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It has unambiguously been shown that genetic, environmental, demographic, and technical factors may have
substantial effects on gene expression levels. In addition to the measured variable(s) of interest, there will tend to be
sources of signal due to factors that are unknown, unmeasured, or too complicated to capture through simple models.
We show that failing to incorporate these sources of heterogeneity into an analysis can have widespread and
detrimental effects on the study. Not only can this reduce power or induce unwanted dependence across genes, but it
can also introduce sources of spurious signal to many genes. This phenomenon is true even for well-designed,
randomized studies. We introduce ‘‘surrogate variable analysis’’ (SVA) to overcome the problems caused by
heterogeneity in expression studies. SVA can be applied in conjunction with standard analysis techniques to accurately
capture the relationship between expression and any modeled variables of interest. We apply SVA to disease class,
time course, and genetics of gene expression studies. We show that SVA increases the biological accuracy and
reproducibility of analyses in genome-wide expression studies.
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Introduction

Large-scale gene expression studies allow one to character-
ize transcriptional variation with respect to measured
variables of interest, such as differing environments, treat-
ments, time points, phenotypes, or clinical outcomes. How-
ever, a number of unmeasured or unmodeled factors may also
influence the expression of any particular gene. Besides
inducing widespread dependence in measurements across
genes [1,2], these influential factors create additional sources
of differential expression, which, unlike gene-specific fluctu-
ations, represent common sources of variation in gene
expression that can be observed among multiple genes.

We call ‘‘primary measured variables’’ (or primary varia-
bles) those variables that are explicitly modeled in the analysis
of an expression study. These variables may or may not be
associated with any given gene’s expression variation. We
classify all the remaining sources of expression variation into
three basic types. ‘‘Unmodeled factors’’ are sources of
variation explained by measured variables, but are not
explicitly included in the statistical model (e.g., because their
relationship to expression is intractable or the relevant
measured variables were excluded because of sample size
restrictions). ‘‘Unmeasured factors’’ are sources of expression
variation that are not measured in the course of the study, so
we also call these unmodeled factors. Finally, ‘‘gene-specific
noise’’ refers to random fluctuations in gene expression
independently realized from gene to gene.

As a simple example meant only for illustrative purposes,
consider a human expression study where disease state on a
particular tissue type is the primary variable. Suppose that in
addition to changes in expression being associated with
disease state, the age of the individuals also has a substantial
influence on expression. Thus, some genes exhibit differential
expression with respect to disease state, some with respect to
age, and some with respect to both. If age is not included in

the model when identifying differential expression with
respect to disease state, we show that this may (a) induce
extra variability in the expression levels due to the effect of
age, decreasing our power to detect associations with disease
state, (b) introduce spurious signal due to the fact that the
effect of age on expression may be confounded with disease
state, or (c) induce long-range dependence in the apparent
‘‘noise’’ of the expression data, complicating any assessment
of statistical significance for differential expression. In
practice, even if age were known, it may be one of dozens
of available measured factors, making it statistically intract-
able to determine which to include in the model. Further-
more, even measured factors such as age may act on distinct
sets of genes in different ways, or may interact with an
unobserved factor, making the effect of age on expression
difficult to model. ‘‘Expression heterogeneity’’ (EH) is used
here to describe patterns of variation due to any unmodeled
factor.
Major sources of expression variation are due to technical

[3,4], environmental [5,6], demographic [7,8], or genetic [9–
11] factors. It is well known that sources of variation due to
experimental design or large-scale systematic sources of
signal may be present in expression data [3,4,12,13], some-
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times even after normalization has been applied [14]. Genetic
factors can also have a large-scale impact on gene expression
levels. Specific genetic loci have been shown to influence the
expression of hundreds or thousands of genes in several
organisms [10,11,15]. Expression heterogeneity is particularly
pronounced in human expression data, especially in the study
of complex systems, such as cancer or responses to stress [16–
18]. Recently, Lamb et al. proposed the ‘‘Connectivity Map’’
for identifying functional connections between cancer sub-
types, genetic background, and drug action [19]. Lamb et al.
noted EH (e.g., due to cell type and batch effects) presented a
major hurdle for extracting relevant biological signal from
the Connectivity Map.

