
TMS-Induced Cortical Potentiation during Wakefulness
Locally Increases Slow Wave Activity during Sleep
Reto Huber., Steve K. Esser., Fabio Ferrarelli, Marcello Massimini, Michael J. Peterson, Giulio Tononi*

Department of Psychiatry, University of Wisconsin, Madison, Madison, Wisconsin, United States of America

Background. Sleep slow wave activity (SWA) is thought to reflect sleep need, increasing in proportion to the length of prior
wakefulness and decreasing during sleep. However, the process responsible for SWA regulation is not known. We showed
recently that SWA increases locally after a learning task involving a circumscribed brain region, suggesting that SWA may
reflect plastic changes triggered by learning. Methodology/Principal Findings. To test this hypothesis directly, we used
transcranial magnetic stimulation (TMS) in conjunction with high-density EEG in humans. We show that 5-Hz TMS applied to
motor cortex induces a localized potentiation of TMS-evoked cortical EEG responses. We then show that, in the sleep episode
following 5-Hz TMS, SWA increases markedly (+39.1617.4%, p,0.01, n = 10). Electrode coregistration with magnetic resonance
images localized the increase in SWA to the same premotor site as the maximum TMS-induced potentiation during
wakefulness. Moreover, the magnitude of potentiation during wakefulness predicts the local increase in SWA during sleep.
Conclusions/Significance. These results provide direct evidence for a link between plastic changes and the local regulation
of sleep need.
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INTRODUCTION
During non rapid eye movement (NREM) sleep the EEG is

dominated by slow waves of high amplitude, which are generated

by millions of neurons switching from a depolarized up-state to

a hyperpolarized down-state [1,2]. As shown by studies in many

species, the amount of sleep slow waves, usually measured as slow

wave activity (SWA), EEG power in the 1–4.5 Hz range, is

homeostatically regulated [3]: specifically, SWA increases with the

duration of previous wakefulness and declines exponentially

during sleep. Thus, SWA provides a reliable indicator of sleep

pressure and may be linked to the restorative function of sleep

[4,5]. However, the neural mechanisms underlying the increase in

SWA with increasing sleep pressure remain unknown.

An important advance has come from recent work showing that

sleep SWA can be regulated locally in the cerebral cortex [6–8].

Intriguingly, some of this work points to a link between local SWA

regulation and synaptic plasticity [6,8]. Thus, in a study with high-

density (hd)-EEG in humans, sleep SWA was locally increased

after a visuomotor learning task involving right parietal cortex, but

not after a kinematically equivalent motor task that did not require

learning [6]. In a second study, sleep SWA was locally decreased

over right sensorimotor cortex if a subject’s left arm had been

immobilized during the day, leading to a deterioration in motor

performance and to a decrease in somatosensory and motor

evoked potentials [8]. Altogether, these experiments suggest that

sleep SWA is affected by plastic changes in local cortical circuits

and, more specifically, that SWA should increase with synaptic

potentiation and decrease with synaptic depression [9]. This

hypothesis is supported by computer simulations showing that

stronger synapses lead to increased SWA by enhancing neuronal

synchronization, whereas weaker synapses have the opposite effect

[10].

To test this hypothesis directly, it is important to investigate

whether established paradigms for inducing synaptic plasticity,

such as long-term potentiation (LTP) [11], yield the predicted

changes in sleep SWA. In animals in vivo, LTP is classically

induced by high-frequency electrical stimulation (5–15 Hz) and

assessed by recording changes in population responses to test

stimuli [11]. In humans, it has recently become possible to

approximate this classic protocol non-invasively by combining

transcranial magnetic stimulation (TMS) with hd-EEG [12]: high-

frequency electrical stimulation can be safely substituted by

repetitive TMS (rTMS), while changes in cortical responses to

test TMS pulses can be assessed with hd-EEG. Accordingly, in the

present study subjects underwent a 5-Hz rTMS potentiation

protocol and a sham session, while cortical responses were

monitored using hd-EEG. Thereafter subjects went to sleep and

local changes in SWA were investigated with sleep hd-EEG. The

results show that rTMS but not sham stimulation produces a local

potentiation of cortical responses, and that this potentiation is

followed as predicted by a local increase in sleep SWA, in line with

the hypothesis that sleep regulation is linked to synaptic plasticity.

