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A B S T R A C T

Background

Vitamin D insufficiency is a common public health problem nationwide. Circulating 25-
hydroxyvitamin D3 (25[OH]D), the most commonly used index of vitamin D status, is converted
to the active hormone 1,25 dihydroxyvitamin D3 (1,25[OH]2D), which, operating through the
vitamin D receptor (VDR), inhibits in vitro cell proliferation, induces differentiation and
apoptosis, and may protect against prostate cancer. Despite intriguing results from laboratory
studies, previous epidemiological studies showed inconsistent associations of circulating levels
of 25(OH)D, 1,25(OH)2D, and several VDR polymorphisms with prostate cancer risk. Few studies
have explored the joint association of circulating vitamin D levels with VDR polymorphisms.

Methods and Findings

During 18 y of follow-up of 14,916 men initially free of diagnosed cancer, we identified 1,066
men with incident prostate cancer (including 496 with aggressive disease, defined as stage C or
D, Gleason 7–10, metastatic, and fatal prostate cancer) and 1,618 cancer-free, age- and
smoking-matched control participants in the Physicians’ Health Study. We examined the
associations of prediagnostic plasma levels of 25(OH)D and 1,25(OH)2D, individually and jointly,
with total and aggressive disease, and explored whether relations between vitamin D
metabolites and prostate cancer were modified by the functional VDR FokI polymorphism,
using conditional logistic regression. Among these US physicians, the median plasma 25(OH)D
levels were 25 ng/ml in the blood samples collected during the winter or spring and 32 ng/ml
in samples collected during the summer or fall. Nearly 13% (summer/fall) to 36% (winter/spring)
of the control participants were deficient in 25(OH)D (,20 ng/ml) and 51% (summer/fall) and
77% (winter/spring) had insufficient plasma 25(OH)D levels (,32 ng/ml). Plasma levels of
1,25(OH)2D did not vary by season. Men whose levels for both 25(OH)D and 1,25(OH)2D were
below (versus above) the median had a significantly increased risk of aggressive prostate
cancer (odds ratio [OR] ¼ 2.1, 95% confidence interval [CI] 1.2–3.4), although the interaction
between the two vitamin D metabolites was not statistically significant (pinteraction¼ 0.23). We
observed a significant interaction between circulating 25(OH)D levels and the VDR FokI
genotype (pinteraction , 0.05). Compared with those with plasma 25(OH)D levels above the
median and with the FokI FF or Ff genotype, men who had low 25(OH)D levels and the less
functional FokI ff genotype had increased risks of total (OR¼1.9, 95% CI 1.1–3.3) and aggressive
prostate cancer (OR¼ 2.5, 95% CI 1.1–5.8). Among men with plasma 25(OH)D levels above the
median, the ff genotype was no longer associated with risk. Conversely, among men with the ff
genotype, high plasma 25(OH)D level (above versus below the median) was related to
significant 60%;70% lower risks of total and aggressive prostate cancer.

Conclusions

Our data suggest that a large proportion of the US men had suboptimal vitamin D status
(especially during the winter/spring season), and both 25(OH)D and 1,25(OH)2D may play an
important role in preventing prostate cancer progression. Moreover, vitamin D status, measured
by 25(OH)D in plasma, interacts with the VDR FokI polymorphism and modifies prostate cancer
risk. Men with the less functional FokI ff genotype (14% in the European-descent population of
this cohort) are more susceptible to this cancer in the presence of low 25(OH)D status.

The Editors’ Summary of this article follows the references.
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Introduction

Recent National Health and Nutrition Examination Survey
(NHANES) data demonstrated that vitamin D insufficiency is
a common public health problem nationwide, especially for
elderly and minority populations [1]. A role for vitamin D in
decreasing prostate cancer risk has been hypothesized on the
basis of observations of higher prostate cancer mortality in
regions of low solar radiation exposure and higher prostate
cancer incidence in men of African descent, northern
latitudes, and older age, all of which are associated with
lower vitamin D status [2–4].

The prohormone vitamin D is obtained via UV exposure
and from diet and supplements, and is hydroxylated by the
liver to form 25-hydroxyvitamin D3 (25[OH]D). Circulating
25(OH)D is a sensitive marker of vitamin D status. Although
the optimal range of 25(OH)D is debated [5], lower limits of
20 ng/ml (or 50 nM, to define deficiency) and 32 ng/ml (or 80
nM, to define suboptimal level or insufficiency) are favored by
many researchers mainly based on functional indicators
including parathyroid hormone, calcium absorption, and
bone turnover markers [6–8]. In the kidney and other tissues,
including prostate, 25(OH)D is further converted to the
active hormone 1,25 dihydroxyvitamin D3 (1,25[OH]2D),
which, operating through vitamin D receptors, inhibits cell
proliferation, promotes angiogenesis and invasiveness, and
induces differentiation and apoptosis [9–11]. Consistently,
1,25(OH)2D analogs slow prostate tumor growth in rodent
models [12,13] and hinder prostate cancer metastasis [14],
which indicates that 1,25(OH)2D may protect against both
initiation and progression of cancer.

Despite the intriguing results from laboratory studies,
epidemiological data from eight prospective studies showed
inconsistent associations of prediagnostic circulating levels of
vitamin D metabolites (25[OH]D and 1,25[OH]2D) with
prostate cancer incidence [15–22]. Corder et al. [15] first
reported an inverse association for circulating 1,25(OH)2D
and aggressive prostate cancer, particularly in older men or
in those with low 25(OH)D levels. Two studies of European
Nordic countries measured only 25(OH)D; one found an
inverse association [19], whereas the other found that both
low and high 25(OH)D levels were associated with an
increased risk [20]. All of the other five studies, including
our earlier analysis from the present cohort [17], were
conducted in the US and generally showed null or non-
significant associations [16–18,21,22]. Of these five studies,
three evaluated the joint association of 25(OH)D and
1,25(OH)2D with prostate cancer risk [17,18,22], and two
(including our previous analysis) suggested that men with low
levels of both metabolites had the highest risk [17,18].
However, none of these results were statistically significant,
perhaps due to limited sample sizes, especially for patients
with aggressive disease [17,18,22].