In each of these studies, expression variation with respect
to one or at most a handful of variables is explored. However,
it is likely that in each study multiple sources of EH will act on
distinct, but possibly overlapping, sets of genes. Normal-
ization techniques are commonly used to detect and adjust
for systematic expression variation due to well-characterized
laboratory and technical sources [12,13,20]. However, to date
there has been no approach for identifying and accounting
for all sources of systematic expression variation, including
variation due to unmeasured or unmodeled factors of both
biological and technical sources. We show here that biological
sources of variation not modeled in the analysis can be just as
problematic as technical sources of variation.
Here, we introduce ‘‘surrogate variable analysis’’ (SVA) to

identify, estimate, and utilize the components of EH. Figure 1
shows the effects of failing to account for unmodeled factors
in a differential expression analysis, and the potential
benefits of the SVA approach. EH causes drastic increases
in the variability of the ranking of genes for differential
expression (Figure 1A), distorts the null distribution poten-
tially causing highly conservative or anticonservative signifi-
cance estimates (Figure 1B), and reduces the power to
distinguish true associations between a measured variable of
interest and gene expression (Figure 1C). However, employ-
ing SVA in these studies produces operating characteristics
nearly equivalent to what one would obtain with no EH at all.
We apply SVA to three distinct expression studies [7,21,22],

where each study contains clear patterns of EH (Figure S1).
These studies represent major classes of gene expression
studies performed in practice: genetic dissection of expres-
sion variation, differential expression analysis between
disease classes, and differential expression over time. We
show that SVA is able to accurately identify and estimate the
impact of unmodeled factors in each type of study, using only
the expression data itself. We further show that SVA

Figure 1. Impact of Expression Heterogeneity

One thousand gene expression datasets containing EH were simulated, tested, and ranked for differential expression as detailed in Simulated Examples.
(A) A boxplot of the standard deviation of the ranks of each gene for differential expression over repeated simulated studies. Results are shown for
analyses that ignore expression heterogeneity (Unadjusted), take expression heterogeneity into account by SVA (Adjusted), and for simulated data
unaffected by expression heterogeneity (Ideal).
(B) For each simulated dataset, a Kolmogorov-Smirnov test was employed to assess whether the p-values of null genes followed the correct null
Uniform distribution (Text S1). A quantile–quantile plot of the 1,000 Kolmogorov-Smirnov p-values are shown for the SVA-adjusted analysis (solid line)
and the unadjusted analysis (dashed line). It can be seen that the SVA-adjusted analysis provides correctly distributed null p-values, whereas the
unadjusted analysis does not due to EH.
(C) A plot of expected true positives versus FDR for the SVA-adjusted (solid) and -unadjusted (dashed) analyses. The SVA-adjusted analysis shows
increased power to detect true differential expression.
doi:10.1371/journal.pgen.0030161.g001
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Author Summary

In scientific and medical studies, great care must be taken when
collecting data to understand the relationship between two
variables, such as a drug and its effect on a disease. In any given
study there will be many other variables at play, such as the effects
of age and sex on the disease. We show that in studies where the
expression levels of thousands of genes are measured at once, these
issues become surprisingly critical. Due to the complexity of our
genomes, environment, and demographic features, there are many
sources of variation when analyzing gene expression levels. In any
given study, it is impossible to measure every single variable that
may be influencing how our genes are expressed. Despite this, we
show that by considering all expression levels simultaneously, one
can actually recover the effects of these important missed variables
and essentially produce an analysis as if all relevant variables were
included. As opposed to traditional studies, the massive amount of
data available in this setting is what makes the method, called
surrogate variable analysis, possible. We hypothesize that surrogate
variable analysis will be useful in many large-scale gene expression
studies.