RESULTS

5-Hz rTMS results in increased motor evoked

potentials and TMS-evoked EEG responses
TMS was targeted to the hand area of the left motor cortex.

Analysis of motor evoked potentials collected immediately before
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and after the rTMS conditioning confirmed previous studies

[13,14] indicating that motor responses to TMS increase

significantly following 5 Hz rTMS (27.067.8%; p,0.05, two-

tailed unpaired t-test, n = 20 trials, peak-to-peak amplitude of

motor evoked potentials). Measuring TMS-evoked EEG responses

allowed us to investigate the effect of rTMS conditioning directly

on cortical responses. TMS-evoked EEG responses revealed

several fast early (10–80 ms) and slower late components (81–

200 ms; Figure 1). The earliest apparent peak occurred at 18 ms.

Electrode-magnetic resonance (MR) coregistration localized the

corresponding maximal current source (see Methods) to left

premotor cortex around electrode 9 (Figure 1, inset). A

comparison of the TMS-evoked response before and after rTMS

conditioning revealed a significant increase in the amplitude of

components comprised between 10 and 130 ms (Figure 1, gray

area, p,0.05, paired t-test, average global mean field power

(GMFP) between 10 and 130 ms).

Potentiation of TMS-evoked EEG responses is

followed by a local increase in SWA during

subsequent sleep
After the TMS session, the room was darkened and the subjects

were allowed to sleep while we recorded their first NREM sleep

episode. Subjects showed the usual progression of sleep stages in

both the rTMS and the sham TMS session (see Table 1). Sleep

onset occurred on average 2965 min after the end of rTMS

conditioning. Average power spectra of consecutive 20-second

epochs during the first 30 minutes of NREM sleep showed that

SWA was prevalent in anterior regions, in accordance with

previous studies [15,16], and that the topographic pattern of SWA

was highly reproducible across nights (Figure 2A). After the rTMS

session, compared to the sham session, there was a significant

increase of SWA at a cluster of left central electrodes (electrodes 8,

9 and 19; Figure 2B, C). The peak SWA increase occurred at

electrode 9 and amounted to 39.1% (617.4%, p,0.01, two-tailed

paired t-test after Statistical non-Parametric Mapping, SnPM).

Electrode 9, overlaying left BA 6, was the same electrode at which

we observed the maximal current increase in TMS-evoked

responses after rTMS conditioning. Thus, rTMS conditioning

leaves a local trace in the sleep EEG, and the trace corresponds

topographically to the site of increased TMS-evoked EEG

response. We found no significant correlation between the time

interval from the end of the rTMS conditioning to sleep onset and

the local increase of SWA at the beginning of sleep (r = 0.2,

p = 0.5). Other frequency ranges, i.e. the spindle frequency range

(12–15 Hz), did not show any significant topographical difference

(no electrode reached p,0.05 using SnPM, topographical

differences are shown in Supplemental Figure S1).

In our previous study, visuomotor learning produced a local

increase in sleep EEG power mainly in the SWA frequency range,

with concomitant increases in the theta range and just above the

spindle range (15–16.5 Hz) [6]. As shown in Figure 3A, at

electrode 9, where we observed the largest increase in SWA, the

spectral changes in sleep EEG power produced by rTMS

conditioning were similar to those observed in the learning study,

with a peak increase in the frequencies below 3 Hz [6].

We then examined the time course of the relative increase of

SWA within the first NREM sleep episode after rTMS

conditioning by dividing it into 10 min intervals. We found that

the level of SWA remained elevated for the first 30 minutes of

NREM sleep (Figure 3B). SWA then decreased progressively in the

course of the sleep episode, as revealed by a significant drop from

the first 30 to the second 30 minutes of NREM sleep (p,0.05,

paired t-test). With the exception of power in the high spindle

frequency range no other frequency range showed a similar trend

(Supplemental Figure S1). Thus, a local trace of rTMS

conditioning, manifested mainly as an increase in SWA, was

present for at least the first 30 minutes of sleep, and showed

a decreasing trend in the course of the sleep episode.