The vitamin D receptor (VDR), expressed in normal and
malignant prostate cells, mediates the biological actions of
1,25(OH)2D [9,23–25]. Several common polymorphisms in the
VDR gene have been described. A translation initiation codon
polymorphism, the FokI restriction fragment length poly-
morphism (RFLP), identified recently [26,27], has no linkage
disequilibrium with other VDR polymorphisms [28]. Although
findings have been inconsistent [29–32], most studies indicate
that the shorter F (versus f) allele is more responsive to

1,25(OH)2D [30] and has greater transcriptional activity
[31,32]. The F allele has been associated with greater lumbar
bone mineral density in several European-descent popula-
tions [27,33]. At the 39 end of the VDR gene, a BsmI RFLP is
strongly linked with several other polymorphisms, including
ApaI, TaqI, and a poly-A repeat [32,34]. These polymorphisms
produce no coding region differences and thus do not change
the structure of the protein. A recent meta-analysis [35],
which included 26 studies published through January 2005,
showed overall no association between the FokI (eight studies)
polymorphism or BsmI (ten studies) and risk of prostate
cancer. The only study on the joint associations of circulating
vitamin D levels and the VDR BsmI polymorphism with
prostate cancer came from our group [36], showing that the
BsmI BB genotype was associated with lower risk among men
with low 25(OH)D status. Two recent case-control studies
reported that the ff genotype was associated with increased
risk of prostate cancer only in the presence of high sun
exposure [37,38]. To date, no study has assessed the
interaction of circulating vitamin D levels with the functional
FokI polymorphism.
We therefore conducted a nested case-control study within

the Physicians’ Health Study (PHS), with nearly twice the
sample size to extend the previous analyses [17,36]. With
prostate cancer patients diagnosed between 1982 and 2000
(i.e., before and after prostate-specific antigen [PSA] screen-
ing became widespread), we specifically tested the following
hypotheses: (1) lower plasma levels of 25(OH)D, 1,25(OH)2D,
or both metabolites are associated with increased risk of
prostate cancer, and the association is more pronounced for
aggressive disease and among older men; and (2) men who
carry the functional FokI f allele (which is less responsive to
vitamin D signaling) have higher risk, especially if they have
low vitamin D status. We also extended the previous analysis
[36] of the BsmI polymorphism with prostate cancer and to
study their possible interactions with vitamin D metabolites.

Methods

Study Population
The PHS was a randomized, double-blind, placebo-con-

trolled trial of aspirin and b-carotene among 22,071 healthy
US male physicians, aged 40–84 y, that began in 1982 [39]. The
aspirin arm was terminated at the end of the fifth year due to
a reduction in the risk of myocardial infarction; the b-
carotene component of the trial continued until 1995, and
the men are still followed. Written consent was obtained from
each participant, and the investigation was approved by the
Human Subjects Committee at Brigham and Women’s
Hospital. Men were excluded at baseline if they had a history
of myocardial infarction, stroke, transient ischemic attack, or
unstable angina; cancer (except for nonmelanoma skin
cancer); current renal or liver disease, peptic ulcer, or gout;
or current use of platelet-active agents, vitamin A, or b-
carotene supplements. Study participants provided baseline
information (including lifestyle habits such as dairy food
intake and vigorous physical activity) via self-administrated
questionnaires. Before randomization, 14,916 men (68%)
provided a blood sample [17], and more than 70% of the
specimens were received between September and November
in 1982. Additional questionnaires were mailed at 6 months,
12 months, and annually thereafter to obtain medical
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information. Study investigators, unaware of the question-
naire or assay data, verified the reports of prostate cancer by
participants and reviewed medical records and pathological
reports to determine the tumor Gleason score, grade, and
stage, according to the modified Whitmore-Jewett classifica-
tion scheme [40]. Patients without pathologic staging were
classified as indeterminate stage unless there was clinical
evidence of distant metastases at diagnosis. Through 2000,
follow-up was over 99% complete; vital status was ascertained
for 100% of the participants by 2004.

Prostate cancer patients for the current study were drawn
from participants who provided blood specimens at baseline
(i.e., from both the treatment and placebo arms). For each
patient, we selected one to three control participants at
random from those who had provided blood, had not had a
prostatectomy, and had not reported a diagnosis of prostate
cancer at the time the diagnosis was reported by the case
participant. Control participants were individually matched
to case paricipants by age (61 y and 65 y for older men) and
smoking status (never, former, or current).

Laboratory Assessment for Vitamin D Metabolites and
VDR Polymorphisms

Plasma concentrations of 25(OH)D and 1,25(OH)2D were
determined by radioimmunosorbant assay in two separate
batches (226 patients and their matched control participants
in 1994, and 266 patients and their matched control
participants in 2003) in the laboratory of Dr. Bruce Hollis
(Medical University of South Carolina, Charleston, South
Carolina, United States) as described previously [41,42].
Samples for each patient and matched control participant(s)
were analyzed together, but in random order, with the patient
status unknown to the laboratory personnel. The mean intra-
pair coefficients of variation for blinded duplicate quality
control samples were 7.9% to 8.1% for 25(OH)D and
1,25(OH)2D for the two batches.

DNA was extracted from baseline blood specimens for
these patients and controls. With the laboratory personnel
blinded to patient–control status, the FokI and BsmI
genotypes were analyzed at the Dana Farber/Harvard Cancer
Center Genotyping Core. The VDR RFLP genotypes were
determined by PCR amplification, followed by restriction
enzyme digestion, as described previously [27,43].