improves accuracy and consistency in detecting differential
expression. SVA orders the significant gene lists to more
accurately and reproducibly reflect the ordering of the genes
with respect to their true differential expression signal. SVA
is particularly useful in producing reproducible results in
microarray studies, because adjusting for surrogate variables
reduces differential expression due to sources other than the
primary variables. These results indicate that EH is prevalent
across a range of studies and that SVA can be used to capture
and account for these patterns to improve the character-
ization of biological signal in expression analyses.

Results

Surrogate Variables
We have developed an approach called surrogate variable

analysis that appropriately borrows information across
genes to estimate the large-scale effects of all unmodeled
factors directly from the expression data. Figure 2A shows a

simulated example of EH. The primary variable distin-
guishes the first ten arrays from the last ten (Figure 2B);
however, the unmodeled factor may have a variety of effects
on expression (Figure 2C). The SVA approach flexibly
captures signatures of EH, including highly irregular
patterns not following any simple model, by estimating the
signatures of EH in the expression data themselves rather
than attempting to estimate specific unmodeled factors such
as age or gender. After the surrogate variables are
constructed, they are then incorporated into any subsequent
analysis as covariates in the usual way. The SVA algorithm,
described in mathematical detail in Materials and Methods,
can conceptually be broken down into four basic steps:
(Step 1) Remove the signal due to the primary variable(s) of
interest to obtain a residual expression matrix. Apply a
decomposition to the residual expression matrix to identify
signatures of EH in terms of an orthogonal basis of singular
vectors that completely reproduces these signatures. Use a

Figure 2. Example of Expression Heterogeneity

(A) A heatmap of a simulated microarray study consisting of 1,000 genes measured on 20 arrays.
(B) Genes 1–300 in this simulated study are differentially expressed between two hypothetical treatment groups; here the two groups are shown as an
indicator variable for each array.
(C) Genes 201–500 in each simulated study are affected by an independent factor that causes EH. This factor is distinct from, but possibly correlated
with, the group variable. Here, the factor is shown as a quantitative variable, but it could also be an indicator variable or some linear or nonlinear
function of the covariates.
doi:10.1371/journal.pgen.0030161.g002
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statistical test to determine the singular vectors that
represent significantly more variation than would be
expected by chance. (Step 2) Identify the subset of genes
driving each orthogonal signature of EH through a
significance analysis of associations between the genes and
the EH signatures on the residual expression matrix. (Step 3)
For each subset of genes, build a surrogate variable based on
the full EH signature of that subset in the original
expression data. (Step 4) Include all significant surrogate
variables as covariates in subsequent regression analyses,
allowing for gene-specific coefficients for each surrogate
variable.

The four-step procedure is necessary both to ensure that
the surrogate variables indeed estimate EH and not the signal
from the primary variable (Step 1), to ensure an accurate
estimate of each surrogate variable by identifying the specific
subset of genes driving each EH signature (Step 2), to allow
for correlation between the primary variable and the
surrogate variables by building the surrogate variables on
the original expression data (Step 3), and to take into account
the fact that a surrogate variable may have a different effect
on each gene (Step 4). The third and fourth steps are
particularly important for maintaining unbiased significance
with SVA, as demonstrated below.

Definition of a Correct Procedure
The overall goal of SVA is to provide a more accurate and

reproducible parsing of signal and noise in the analysis of an
expression study when EH is present. One way in which signal
is commonly quantified is through a significance analysis [23].
The most basic definition of a significance analysis being
performed ‘‘correctly’’ is if the null distribution is calculated
properly [24]. A straightforward means for determining
whether this is true is to assess whether the p-values
corresponding to true null hypotheses are Uniformly
distributed between zero and one. Indeed, p-values are
specifically defined so that those corresponding to true null
hypotheses have a Uniform(0,1) distribution if and only if the
null distribution has been correctly calculated [25]. Through-
out this paper, we examine the distribution of p-values from
null genes to determine whether various procedures are able
to recover the correct null distribution in the presence of EH.
To assess statistically any deviations from the Uniform
distribution for the null p-values, we apply a nested
Kolmogorov-Smirnov test that is robust to chance fluctua-
tions that may be present in a single simulated dataset (see
Text S1).