The increase in TMS-evoked responses predicts the

local increase of sleep SWA
Finally, we asked whether the increase of SWA over the left

premotor area was predicted by the increase in the amplitude of

the TMS-evoked response induced by rTMS conditioning to the

left motor cortex. To determine the best predictor of the local

increase in SWA after 5-Hz rTMS conditioning, we calculated

correlation coefficients for the components of the global mean field

power of the TMS-evoked response in relation to the local increase

of SWA. We found that the change in amplitude of a late

component between 100 and 140 ms was the best predictor of the

local increase of SWA (r = 0.65, p,0.05 at electrode 8, n = 10,

average GMFP between 100 and 140 ms). Figure 4 illustrates

topographically across all electrodes the correlation values

between the change in amplitude of the evoked response between

100 and 140 ms and the change in SWA during subsequent sleep.

Positive correlations were found for three electrodes just anterior

to the site of stimulation, electrodes 8, 9 and 19. The probability

that such correlations might occur by chance was ,0.0063, which

is the threshold for significance after Bonferroni correction for

multiple testing.

DISCUSSION
The results presented here show that high-frequency rTMS

conditioning over motor cortex led to a local increase in the

amplitude of EEG responses to TMS pulses, indicative of

potentiation of premotor circuits, followed during subsequent

Figure 1. Responses to TMS before and after 5 Hz conditioning. Total
activation produced by TMS as measured by the global mean field
power (GMFP) derived from all 60 electrodes. The GMFP was increased
between 10 and 130 ms post stimulus (gray area) following rTMS (pre,
112.9637.6 mV; post, 196.1643.7 mV; p,0.05, paired t-test, n = 10).
Inset: Source localization of the average TMS-evoked EEG response at
the earliest significant component, 18 ms after magnetic stimulation of
the left motor cortex, before the rTMS conditioning (n = 8 subjects).
Activity is color coded and projected onto the Montréal Neurological
Institute (MNI) standard brain. Electrode positions are indicated by black
dots.
doi:10.1371/journal.pone.0000276.g001
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sleep by a prominent local increase in SWA. Moreover, the

potentiation of the EEG response to TMS pulses and the increase

in sleep SWA were localized to the same premotor cortical region

and were positively correlated. Together, these results indicate that

changes in synaptic efficacy lead to changes in local sleep

regulation, as reflected by SWA, and thus provide evidence for

a tight relationship between synaptic plasticity and sleep need.

TMS-induced potentiation of cortical responses
In animal studies, LTP is classically induced by high-frequency

electrical stimulation, and assessed by recording population

responses to individual pulses [11]. A large body of evidence

shows that electrically induced LTP is associated with character-

istic synaptic changes, such as the increased postsynaptic in-

corporation of glutamate receptor subunits, that lead to elevated

synaptic efficacy [17,18]. In humans, high-frequency rTMS

paradigms are increasingly used to increase the efficacy of targeted

circuits [12–14,19–22]. The occurrence of long-term potentiation

of responses after high-frequency rTMS was initially inferred on

the basis of behavioral changes [20,21] and especially of increased

motor evoked potential amplitude to test TMS stimuli [12–14,22].

These findings suggest that 5-Hz conditioning leads to long-term

changes in synaptic efficacy. For example, the increased amplitude

of motor evoked potentials lasted for at least 40 minutes [12–

14,22]. A cortical site of action was suggested by cervical epidural

recordings showing an increase in descending motor cortical

activity [23]. Furthermore, a study in rats found that rTMS

resulted in increased NMDA binding [24], an important re-

quirement for LTP [25].