Statistical Analysis
Of men who provided blood samples at the baseline, we

studied 1,066 men who developed prostate cancer during
1982–2000 (18 y of follow-up) and 1,618 matched control
participants. Of these, limitations in funding permitted
measuring baseline plasma vitamin D concentrations
(25[OH]D and 1,25[OH]2D) for 492 patients with prostate
cancer (diagnosed between 1982 and 1995) and 664 matched
control participants. For VDR polymorphisms, 1,034 patients
(and 1,566 control participants) had the FokI genotype data,
and 1,010 patients (and 1,432 control participants) had the
BsmI genotype data. We then had 461 to 471 patients and
matched control participants to evaluate the potential
interactions between plasma vitamin D metabolites and the
VDR polymorphisms in relation to prostate cancer risk.

We compared allele and genotype frequencies between
patients and control participants using the v2 test. Because
plasma vitamin D levels were not normally distributed, we

selected nonparametric techniques for the comparisons of
vitamin D metabolites between patients and control partic-
ipants for batches one and two, separately. Since the results
for all the following analyses were similar between batches, we
combined data from the two batches and performed matched
analyses. We examined the association of circulating levels of
25(OH)D and 1,25(OH)2D in quartiles (with the highest
quartile, defined by the distribution among controls, as the
reference) and polymorphisms of FokI and BsmI (with the
wild-type genotype as the reference) with risk of total
prostate cancer. We then separately performed subgroup
analyses for various subtypes of prostate cancer according to
disease stage and grade at diagnosis, and whether those men
developed metastases or died from prostate cancer by 2004.
Because ‘‘high-grade’’ (Gleason score of 7–10) and ‘‘high-
stage’’ (stage C or D) are the strongest predictors of prostate
cancer death, the associations (both direction and magnitude)
of these subgroup analyses were similar to those of
‘‘metastatic/fatal’’ cancers, and the sample size for each
cancer subtype was relatively small, we reported the results
for aggressive prostate cancer, when these subgroups were
combined, and for nonaggressive disease, those diagnosed
with stage A or B and low-grade (Gleason score of 2–6)
prostate cancer. We further conducted stratified analyses by
duration of follow-up, age at diagnosis (younger than 65 y or
65 y and older) or median age at baseline, and assessed age as
a potential effect modifier. Because the levels of 25(OH)D
(but not 1,25[OH]2D) were higher in samples collected during
summer/fall and were lower in those collected during winter/
spring (Table 1), presumably due to the difference in sun
exposure, we used season- and batch-specific cutoff points for
25(OH)D and batch-specific cutoff points for 1,25(OH)2D
based on levels of the control subjects. We then examined the
joint associations of 25(OH)D with 1,25(OH)2D with the
dichotomized variables (i.e., below or above median levels).
Furthermore, we explored the interactions between these
vitamin D metabolites and VDR polymorphisms in modifying
prostate cancer risk. For VDR polymorphisms, we compared
men who carried the homozygous variant genotype with the
rest (the wild-type and the heterozygous genotypes combined)
as the reference group. To examine whether any associations
between vitamin D status and risk of prostate cancer were
due to an effect of latent disease on plasma vitamin D status,
we repeated all these analyses by excluding the patients
diagnosed in the first 2 y of follow-up after the blood
collection or the patients with baseline PSA levels 4 ng/ml or
higher. Given that the PHS was a randomized trial, we also
tested whether the associations of vitamin D, VDR poly-
morphisms with prostate cancer were modified by the b-
carotene and the aspirin treatments.
Odds ratios (ORs) and 95% confidence intervals (CIs) were

calculated using conditional logistic regression models.
Besides controlling for age, smoking, and follow-up period
via the matched analysis, we adjusted for exercise (sufficient
to induce sweating ,1, 1–4, or �5 times per week) and race
(European descent, yes or no). Because only 6% of the men in
this study were not of European descent, we also repeated all
the analyses excluding these individuals. We presented
models without adjusting for dairy food (calcium) intake
because adjustment for this factor did not change the results.
For men (15 patients and 10 control participants) with
missing information for exercise, we assigned them into the
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median category (i.e., 1–4 times/wk) and retained them in the
analyses; including or excluding these men provided similar
results. Tests for trend for the vitamin D metabolites were
conducted by use of median levels of quartiles. To test for
interactions, we analyzed models with and without the cross-
product term with the two main exposures as continuous
variables and conducted the likelihood ratio test. All statistics
were calculated by SAS (version 8.12; SAS Institute Inc, http://
www.sas.com) with a two-sided significance level of 0.05. We
tested for heterogeneity for the associations with aggressive
versus nonaggressive disease using the Stata Statistical
Software, version 9.0 (http://www.stata.com).

Results

All baseline characteristics presented in Table 1 were
similar between patients with prostate cancer and control
participants. Of the 1,066 incident patients, 496 had
aggressive disease, 539 had nonaggressive prostate cancer,
and 31 were unable to be classified because of insufficient
information. The median interval from baseline in 1982 to
diagnosis was 11 y, and the average follow-up duration after
diagnosis was 9 y.