Simulated Examples
We performed a simulation study to investigate the

properties of SVA with respect to large-scale significance
testing. Specifically, we show that the SVA algorithm (a)
accurately estimates signatures of expression heterogeneity,
(b) corrects the null distribution of p-values from multiple
hypothesis tests, (c) improves estimation of the false discovery
rate (FDR) [23,26], and (d) is robust to confounding between
the primary variable and surrogate variables. The primary
variable for our simulation was a binary variable indicating
two disease classes. We simulated 1,000 expression studies,
drawn from the same hypothetical population. For each
study, we simulated expression for 1,000 genes on 20 arrays
divided between the two disease states. The first 300 genes

were simulated to be differentially expressed between disease
states and genes 200–500 were affected by an independent
unobserved factor to simulate a randomized study (Materials
and Methods).
Surrogate variables accurately estimated. We first assessed

the accuracy of the surrogate variables estimated from SVA.
In 99.5% of the simulated studies, a permutation procedure
[27] correctly identified one significant surrogate variable.
Since there is only one unmodeled factor that was simulated
in this study, we assessed the accuracy of the surrogate
variable estimation by correlation. (If there is more than one
surrogate variable or more than one unmodeled factor, then
one must assess the accuracy by using some sort of multiple
regression and calculating an R2 value.) The average
correlation between the estimated surrogate variable and
the true unmodeled factor over all 1,000 experiments was
0.95 with a standard deviation of 0.05. Each surrogate variable
is a weighted average of the expression measurements over a
subset of genes. We chose a liberal adaptive cutoff for
determining the number of genes affected by each orthog-
onal EH signal to avoid overfitting. The SVA algorithm
correctly identifies the genes affected by the unmodeled
factor. On average, 30.5% of the truly affected genes were
identified as affected, whereas only 9.9% of the truly
unaffected genes were identified as affected.
Correct p-value distribution. It is well known that in a

significance analysis, p-values corresponding to null genes
should be Uniformly distributed (i.e., ‘‘flat’’) [28]. Statistics has
classically dealt with effects from unmodeled factors by
performing randomized studies. In our simulations, the
unmodeled factor was independently realized, which is
equivalent to randomizing the unmodeled factor with respect
to the primary variable. Because of this, the p-values
corresponding to any single null gene over many simulated
datasets follow the Uniform distribution. However, for any
given experiment, a single randomization is applied to all
genes. Therefore, the thousands of p-values resulting from a
single microarray study are not the same as thousands of p-
values resulting from independent randomizations of an
unmodeled factor. The dependence across genes induced by
EH can result in major fluctuations and bias in the p-values
for the null genes for any single expression study, even in a
well designed, randomized study. This bias generally takes the
form of a global deviation of the null p-values from the
Uniform distribution. Specifically, if the unmodeled factor is
correlated with the primary variable, the null p-values will be
too small, biased towards zero. If the unmodeled factor is
uncorrelated with the primary variable, the null p-values will
be too big, biased towards one.
These noteworthy fluctuations and biases in the null p-

values can be seen in nine representative datasets from our
simulation study in Figure S2 and across all 1,000 simulated
datasets in Figure 1B. The bias results in incorrect assessment
of significance, regardless of the particular significance
measure chosen [24]. By applying the SVA algorithm to
adjust the significance analysis, the p-values from the null
genes for any single experiment are now corrected toward
the Uniform distribution. This can be seen when SVA is
applied to these same nine datasets in Figure S3 and across all
1,000 simulated datasets in Figure 1B. Figure 1B shows that
the null p-values consistently follow the Uniform distribution
when SVA is applied, but they consistently do not follow the
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Uniform in a typical unadjusted analysis. To confirm that
SVA is robust to the distribution of the gene specific error, we
ran a second independent simulation study where the
residuals were drawn from a published microarray study
(Materials and Methods). Figure S4 shows that behavior of the
null p-values is corrected by SVA, which is qualitatively the
same as in the case of purely simulated data.

