induce More
Caudal Character in Prospective FB Cells

(A) Schematic drawing of a stage 4 embryo. Dotted line indicates the
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presumptive neural plate. Red box indicates prospective FB explants
that were used for in vitro studies. (B-F) Sox1 was used as a general
neural marker. Each row represents consecutive sections from a
single explant.

(B-F) Stage 4 FB explants cultured alone (n = 24 explants) (B), or in
the presence of Wnt3A (75 ng/ml) (n = 12 explants) (C), FGF4 (60 ng/
ml) (n =9 explants) (D), RA (10 nM) (n =17 explants) (E), or FGF (60
ng/ml) and RA (10 nM) in combination (n = 12 explants) (F) for 44 h
generated Sox1T1 Otx2" cells (75%-98% of total cell number), but no
caudal neural cells. Scale bar represents 100 um.

Found at DOI: 10.1371/journal.pbio.0040252.sg002 (3.1 MB TIF).

Figure S3. Wnt3A, FGF4, and RA in Combination Do Not Block
Neural, or Induce Mesodermal Character, in Prospective FB or
Caudal Neural Cells

(A) Schematic drawing of a stage 4 chick embryo. Dotted line
indicates the presumptive neural plate. Red box indicates FB explants
and black box indicates caudal neural plate tissue explants (4C) that
were used for in vitro studies.

(B-D) All explants were cultured for 24 h (~ corresponding to a stage
10 embryo)

(B) Stage 4 IB explants exposed to Wnt3A (150 ng/ml), FGF4 (20ng/
ml), and RA (10 nM) generated Sox1" and Sox2" cells, but no MoxI- or
Bra-expressing cells.

(C) Stage 4 FB explants exposed to Wnt3A (150 ng/ml) and FGF4 (60
ng/ml) generated Sox1" and Sox2" cells and few Bra" cells, but no
MoxI-expressing cells.

(D) Stage 4C explants grown in the presence of Wnt3A (~75 ng/ml)
and FGF4 (60 ng/ml), in combination, generated Sox1" and Sox2"
cells and few Bra" cells, but no MoxI-expressing cells.

(E-G) Transversal sections of a stage 10 embryo.

(E) Schematic drawing of a stage 10 embryo. The lines indicate the
level of the transverse sections shown in the corresponding panels (F
and G).

(F) Sox1 and Sox2 are expressed in the neural tube. Mox! is expressed
in the adjacent somites (s), whereas Bra is expressed in the notochord
(NC).

(G) Sox1 and Sox2 are expressed in the neural plate (NP). MoxI is
expressed in the presomitic mesoderm (PSM) at the neural plate level
and Brachyury is expressed in the neural plate and in the
mesendoderm.

Found at DOT: 10.1371/journal.pbio.0040252.5g003 (3.1 MB TIF).
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