Approximately 75% of the blood samples were collected
during summer/fall, among which levels of 25(OH)D and
1,25(OH)2D were significantly and positively correlated (n ¼
480 control participantss, Spearman correlation r¼ 0.17, p ,

0.001); however, they were unrelated among samples collected
during winter/spring (n¼ 184 control participants). Circulat-
ing levels of 1,25(OH)2D are physiologically tightly controlled
and thus did not vary by season. Plasma 25(OH)D levels were
higher in the ‘‘summer/fall’’ samples (median ¼ 31.7 ng/ml
among control participants) than in the ‘‘winter/spring’’
samples (median ¼ 24.8 ng/ml). We categorized men with
plasma 25(OH)D levels ,20 ng/ml as vitamin D ‘‘deficient’’
and ,32 ng/ml as ‘‘insufficient’’ [6–8]. Among control

participants, the prevalence of vitamin D deficiency was
12.7% for blood samples collected in the ‘‘summer/fall’’ and
36.4% for the samples collected in ‘‘winter/spring’’ (Table 1);
nearly 50% (summer/fall) to over two-thirds (winter/spring) of
the men had insufficient vitamin D. Men not of European
descent had an even higher prevalence of vitamin D
insufficiency. The prevalence of deficiency was 16.7% in the
‘‘summer/fall’’ (n¼ 30) and 46.2% in ‘‘winter/spring’’ (n¼ 13)
samples; the corresponding prevalent rates of vitamin D
insufficiency were 63.3% and 92.3%. The overall vitamin D
status of the participants in this cohort was similar to several
other studies [16–18,21,22] as well as to US men in NHANES
[1]. In contrast, the 25(OH)D levels were much lower (median
�20 ng/ml) among men in the study by Corder et al. [15] and
in two Nordic studies [19,20].
Levels of 25(OH)D and 1,25(OH)2D alone were not

associated with risk of total or nonaggressive prostate cancer.
Lower levels of 1,25(OH)2D tended to be associated with
increased risk of aggressive prostate cancer (pheterogeneity,
aggressive versus nonaggressive disease ¼ 0.02), especially
among men aged of 65þ y at diagnosis (ptrend¼ 0.03, Table 2);
however, the interaction of vitamin D status with age,
categorized by median or into four groups (,60, 60–65, 65–
70, and 70þ y), or as a continuous variable, was not significant.
In this cohort, the FokI and BsmI genotype frequencies were
similar to previously reported populations of European
descent [36,44–47], and the distributions were in Hardy-
Weinberg equilibrium. We observed no direct relationship of
the VDR FokI or BsmI polymorphism with risk of total,
nonaggressive, and aggressive prostate cancer (Table 3), and
the associations did not differ by age at diagnosis.
We further extended our previous analysis [17,36] to

evaluate the joint association of 25(OH)D and 1,25(OH)2D.
Compared with men whose levels of both metabolites were
above the median, men with circulating 25(OH)D (,32.0 ng/
ml for ‘‘summer/fall’’ samples and ,24.4 ng/ml for ‘‘winter/

Table 1. Baseline Characteristics of Patients with Prostate Cancer and Control Participants: The PHS

Category Characteristic Patients Control Participants

Number of study participants 1,066 1,618

Age at study onset (y)a Mean 6 SD 58.9 6 8.3 59.0 6 8.0

Age at diagnosis (y) Mean 6 SD 69.3 6 7.3 —

Baseline to diagnosis (y) Median (range) 11 (0–18) —

Tumor aggressivenessb (%) Nonaggressive 50.6 —

Aggressive 46.5 —

Unknown 2.9 —

Smoking status (%)a Current 9.6 8.5

Former 42.8 44.3

Season during which blood was drawn (%) Spring or winter 24.1 26.0

Plasma 1,25(OH)2D level (ng/ml)c Median (range) 32.3 (11.6–74.9) 33.0 (13.8–66.3)

Plasma 25(OH)D level (ng/ml), summer/fallc Median (range) 31.6 (8.0–74.1) 31.7 (8.1–90.0)

Deficiency (,20; %) 10.8 12.7

Insufficiency (,32; %) 51.6 51.0

Plasma 25(OH)D level (ng/ml), spring/winterc Median (range) 25.5 (8.6–90.2) 24.8 (6.3–56.1)

Deficiency (,20; %) 27.9 36.4

Insufficiency (,32; %) 67.2 77.2

aMatching variable.
bClinical stage for patients was determined based on the Whitmore-Jewett classification scheme: aggressive disease, stage C or D or Gleason score 7–10 tumor, patients who developed
metastases or died during the follow-up; nonaggressive disease, stage A or B prostate cancer and Gleason score 2–6 tumor.
cBaseline plasma vitamin D concentrations were available for 492 patients (who were diagnosed during 1982–1995) and 664 matched control participants.
doi:10.1371/journal.pmed.0040103.t001
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spring’’ samples; i.e., insufficient or deficient) and 1,25(OH)2D
below the median had significantly increased risk of aggressive
prostate cancer (OR ¼ 2.06, 95% CI 1.24–3.43; pheterogeneity,
aggressive versus nonaggressive disease ¼ 0.01; Table 4),
though the interaction between the two metabolites was not
significant. Among men aged 65þ y at diagnosis, the
association was slightly stronger (OR ¼ 2.47, 95% CI 1.29–
4.75), but formal tests for interactions between the vitamin D
metabolites and age were not statistically significant. The
associations were similar regardless of season of blood
collection. Similar association was also observed for the risk
of fatal/metastatic prostate cancer with the corresponding OR
of 1.63 (95% CI 0.73–3.65). The 95% CI was wide probably due
to small sample size (98 patients and 144 control participants).