It should also be noted that p-values corresponding to
differentially expressed genes will be similarly affected; the
loss in power can be seen in Figure 1C. Although, note that
power versus FDR is calculated in Figure 1C when we know
the correct answers, which clearly will not be reflected in
actual studies where an unadjusted analysis produces an
incorrect set of null p-values. Therefore, the application of
SVA can result in empirical increases or decreases in power,
depending on whether the null p-values are spuriously pushed
towards zero or one, even though SVA tends to only provide
increases in the true power.

Gene ranking more accurate and stable. Perhaps most
importantly, SVA also results in a more powerful and
reproducible ranking of genes for differential expression.
This can be seen in Figures 1A and S5; SVA-adjusted analyses
provide gene rankings comparable to the scenario where
there is no heterogeneity, whereas an unadjusted analysis
allows for incorrect and highly variable gene rankings. This is
arguably the most important feature of SVA, since an
accurate and reproducible gene ranking is key for making
biological inference when only a subset of genes will be
selected for future study. In other words, these results suggest
that SVA would yield results reproducible on the level that we
would expect given that the primary variable is the only
source of signal.

Improved FDR estimation. There has been much recent
interest in the effect of expression dependence across genes
on estimates of multiple testing significance measures. Large-
scale dependence has been shown to be particularly problem-
atic for estimating FDR, as dependence across genes increases
the variance of most standard FDR estimators [1,2,29–35]. EH
represents large-scale dependence across genes that may
significantly affect estimates of the FDR and related
measures. To evaluate the potential impact of SVA in this
situation, we performed a simulation study as described
above. However, in this case, to create large-scale depend-
ence, we let genes 201–1,000 be affected by the unmodeled
factor. SVA reduces the variability in both the estimate of the
proportion of null hypotheses and the q-values for each study
(Figure S6). Furthermore, the behavior of the SVA-adjusted
FDR estimates is almost identical to the behavior under the
scenario with no EH.

Robustness to confounding in observational studies. To
assess the accuracy of the SVA algorithm in the case where
the primary variable and unmodeled factors are heavily
correlated, we performed a second simulation study. The
set-up for the second simulation study was identical to that
for the original study above, except in this case the
unmodeled factor was simulated such that the average
correlation with the primary variable was 0.50 with a
standard deviation of 0.16. Under this model, the unob-
served factor is both correlated with the primary variable
and affects an overlapping set of genes. This is representa-
tive of the potential confounding present in observational
microarray studies (see Disease Class below) and that which

happens by chance in a non-negligible subset of randomized
studies. Even in this set-up, the permutation hypothesis test
correctly identified a single surrogate variable in 94.5% of
the simulated datasets. Further, the average correlation
between the estimated surrogate variable and the true
unmodeled factor over 1,000 datasets was 0.94 with a
standard deviation of 0.22. Thus, SVA accurately estimates
the unobserved factor even when there is strong depend-
ence between the primary and unobserved factors, with a
subset of genes affected by both. SVA also provided a
correct Uniform distribution of null p-values as in the above
randomized study scenario.