In this work, we took advantage of the availability of

simultaneous TMS/hd-EEG [26,27] to record directly changes

in cortical responses to TMS pulses before and after 5-Hz

stimulation (see also [12]). As shown here, the components

between 10 and 130 ms of the TMS-evoked EEG responses were

significantly increased in amplitude after rTMS, but not after

sham stimulation. These results provide a non-invasive, direct

demonstration of cortical changes in TMS-evoked response

consistent with LTP in humans (see also [12,28,29]. Other

indications that rTMS can have a persistent influence on cortical

function come from neuroimaging studies showing increased

glucose metabolism in premotor cortex for at least 10 minutes

after 5 Hz stimulation [30]. Another study reported increased

Figure 2. Changes in local SWA homeostasis during sleep after 5-Hz rTMS conditioning. A. Topographic distribution of SWA after 5-Hz conditioning
(top) and the sham control (bottom) condition. Average EEG power density at 1–4.5 Hz (n = 10 subjects) for the first 30 minutes of NREM sleep.
Values were normalized by total power for the recording, color coded, plotted at the corresponding position on the planar projection of the scalp
surface, and interpolated (biharmonic spline) between electrodes (dots). Values to the left of the topographic plots represent maximal and minimal
power (in percentage of the overall mean) with standard errors in parenthesis. B. Topographic distribution of the t-value for the comparison between
the 5-Hz conditioning and sham control condition (two-tailed paired t-test). White dots indicate electrodes showing significant differences after
statistical non-parametric mapping (see methods). C. Anatomical localization of the three electrodes showing a significant difference in SWA during
the first 30 min of NREM. All 60 electrodes (red pins) were digitized and co-registered with the subject’s magnetic resonance images. When the
topographic distribution of the percentage change of SWA after the TMS conditioning compared to the control condition was projected onto the
brain, the three significant electrodes projected onto left premotor cortex (white dots).
doi:10.1371/journal.pone.0000276.g002

Table 1. Sleep architecture for the first NREM sleep episode.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(n = 10) 5-Hz rTMS Sham control

Mean s.e.m Mean s.e.m

Sleep latency (min) 9.2 2.0 7.3 1.1

Total sleep time (min) 53.9 4.0 57.0 4.3

Waking (%) 16.8 4.8 15.4 3.6

Waking after sleep onset (%) 4.8 2.6 7.5 2.2

Stage 1 (%) 9.9 2.1 11.2 3.3

Stage 2 (%) 30.4 5.1 32.2 4.5

Slow-wave sleep (%) 41.2 7.6 38.9 8.0

NREM sleep (%) 71.7 6.3 71.2 6.4

Movement time (%) 1.2 0.3 2.2 0.6

No significant differences were observed between the 5-Hz rTMS and the sham
control condition.
doi:10.1371/journal.pone.0000276.t001..
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sensory discrimination and expanded sensory maps after 5Hz

stimulation of somatosensory cortex [20]. The present finding of

an increase in sleep SWA for up to an hour after rTMS further

indicates that rTMS can leave long-lasting traces, raising the

question of when and how such traces disappear. This finding also

suggests that the induction of local SWA changes during sleep may

be employed to monitor the efficacy of rTMS treatments in brain

disorders such as depression [31], and to correlate that efficacy

with clinical response.

In the present study, the increased response after 5 Hz TMS to

left motor cortex was observed specifically over left premotor

cortex. This neighboring area is a main target of projections from

motor cortex itself, as indicated by functional imaging in humans

[32], and by anatomical [33] and electrophysiological evidence

[34] in primates. This is consistent with imaging work showing

that TMS delivered to motor cortex produced a strong activation

in ipsilateral premotor cortex and other motor areas, but not

motor cortex itself [35,36]. As indicated by modeling work, this

may be because both excitatory and inhibitory neurons are

strongly activated at the site of stimulation [37], whereas in

connected areas, such as premotor cortex, neurons are activated

through long-range excitatory pathways, yielding larger responses

and therefore a higher likelihood of potentiation (Esser et al.,

SLEEP Abstr. 0082, 2006).