We found significant interactions between circulating
25(OH)D (but not 1,25[OH]2D) levels and the FokI poly-
morphism in modifying prostate cancer risk (Table 4).
Compared with those with plasma 25(OH)D levels above the

median and with the FokI FF or Ff genotype, men who had low
(or suboptimal) 25(OH)D levels and the less functional FokI ff
genotype had 2-fold increased risks of total (OR¼ 1.89, 95%
CI 1.10–3.25) and aggressive prostate cancer (OR¼ 2.53, 95%
CI 1.10–5.80; OR for fatal/metastatic disease ¼ 2.40, 95% CI
0.69–8.38), with a nonsignificant pheterogeneity (aggressive
versus nonaggressive disease) of 0.18. The FokI ff genotype
(versus FF/Ff) was associated with increased risk of total (OR¼
1.97, 95% CI 1.15–3.35; pinteraction ¼ 0.01) and aggressive
prostate cancer (OR ¼ 2.16, 95% CI 0.97–4.82, pinteraction ¼
0.05; OR for fatal/metastatic disease¼ 1.83, 95% CI 0.55–6.11,
pinteraction ¼ 0.43) only among men with low 25(OH)D status
but not among those with plasma 25(OH)D levels above the
median. Conversely, among men who carried the FokI ff (but
not FF/Ff) genotype, high (versus low) 25(OH)D was associated
with reduced risk for total (OR¼ 0.37, 95% CI 0.18–0.74) and
aggressive prostate cancer (OR¼ 0.30, 95% CI 0.11–0.82; OR
for fatal/metastatic disease ¼ 0.26, 95% CI 0.06–1.22). Our

Table 3. Association Between VDR Gene Polymorphisms and Risk of Total and Aggressive Prostate Cancer

RFLP Polymorphism Genotype Genotype (%) OR (95% CI)

Patient Control Participants Total Prostate Cancera Aggressive Prostate Cancerb

FokI polymorphism FF 37.9 39.9 Reference Reference

Ff 47.0 45.7 1.08 (0.91–1.30) 0.84 (0.64–1.10)

ff 15.1 14.4 1.09 (0.86–1.40) 1.11 (0.77–1.59)

BsmI polymorphism bb 36.9 36.7 Reference Reference

bB 46.4 47.7 0.98 (0.82–1.17) 0.88 (0.69–1.14)

BB 16.7 15.6 1.05 (0.83–1.33) 0.83 (0.58–1.18)

Conditional logistic regression in consideration of matching factors, further adjusted for race (European descent, yes, or no). Aggressive versus nonaggressive disease, p heterogeneity¼ 0.57
(FokI) and 0.05 (BsmI).
aTotal prostate cancer: FokI, 1,010 patients and 1,432 control participants; BsmI, 1,034 patients and 1,566 control participants.
bAggressive prostate cancer (stage C, D, or Gleason score 7–10 tumor, patients who developed metastases or died during the follow-up): FokI, 466 patients and 690 control participants;
BsmI, 487 patients and 770 control participants.
doi:10.1371/journal.pmed.0040103.t003

Table 2. OR and 95% CI for Total and Aggressive Prostate Cancer According to Quartile Levels of Baseline Vitamin D Metabolites

Age Group Variable Total Prostate Cancer Aggressive Prostate Cancera

25(OH)D 1,25(OH)2D 25(OH)D 1,25(OH)2D

All ages Patients/control participants 492/664 236/332

Q1 (low) 1.01 (0.71–1.44) 0.91 (0.63–1.33) 1.27 (0.76–2.13) 1.37 (0.81–2.33)

Q2 1.26 (0.89–1.80) 1.35 (0.95–1.92) 1.33 (0.80–2.20) 1.90 (1.14–3.16)

Q3 1.00 (0.71–1.41) 0.94 (0.66–1.36) 0.97 (0.58–1.60) 1.19 (0.69–2.05)

Q4 (high) Reference Reference Reference Reference

p-Value for trend 0.91 0.74 0.82 0.07

Age at diagnosis �65 y Patients/control participants 333/458 160/231

Q1 (low) 1.03 (0.67–1.60) 1.19 (0.75–1.89) 1.34 (0.71–2.53) 1.93 (0.99–3.75)

Q2 1.32 (0.86–2.03) 1.53 (0.98–2.39) 1.41 (0.75–2.62) 2.17 (1.15–4.10)

Q3 1.02 (0.68–1.54) 1.17 (0.73–1.89) 0.91 (0.49–1.70) 1.55 (0.76–3.16)

Q4 (high) Reference Reference Reference Reference

p-Value for trend 0.95 0.26 0.68 0.03

Conditional logistic regression with patients and control participants matched on age and smoking status (never, past, and current) at baseline, adjusted for race (European descent, yes or
no) and exercise and all models were mutually adjusted for levels of 1,25(OH)2D and 25(OH)D. Among control participants, quartile cutoff points (average of two batches) were 18.3, 24.4,
and 31.1 ng/ml for winter/spring-collected samples and 24.4, 32.0, and 39.5 ng/ml for summer/fall-collected samples. Aggressive versus nonaggressive disease, pheterogeneity ¼ 0.02 for
1,25(OH)2D and p heterogeneity ¼ 0.14 for 25(OH)D.
aClinical stage for patients was determined based on the Whitmore-Jewett classification scheme: aggressive disease, stage C, D, or Gleason score 7–10 tumor, patients who developed
metastases or died during the follow-up.
Q, quartile.
doi:10.1371/journal.pmed.0040103.t002
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extended analyses showed no overall interactions of the BsmI
polymorphism with vitamin D metabolites.