Proof of Concept: Genetics of Gene Expression in Yeast
Several recent studies have carried out the genetic

dissection of expression variation at the genome-wide level
[10,11,15]. Brem et al. [10, 21] measured expression genome
wide in 112 segregants of a cross between two isogenic strains
of yeast. They also obtained genotypes for each segregant at
markers covering 99% of the genome (Materials and
Methods). It was shown that many gene expression traits are
cis-linking, i.e., the quantitative trait locus (QTL) linkage peak
coincided with the physical location of the open reading
frame for the expression trait [36]. At the same time, it was
also shown that a number of gene expression traits are trans-
linking, with linkage peaks at loci distant from the physical
location of their open reading frames. In particular, several
‘‘pivotal’’ loci each appear to influence the expression of
hundreds or even thousands of gene expression traits. Similar
highly influential loci have been observed in other organisms
[11,15]. These pivotal loci act as a major source of EH,
regardless of whether genotypes have been measured in an
expression study.
As proof of concept, the Brem et al. [10,21] dataset was

used to show that well-defined EH exists in actual studies and
that SVA can properly capture and incorporate this EH
structure into the statistical analysis of measured variables of
interest. First, we analyzed the full dataset to identify the
expression traits under the influence of these pivotal trans-
acting loci, as well as the patterns of EH induced by these
loci. Then we applied SVA to only the expression data,
ignoring the genotype data to identify relevant surrogate
variables capturing EH. Linkage analysis was performed
again including the surrogate variables as covariates, show-
ing that the effects from the pivotal loci are now negligible.
In other words, SVA was able to capture and remove the
effects of these few pivotal loci without the need for
genotypes.
A number of expression traits have significant trans-linking

eQTL mapping to pivotal loci on Chromosomes II, III, VIII,
XII, XIV, and XV (Figure 3A). In the SVA-adjusted analysis,
the majority of the trans-linkages to the pivotal loci have been
eliminated (Figure 3B). The pervasive trans-linkage signal
mapping to the pivotal loci can be viewed as global
expression heterogeneity. The reduction in trans-linkage to
these loci in the SVA-adjusted significance analysis indicates
that SVA effectively captures genetic EH.
Pivotal trans-linkage signals indicate large-scale effects of a

few loci. However, subtle and potentially more interesting
cis-linkage may be lost in the presence of substantial genetic
heterogeneity. To assess the impact of SVA on power to
detect cis-linkage, we calculated linkage p-values only for
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markers located within three centimorgans of the open
reading frame of each trait. On chromosomes without a
pivotal locus (Chromosomes I, IV, V, VI, VII, IX, X, XI, and
XIII) the SVA-adjusted analysis finds substantially more cis-
linkage signal. At an FDR cutoff of 0.05, the adjusted analysis
finds 1,894 significant cis-linkages, compared with 1,604 for
the unadjusted analysis. This increase is consistent across a

range of FDR cutoffs (Table 1) and illustrates the potential
increase in power obtained from applying SVA.

SVA Applied to Human Expression Studies
We applied the SVA approach to two human studies [7,22],

representing the two common human study designs: disease
state and timecourse.
Disease class. Hedenfalk et al. [22] measured expression in

seven BRCA1 and eight BRCA2 mutation-positive tumor
samples (Materials and Methods). The goal of the study was to
identify genes that showed differential expression across
breast cancer tumor subtypes defined by these germline
mutations.
Hierarchical clustering [37] of the data reveals notable

substructure within the BRCA2 samples [38]. We applied SVA
and identified a single surrogate variable that appears to
capture this trend (Figures 4A and S7A). We included this
surrogate variable in a significance analysis comparing
BRCA1 and BRCA2 tumors (Materials and Methods). The
adjusted analysis finds fewer significant genes at standard
FDR cutoffs (Table 1). This can be understood in the context
of substructure within the BRCA2 group. Many of the genes
declared differentially expressed at the most extreme levels of
significance are highly associated with the top surrogate
variable. Thus, differential expression for a number of genes
is driven primarily by expression heterogeneity. Adjusting for
the top surrogate variable eliminates spurious differential
expression due to EH. As an example, eukaryotic translation
initiation factor 2 (EIF2S2) is declared differentially ex-
pressed with a q-value of 0.09 in the unadjusted analysis.
However, the first four BRCA2 samples show nearly identical
expression values to the BRCA1 samples for this gene (Figure
S7B). Thus, it is unlikely that differential expression is being
driven by the difference in BRCA genotypes, but rather by
some other confounding factor due to the observational
nature and small sample size of the study.
As shown above, SVA also increases the accuracy and