Synaptic plasticity and sleep SWA
As mentioned in the Introduction, SWA is a recognized marker of

sleep need, but the mechanisms responsible for the homeostatic

Figure 3. Characteristics of the local SWA change after 5-Hz rTMS conditioning. A. Frequency-specificity of power changes. EEG power density
spectrum for the first 30 minutes of NREM sleep. Average power change across subjects for electrode 9, where the peak SWA increase was observed.
Values represent the % change after the 5-Hz conditioning with respect to after the sham control condition (mean6SEM for 0.25-Hz bins, n = 10).
Bottom bars indicate frequency bins for which power in the 5-Hz conditioning condition differed significantly from the sham control condition (two-
tailed paired t-test). B. Time course of SWA changes after 5-Hz conditioning. The change in average EEG power in the 1–4.5 Hz band was calculated
for 6 consecutive 10-min intervals during the first NREM sleep episode. As in A, we selected power at electrode 9, corresponding to the peak SWA
increase. Stars indicate a significant increase of SWA after the 5-Hz conditioning compared to the sham control condition (p,0.05, two-tailed paired
t-test).
doi:10.1371/journal.pone.0000276.g003

Figure 4. The increase in TMS-evoked responses predicts the local
increase of SWA. Topographic depiction of positive correlations
between SWA change and the change in global mean field power in
the late component of the TMS-evoked response after 5-Hz rTMS
conditioning. For each subject the change in activity between 100 and
140 ms before and after the 5-Hz conditioning was calculated and
correlated with the change in SWA at each electrode. Filled circles
indicate electrodes showing a significant correlation (white circle,
r = 0.65, p,0.05 at electrode 8, n = 10), or a trend (grey circles, p,0.1).
doi:10.1371/journal.pone.0000276.g004
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increase in SWA during wakefulness and its decrease during sleep

remain unknown [3,5]. The main goal of the present study was to

test the hypothesis that sleep need may be linked to synaptic

plasticity, by investigating whether the explicit induction of

synaptic potentiation in localized cortical regions would increase

the local level of sleep SWA [9,38]. Using hd-EEG recordings

during sleep, we found that when subjects went to sleep after 5 Hz

rTMS, as opposed to after sham stimulation, they showed indeed

a localized increase in SWA. Moreover, the increase in SWA was

localized to the same cortical region–left premotor cortex–where

5 Hz rTMS had led to an increase in TMS-evoked potentials,

indicating that the two effects were spatially specific and

topographically congruent. Finally, the increase in TMS-evoked

potentials during wakefulness predicted the magnitude of the

increase in SWA during sleep, consistent with the possibility that

the two effects may be causally linked. Thus, the present findings

are consistent with the hypothesized link between synaptic strength

and sleep SWA. It should be emphasized, however, that rTMS

may cause changes in membrane excitability outside of synapses

and shifts in the ratio between excitation and inhibition that may

also contribute to the observed effects [39]. Moreover, the

application of rTMS may also result in local changes in

neuromodulation that could affect subsequent responses to test

stimuli. Finally, it is important to note that the changes we

observed over premotor cortex in terms both of increased TMS

evoked responses during wakefulness and increases in local slow

wave activity during sleep could be due to changes in synaptic

efficacy or in membrane excitability not in the underlying circuits,

but rather in connected brain regions that may even lie at

considerable distance from the targeted structure. These include

not only connected cortical areas such as somatosensory areas,

supplementary motor area and certain parietal areas, but also

subcortical structures, such as thalamic and spinal circuits that

provide reafferents to the cortex.

While rTMS-induced potentiation of cortical evoked responses

represents an effective method for replicating classic LTP

paradigms in humans and to investigate the consequences on

SWA homeostasis, its effects on cortical circuits are not

physiological, since the hypersynchronous discharge of a majority

of synapses is likely to produce a non-selective increase in synaptic

strength. In this context, the results of previous studies offer

a complementary view on the relationship between cortical

plasticity and sleep SWA. Specifically, a recent hd-EEG study

showed that a visuomotor learning task involving right parietal

cortex [40] also led to a local increase in SWA during subsequent

sleep, while a kinematically equivalent motor task not requiring

learning did not [6]. Intriguingly, post-sleep task performance also

improved, and the improvement was positively correlated with the

local increase of SWA. Unlike the present TMS study, the learning

study could not provide direct electrophysiological evidence of

potentiation of local synaptic circuits. On the other hand, the

learning study produced a cortical activation that was undoubtedly

physiological. It is crucial, therefore, that a local increase in SWA

was observed in both studies. Moreover, in both studies the

increase in SWA was limited to the EEG frequencies known to be

homeostatically regulated in physiological sleep [3]. Finally, the

level of SWA decreased over time in both studies, in agreement

with the homeostatic decline of SWA within and across sleep

cycles [3].