Although inverse associations between vitamin D levels and
risk of developing aggressive disease were stronger for those
diagnosed in the pre-PSA era, the trends were similar for both
pre- and post-PSA era patients. Excluding patients diagnosed
during the first 2 y of follow-up after blood collection or those
who had baseline PSA levels � 4 ng/ml did not significantly
alter the relationship. We found similar associations between
plasma vitamin D metabolites, VDR polymorphisms, and
prostate cancer with (as presented above) and without

(unpublished data) adjusting for race. The relations between
VDR polymorphism and prostate cancer remained the same,
and the inverse associations of plasma vitamin D levels with
risk of prostate cancer were attenuated but remained
significant, when the men of non-European descent were
excluded. Men with circulating levels of both 25(OH)D and
1,25(OH)2D below (versus above) the median had a 1.7-fold
(95% CI 1.03–2.95; versus 2.1-fold among all men; Table 4)
increased risk of aggressive prostate cancer among men of
European descent; these associations were stronger among
those not of European descent (unpublished data), probably

Table 4. Joint Association of Plasma Level of 25(OH)D with 1,25(OH)2D or with Vitamin D Receptor Gene Polymorphisms in Relation to
Total and Aggressive Prostate Cancer

Level of 25(OH)Da Category Total Prostate Cancer Aggressive Prostate Cancerb

n OR 95% CI n OR 95% CI

Low (�24.4/32.0) Low 1,25(OH)2D level 142/180 1.33 0.94–1.88 75/75 2.06 1.24–3.43

High 1,25(OH)2D level 108/148 1.16 0.82–1.64 48/79 1.08 0.66–1.77

High (.24.4/32.0) Low 1,25(OH)2D level 119/152 1.20 0.85–1.70 57/81 1.24 0.75–2.04

High 1,25(OH)2D level 123/184 Reference — 56/97 Reference —

p-Value for interaction 0.85 0.23

Low (�24.4/32.0)c FokI ff genotype 42/30 1.89 1.10–3.25 19/13 2.53 1.10–5.80

FokI FF/Ff genotype 194/244 0.96 0.72–1.28 99/118 1.17 0.77–1.77

High (.24.4/32.0)c FokI ff genotype 30/47 0.70 0.42–1.15 18/27 0.76 0.38–1.51

FokI FF/Ff genotype 195/223 Reference — 85/114 Reference —

p-Value for interaction 0.01 0.05d

OR and 95% CI; conditional logistic regression with patients and control participants matched on age and smoking status (never, past, and current) at baseline, adjusted for race (European
descent, yes, or no) and exercise. Aggressive versus nonaggressive disease: p heterogeneity¼ 0.01 for the joint association of 25(OH)D with 1,25(OH)2D and p heterogeneity¼ 0.18 for the joint
association of 25(OH)D with FokI genotype.
aMedian cutoff points (average of two batches) for winter/spring- and summer/fall-collected control samples.
bClinical stage for patients was determined based on the Whitmore-Jewett classification scheme: Aggressive disease, stage C, D, or Gleason score 7–10 tumor, patients who developed
metastases or died during the follow-up.
cFurther adjusted for 1,25(OH)2D levels.
dp¼ 0.0497.
doi:10.1371/journal.pmed.0040103.t004

Table 5. Prospective Studies of Circulating Level of Vitamin D Metabolites and Prostate Cancer Risk

Study Reference Study Population Vitamin D Level in Control Participants

Country Patient/Control

Participant

25(OH)D 1,25(OH)2D

Median

(ng/ml)

Deficiencya

(%)

Median

(pg/ml)

Corder et al. (1993) [15] US 181/181 ;22 ;50 ;33

Braun et al. (1995)b [16] US 61/122 33c 13 40c

Gann et al. (1996) [17] US 232/414 29 19 34

Nomura et al. (1998) [18] US (Hawaii) 136/136 42 0 40

Ahonen et al. (2000) [19] Finland 149/566 16 .60 NA

Tuohimaa et al. (2004) [20] Norway, Finland, Sweden 622/1,451 20 ;50 NA

Jacobs et al. (2004)b [21] US 83/166 ;29 ;20 ;31

Platz et al. (2004) [22] US 460/460 24c 20–25 34c

Current study NA US 492/664 29 19 33

aVitamin D deficiency was defined as level of 25(OH)D ,20 ng/ml.
bSeason of blood collection was not adjusted in models.
cMean level.
doi:10.1371/journal.pmed.0040103.t005
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because of their low 25(OH)D status as described above. We
found no interactions of vitamin D level or the VDR
polymorphisms with the b-carotene and aspirin treatments
in modifying prostate cancer risk.

Discussion

In this large prospective cohort of middle-aged US male
physicians, almost one-third of the men had vitamin D
deficiency (25[OH]D ,20 ng/ml), and more than two-thirds
had insufficient vitamin D status (25[OH]D ,32 ng/ml) in the
winter/spring. Even in the summer/fall, more than 10% were
vitamin D deficient, and more than half had insufficient
vitamin D status (Table 1). These findings, consistent with
most observations from other studies [16–22] as well as the
recent NHANES [1], suggest an alarming problem of low
vitamin D status in the US and in Northern European
countries.

Prediagnostic 1,25(OH)2D levels tended to be inversely
associated with risk of aggressive prostate cancer, especially
among men aged 65þ y at diagnosis (Table 2) or among men
with low levels of 25(OH)D (Table 4). Our findings were
consistent with Corder et al., who first reported an inverse
association for circulating 1,25(OH)2D and aggressive pros-
tate cancer, particularly in older men, although the lowest
risk was observed among men with high 1,25(OH)2D but low
25(OH)D levels [15]. Normura et al. found that men with low
levels of both metabolites had the greatest risks (not statisti-
cally significant); however, they did not distinguish aggressive
from nonaggressive cancer [18]. Ahonen et al. found an
inverse association of 25(OH)D with prostate cancer in
Finland [19], and Tuohimaa et al. found a U-shaped relation-
ship between 25(OH)D and prostate cancer [20], but none of
these two studies measured 1,25(OH)2D levels. Other pro-
spective studies generally found no associations [16,17,21,22].
One major factor that may contribute to these inconsistent

findings is that most studies did not specifically examine
aggressive prostate cancer, the etiology of which appears to
differ from that of indolent disease [16,17,21,22]. Another
related factor may be the apparent differences in vitamin D
status in various populations (Table 5) [15–22]. The overall
vitamin D status of the participants was fairly low in the three
studies showing significant inverse association with
1,25(OH)2D [15] or 25(OH)D levels [19,20]. The median levels
of 25(OH)D for men of these studies were around or below 20
ng/ml so that at least half of the study participants were
vitamin D deficient. In contrast, among the studies that did
not find a direct association between circulating vitamin D
metabolites and prostate cancer risk (including ours), the
median levels of 25(OH)D (all seasons combined) were 29 ng/
ml or higher, and the prevalence of vitamin D deficiency was
approximately 20% [16–18,21,22]. Thus, men in Hawaii [18]
and Baltimore [16] may have more sun exposure compared to
those in Nordic countries [19,20], and the physicians [17] and
health professionals [22] may be more conscious about
nutrition and consume more supplements than the general
population.
We defined low 25(OH)D status as below the median (i.e.,