stability of the ordering of the significant gene lists (see

Table 1. Significance Results

Study Analysis

Type

q-Value Threshold

0.01 0.025 0.05 0.10

Genetics of gene expression Unadjusted 1,063 1,343 1,604 1,951

SVA adjusted 1,428 1,676 1,894 2,292

Disease Class Unadjusted 1 19 96 274

SVA adjusted 1 1 52 218

Time course Unadjusted 161 273 422 823

Tissue adjusted 270 482 795 1,548

SVA Adjusted 196 367 563 991

The results of the significance analysis in the three real gene expression studies. The
results of the genetics of gene expression study include the number of significant cis-
linkages before and after adjusting for surrogate variables. The disease class results report
the number of genes differentially expressed between BRCA1 and BRCA2 before and after
adjusting for surrogate variables. For the time-course study, the number of genes
differentially expressed with respect to age are shown for an unadjusted analysis, an
analysis adjusted for tissue type, and an SVA-adjusted analysis. An SVA-adjusted analysis
may result in an increase or decrease in the number of significant results depending on
the direction and degree to which the unmodeled factors (now captured by surrogate
variables) were confounded with the primary variables.
doi:10.1371/journal.pgen.0030161.t001

Figure 3. SVA Captures EH Due to Genotype

(A) A plot of significant linkage peaks (p-value , 1e�7) for expression
QTL in the Brem et al. [10,21] study by marker location (x-axis) and
expression trait location (y-axis).
(B) Significant linkage peaks (p-value , 1e�7) after adjusting for
surrogate variables. Large trans-linkage peaks on Chromosomes II, III,
VII, XII, XIV, and XV have been eliminated without reducing cis-linkage
peaks.
doi:10.1371/journal.pgen.0030161.g003
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Simulated Examples). Since it is standard practice to examine
only the most significant genes for further study, an SVA-
adjusted analysis may result in completely distinct biological
conclusions. For example, Figure S8 shows a substantial
reordering of genes for significance when applying SVA,
including a number of highly significant genes in an adjusted

analysis that moved substantially down in ranking when SVA
was applied. These genes may represent spurious signal due
to the confounding shown earlier that would reduce the
quality of the gene list.
Time-course sampling. Rodwell et al. [7] measured genome-

wide expression in kidney tissue samples from 133 patients
(Materials and Methods). The goal of the study was to identify
genes whose expression changed with age. We applied a
recently developed procedure for time-course significance
analysis to identify differential expression with respect to age
[8]. In these data, tissue type had a strong impact on the
expression of thousands of genes. We first performed a time-
course differential expression analysis with tissue type
included as a covariate. We also performed a second
differential expression analysis ignoring tissue type.
We then applied SVA to the expression data ignoring the

tissue information. The top surrogate variable identified by
SVA had a correlation of 0.86 with tissue type (Figure 4B).
The SVA algorithm identified 84% of the genes as likely to be
associated with the top surrogate variable, indicating perva-
sive signal due to tissue type, as can be directly verified. To
determine if this surrogate variable captured the overall
effect of tissue type, we performed a third differential
expression analysis ignoring tissue type and including the
top surrogate variable as a covariate.
At standard q-value cutoffs, the results of the analysis

adjusted for the top surrogate variable appeared to be very
similar to the results when the true tissue type was included
(Table 1). At a standard q-value cutoff of 0.05, 100% of the
422 genes declared significant by the unadjusted analysis were
declared significant by the tissue-adjusted analysis. At the
same cutoff, 96% of the 538 genes declared significant in the
SVA-adjusted analysis were also declared significant in the
tissue-adjusted analysis. That is, 116 genes were significant in
the SVA-adjusted analysis that were also significant in the
tissue-adjusted analysis, but were not significant in the
unadjusted analysis. These genes represent an increase in
power to detect differential expression after adjusting for a
surrogate variable in place of an unmodeled confounding
factor.