Further evidence documenting a connection between synaptic

plasticity and SWA regulation is provided by a recent study of arm

immobilization [8]. In this study, after 12 hours of left arm

immobilization during the day, motor performance deteriorated,

and both somatosensory and motor evoked potentials decreased

over contralateral sensorimotor cortex, indicative of local synaptic

depression. During subsequent sleep, SWA over the same cortical

area was also reduced, to an extent predicted by the decrease in

performance. Mechanistically, the increase in SWA with synaptic

potentiation and its decrease with synaptic depression appears to

be due to changes in the dynamics of cellular slow oscillations and

in the efficacy by which corticocortical synapses recruit and

synchronize large populations of neurons (Hill and Tononi,

SLEEP Abstr. 0011, 2006). Altogether, these studies are consistent

with the notion that SWA, and presumably sleep need, are

increased by events leading to synaptic potentiation and decreased

by events leading to synaptic depression, and that their regulation

can occur locally in cortical circuits [9,38].

MATERIALS AND METHODS
Ten healthy right-handed male subjects (mean age

26.561.6 years) gave informed consent to participate in the study,

which was approved by the local ethics committee. A neurological

screening was performed to exclude subjects with conditions that

could predispose them to potential adverse effects of TMS.

TMS and sham TMS
TMS was targeted to the hand area of the left motor cortex

throughout the experiment. The angulated coil was placed

tangentially to the scalp with the handle pointing backwards.

Precision and reproducibility of the stimulation were achieved by

means of a Navigated Brain Stimulation (NBS) system (Nexstim

Ltd). The NBS device uses an optical tracking system to locate the

TMS coil relative to the subject’s co-registered MR image and

allows a digitization of the location of the EEG electrodes. A

Magstim standard rapid rate stimulator with an air-cooled figure

of eight coil was used for stimulation. Stimulus intensity was set

relative to resting motor threshold (RMT), which was identified in

the relaxed first dorsal interosseous of the right hand, where motor

evoked potentials were recorded. The pre-and post-rTMS test

phases consisted of 200 TMS pulses delivered every 0.5–

0.7 seconds at 90% RMT. The conditioning phase consisted of

1500 TMS pulses delivered at 90% RMT. Repetitive TMS

(rTMS) pulses were delivered at a base frequency of 5 Hz with

pauses in stimulation determined according to safety guidelines

[12,41] (for a schematic representation of the stimulation

paradigm see Supplemental Figure S2). The stimulation lasted

for about 11 minutes. For safety purposes, subjects EEG was

carefully monitored online during the TMS sessions. We observed

no epileptiform EEG abnormalities. Furthermore, subjects were

interviewed immediately following and one week after the

experiment. Subjects reported no adverse effects. Each subject

underwent one rTMS session and, at least one week earlier or

later, a control experiment, where the same procedure was applied

except that sham rTMS was delivered in the conditioning phase.

For sham rTMS, the coil was rotated 90u around the axis of the

handle and separated from the head using a 2 cm plastic spacer

cube to ensure an indirect contact between the coil and the

subjects head. The order of the experiments was randomized to

control for order effect. At debriefing at the end of the experiment

subjects did not report any difference between the two conditions.

Offline, for the analysis of evoked responses, the data was average

referenced, baseline corrected (100 ms prestimulus), band pass

filtered (5–100 Hz) and averaged for each subject. Total EEG

activity was assessed using the global mean field power (GMFP)

[12,42].