,24.4 ng/ml), close to deficient for blood samples collected in
winter/spring, and ,32.0 ng/ml, close to insufficient levels for
blood samples collected in summer/fall. In our study, men
with low levels of both 25(OH)D and 1,25(OH)2D, which may
be a true indication of vitamin D deficiency, were at
significantly increased risk for aggressive prostate cancer.
Although with few men of non-European descent in this
cohort, the data suggested stronger inverse associations
between plasma vitamin D levels and risk of prostate cancer
among them (versus men of European descent), probably
because these men had poorer 25(OH)D status related to
their darker skin color.
A significant association of plasma 1,25(OH)2D levels and

risk of aggressive prostate cancer was apparent only among

Table 5. Extended.

Main Findings

Level of 25(OH)D

or 1,25(OH)2D

Joint Level of 25(OH)D

and 1,25(OH)2D

High 1,25(OH)2D level was associated with lower risk, especially in men with

baseline age �57 y or with low 25(OH) levels

High 1,25(OH)2D and low 25(OH)D was associated with lowest risk

Null NA

Non-significant inverse trend for 1,25(OH)2D, especially in men with baseline

age � 61 y

High 1,25(OH)2D and high 25(OH)D was associated with non-significant lowest risk

Null High 1,25(OH)2D and high 25(OH)D was associated with nonsignificant lowest risk

High 25(OH)D level was associated with lower risk (above versus below the median,

OR ¼ 1.7, 95% CI 1.2–2.5); especially among men with baseline age ,52 y.

NA

Both low (,7.6 ng/ml) and high (� 32 ng/ml) 25(OH)D were associated with

higher risk (U-shaped; OR ¼ 1.5–1.7)

NA

Null NA

Null No interaction between 1,25(OH)2D and 25(OH)D

Level of 1,25(OH)2D was inversely associated with risk of aggressive prostate cancer,

especially in men aged 65þ y at diagnosis (ptrend ¼ 0.03)

Low 1,25(OH)2D and low 25(OH)D) was associated with highest risk of aggressive

cancer (OR, 95% CI ¼ 2.1, 1.2–3.4)
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older men or men with insufficient 25(OH)D status, suggest-
ing a role of 1a-hydroxylase activity in prostate cancer
development and progression. Levels of the active hormone
1,25(OH)2D could be influenced by 25(OH)D status as well as
1a-hydroxylase activity. With low 25(OH)D status, 1,25(OH)2D
levels could be maintained by increased 1a-hydroxylase
activity, possibly explaining why we observed no correlation
between the two metabolites in blood samples collected in
winter/spring. Reduced enzyme activity of 1a-hydroxylase due
to aging [48] or other factors, especially under low 25(OH)D
status, could predispose a man to a higher risk of prostate
cancer as observed in our study. This notion is indirectly
supported by two studies that recently showed profoundly
reduced 1a-hydroxylase activity in prostate cancer cell lines
compared with cells from normal tissues [49,50], suggesting
that these cells may have reduced or lost the ability to convert
25(OH)D to 1,25(OH)2D locally [51]. Because circulating
1,25(OH)2D level is relatively stable, an alternative explan-
ation is that low 1,25(OH)2D, in concert with low 25D, may act
as a better marker of low vitamin D status.

Neither the FokI nor the BsmI polymorphism was directly
associated with prostate cancer in our study, which is
consistent with previous observations [35,37]. However, we
found an increased risk of prostate cancer associated with the
less functional FokI ff genotype only in the presence of low
25(OH)D status. Most previous studies, summarized by Berndt
et al. [35], were small and studied primarily localized disease.
However, two studies reported an increased risk of prostate
cancer associated with the FokI ff genotype was found in the
presence of high sun exposure (thus, presumably higher
25[OH]D status) [37,38]. More studies are needed to resolve
these apparently contradictory findings.

The strengths of this study include a prospective design
with up to 18 y of follow-up and careful collection and
storage of blood specimens and thorough ascertainment of
events. Our large sample size, especially for patients with
clinical aggressive prostate cancer, allowed us to assess the
associations of 25(OH)D and 1,25(OH)2D, individually and
jointly, with total and aggressive disease, as well as their
potential interactions with the VDR polymorphisms. One
limitation is that vitamin D levels were assessed in plasma
collected at one time point and measured in two batches.
However, the reproducibility of these assays was good as
indicated by the low mean intra-pair coefficients of variation
(both were ,10%). Furthermore, the mean levels and their
distribution were similar to those reported using fresh
samples, and the overall- and batch specific-correlations
between 25(OH)D with age and seasons of the year were as
expected, supporting the internal validity of these assays. To
ensure the comparability between patients and control
participants and to reduce the nondifferential measurement
errors due to batch-to-batch variation, patients and control
participants were assayed together and analyzed in matched
pairs, and we used batch-specific cutoff points to define the
categories and utilized conditional logistic regression models
for all the analyses. Nevertheless, if any such nondifferential
measurement error exists, we expect that the strength of the
association could be diluted toward the null. Other limi-
tations included the lack of information on family history of
prostate cancer and PSA screening practice, as well as PSA
levels at diagnosis for these men. Findings in this cohort of
physicians of predominantly European descent may not be

easily generalized to other ethnic groups. Studies of other
ethnic groups are necessary to better understand the role of
vitamin D on prostate cancer.
In summary, the inverse association of 1,25(OH)2D alone or

together with 25(OH)D with aggressive prostate cancer
provide further evidence that both 25(OH)D and
1,25(OH)2D may play an important role in preventing
prostate cancer progression, especially among older men.
The FokI polymorphism may interact with 25(OH)D and
modify prostate cancer risk. Men with the FokI ff genotype
(14% in the European-descent population of this cohort) are
more susceptible to this disease in the presence of low
25(OH)D status. Vitamin D insufficiency is a common
problem, and improving vitamin D status through moderate
sun exposure and vitamin D supplements, in particular, is
essential for optimal health.

Supporting Information
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Editors’ Summary

Background. Prostate cancer occurs when cells in the prostate gland
(part of the male reproductive system) accumulate genetic changes that
allow them to grow into a disorganized mass of cells. Patients whose
disease is diagnosed when these cells are still relatively normal can
survive for many years, but for patients with aggressive cancers—ones
containing fast-growing cells that can migrate around the body—the
outlook is poor. Factors that increase prostate cancer risk include
increasing age, having a family history of prostate cancer, and being
African American. Also, there are hints that some environmental or
dietary factors affect prostate cancer risk. One of these factors is vitamin
D, of which high levels are found in seafood and dairy products, but
which can also be made naturally by the body—more specifically, by
sunlight-exposed skin. One reason researchers think vitamin D might
protect against prostate cancer is that this cancer is more common in
sun-starved northern countries (where people often have a vitamin D
deficiency) than in sunny regions. Prostate cancer is also more common
in African American men than in those of European descent (when
exposed to the same amount of sunlight, individuals with darker skin
make less vitamin D than those with lighter skin). Once in the human
body, vitamin D is converted into the vitamin D metabolite 25-
hydroxyvitamin D3 (25[OH]D) and then into the active hormone 1,25
dihydroxyvitamin D3 (1,25[OH]2D). This binds to vitamin D receptors
(VDRs) and inhibits cell proliferation and migration.

Why Was This Study Done? The effect of 1,25(OH)2D on cells and the
observation that related chemicals slow prostate cancer growth in
rodents suggest that vitamin D protects against prostate cancer. But
circulating levels of vitamin D metabolites in human male populations
do not always reflect how many men develop prostate cancer. This lack
of correlation may partly be because different forms of the VDR gene
exist. One area of variation in the VDR gene is called the FokI
polymorphism. Because everyone carries two copies of the VDR gene,
individuals may have a FokI FF, FokI Ff, or FokI ff genotype. The f variant
(or allele) codes for a receptor that is less responsive to 1,25(OH)2D than
the receptor encoded by the FokI F allele. So levels of vitamin D sufficient
to prevent cancer in one person may be insufficient in someone with a
different FokI genotype. In this study, the researchers have investigated
how levels of 25(OH)D and 1,25(OH)2D in combination with different VDR
FokI alleles are influencing prostate cancer risk.

What Did the Researchers Do and Find? The researchers identified
1,066 men who developed prostate cancer between enrollment into the
US Physicians’ Health Study in 1982 and 2000, and 1,618 cancer-free men
of the same ages and smoking levels as ‘‘controls.’’ They measured

vitamin D metabolite levels in many of the blood samples taken from
these men in 1982 and determined their FokI genotype. Two-thirds of
the men had insufficient blood levels of vitamin D metabolites in the
winter/spring; almost one-third had a vitamin D deficiency. Men whose
blood levels of both metabolites were below average were twice as likely
to develop aggressive prostate cancer as those in whom both levels
were above average. Compared with men with high blood levels of
25(OH)D and the FokI FF or Ff genotype, men with low 25(OH)D levels
and the FokI ff genotype were 2.5 times as likely to develop aggressive
prostate cancer. However, men with the ff genotype were not at higher
risk if they had sufficient 25(OH)D levels. Among men with the ff
genotype, sufficient 25(OH)D levels might therefore protect against
prostate cancer, especially against the clinically aggressive form.

What Do These Findings Mean? These findings confirm that many US
men have suboptimal levels of circulating vitamin D. This vitamin is
essential for healthy bones, so irrespective of its effects on prostate
cancer, vitamin D supplements might improve overall health. In addition,
this large and lengthy study reveals an association between low levels of
the two vitamin D metabolites and aggressive prostate cancer that is
consistent with vitamin D helping to prevent the progression of prostate
cancer. It also indicates that the VDR FokI genotype modifies the prostate
cancer risk associated with different blood levels of vitamin D. Together,
these results suggest that improving vitamin D status through increased
exposure to sun and vitamin D supplements might reduce prostate
cancer risk, particularly in men with the FokI ff genotype. Because the
study participants were mainly of European descent, the researchers
caution that these results may not apply to other ethnic groups and note
that further detailed studies are needed to understand fully how vitamin
D affects prostate cancer risk across the population.

Additional Information. Please access these Web sites via the online
version of this summary at http://dx.doi.org/10.1371/journal.pmed.
0040103.

� MedlinePlus encyclopedia has pages on prostate cancer and on
vitamin D
� Information for patients and physicians is available from the US

National Cancer Institute on prostate cancer and on cancer prevention
� The Prostate Cancer Foundation’s information on prostate cancer

discusses the effects of nutrition on the disease
� Patient information on prostate cancer is available from Cancer

Research UK
� Cancerbackup also has patient information on prostate cancer
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