TMS-Induced Slow Wave Activity
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TMS-evoked EEG responses
EEG responses to TMS were recorded by means of a cap with 60

carbon electrodes and a specifically designed TMS-compatible

amplifier (Nexstim Ltd). The EEG signals were filtered (0.1–

500 Hz) and sampled at 1450 Hz (for detail see [27]). Confound-

ing factors such as auditory evoked responses and attentional

effects on evoked responses were reduced by noise masking and by

engaging the subject in a simple oddball task. In this task,

interspersed within the noise masking, tones were played at

irregular intervals (10–60 s) and the subject had to respond as fast

as possible with a mouse button click with the left hand.

Differences were assessed by paired t-tests.

Sleep EEG recordings
After the TMS/EEG portion of the experiment the room was

darkened and subjects were allowed to sleep in a bed. We then

recorded the first sleep episode. Due to technical limitations of the

available hd-EEG electrodes, it was not possible to record the full

night of sleep. The sleep recording was therefore terminated at the

first occurrence of REM sleep or when the subject woke up. Sleep

EEG recordings for the first sleep episode were band-pass filtered

between 0.1 and 40 Hz, downsampled to 128 Hz, and average-

referenced. Sleep stages were visually scored for 20-s epochs

according to standard criteria [43]. For a qualitative analysis of the

sleep EEG, spectral analysis of consecutive 20-s epochs was

performed for all 60 channels (FFT routine, Hanning window,

averages of five 4-s epochs). Visual and semi-automatic artifact

removal were performed [44]. Significant topographical differ-

ences in hd-EEG power during the first 30 min NREM sleep were

assessed by statistical nonparametric mapping (SnPM) [6,8,45].

This method takes advantage of the actual data distribution and

accounts for multiple comparisons testing in hd-EEG recordings.

Briefly, EEG readings at each electrode for the potentiation

condition and the control conditions were shuffled according to all

possible permutations for all subjects. Based on the statistics

obtained from the permutation data, we calculated a t-value for

each electrode, and found the maximal t-value over all electrodes.

The t-value threshold was taken as the 95th percentile of the

permutation-derived t-values, and electrodes exceeding that

threshold were taken as showing a significant difference between

the two conditions. T-values presented in the figures are based on

paired t-tests.

Source localization
Source localization was performed on the average pre-condition-

ing TMS-evoked EEG response using the Curry software package

(Curry 5.0, Neuroscan). Electrode positions were digitized and co-

registered to each subject’s MRI by means of an infrared

positioning system (Nexstim). We then estimated the current

density on the cortical surface by using the sLORETA algorithm

[46]. The current density of the average evoked response was then

projected onto the Montréal Neurological Institute (MNI)

standard brain.

SUPPORTING INFORMATION

Figure S1 A. Topographic distribution of power in the

frequency ranges significantly affected by 5-Hz conditioning

illustrated in Figure 3A. Average EEG power density (n = 10

subjects) for the first 30 minutes of NREM sleep after the 5-Hz

conditioning (top), the sham control condition (middle), and the

relative change between the two (bottom). Values were normalized

by total power for the recording, color coded, plotted at the

corresponding position on the planar projection of the scalp

surface, and interpolated (biharmonic spline) between electrodes

(dots). Values to the left of the topographic plots represent

maximal and minimal power (in percentage of the overall mean)

with standard errors in parenthesis. White dots indicate electrodes

showing significant differences after statistical non-parametric

mapping (see methods). B. Time course of changes in power in the

respective frequency ranges after 5-Hz conditioning in 10-min

intervals. We selected power at electrode 9, corresponding to the

peak SWA increase.

Found at: doi:10.1371/journal.pone.0000276.s001 (1.06 MB

PDF)

Figure S2 Schematic representation of the rTMS stimulation

paradigm. Pulses were organized into bursts of 50 pulses delivered

at 5 Hz. Bursts were organized into trains of six bursts, with each

separated by 5 s. A total of five trains were delivered, each

separated by 1 min. The stimulation paradigm was adapted from

studies reporting long-lasting changes of motor evoked potential

after such rTMS conditioning (Peinemann et al., 2004 and

Quartarone et al., 2005).

Found at: doi:10.1371/journal.pone.0000276.s002 (0.17 MB

PDF)
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