Comparison with Existing Methods
Regression on eigenvectors. There are several well-estab-

lished statistical approaches for partitioning of sources of
variation among multiple variables into components [39]. The
classical singular value decomposition (or principal compo-
nents) approach has been successfully applied in several areas
of genomics. For example, Alter et al. applied the singular
value decomposition to identify significant trends in gene
expression studies [40]. They showed that the right singular
vectors, or ‘‘eigengenes,’’ represent trends that account for a
large proportion of the variation in the expression matrix.
Recently, Price et al. [41] also performed this singular value
decomposition of whole-genome SNP genotypes (coded as 0,
1, or 2) in order to account for systematic sources of variation
due to population substructure. Both of these methods
extract and utilize patterns of variation from the entire
matrix of genomic data without supervision from primary
variables.
When performing a significance analysis of an expression

study with respect to primary variables, one cannot employ
this classical approach. As opposed to association studies,

Figure 4. Surrogate Variables from Human Studies

(A) A plot of the top surrogate variable estimated from the breast cancer
data [22]. The BRCA1 group is relatively homogeneous (triangles), but the
BRCA2 group shows substantial heterogeneity (pluses).
(B) A plot of tissue type versus array for the Rodwell et al. [7] study
(dotted line) and the top surrogate variable estimated from the
expression data when tissue was ignored (dashed line). There is strong
correlation between the top surrogate variable and the tissue type
variable.
doi:10.1371/journal.pgen.0030161.g004
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where population structure has genome-wide effects at a
signal relatively much stronger than the primary variable, the
signal structure in expression studies tends to be much more
complex. There can be multiple levels of signal from multiple
sources that each affect certain subsets of genes, making it
important to supervise the decomposition with respect to
known primary variables and these subsets of genes.

To demonstrate these issues, we considered two straight-
forward significance analysis applications of the well-estab-
lished singular value decomposition approach previously
utilized in genomics [40,41]. The first application identifies
significant eigengenes by the same permutation-based algo-
rithm as in our SVA approach. The eigengene with the
highest absolute correlation with the primary variable is
removed and the remaining significant eigengenes are
included as covariates in the significance analysis. The second
algorithm identifies significant eigengenes in the residuals of
the regression of gene expression on the primary variable,
again using a permutation-based algorithm. All significant
eigengenes identified in the residuals are included in the
significance analysis. Both algorithms do not produce con-
sistently accurate results (Figures S9 and S10), and sometimes
their adjustments produce more bias than making no adjust-
ment at all. The eigengenes calculated from the entire
expression matrix capture the signal due to both the
unmodeled factor and the primary variable, which results in
biased estimation of the unmodeled factor. The eigengenes
calculated from the residuals do not take into account
possible overlapping signal between the primary variable and
unmodeled factors, often resulting in over-fitting.

SVA is a new methodological development aimed at

overcoming the issues not addressed by existing methods.
Rather than decomposing the entire expression matrix (or
genotype matrix), SVA performs what could be called a
‘‘supervised factor analysis’’ of the expression data (Materials
and Methods). Specifically, SVA decomposes the expression
variation with respect to the primary variables already
included in the model. Our multi-step approach for estimat-
ing surrogate variables uses the eigengenes from carefully
defined subsets of genes in the original expression matrix that
correspond to patterns observed in a residual expression
matrix where the main effects of the primary variables have
been removed. This allows us to decompose the variation in
such a way that distinct sets of genes (but possibly over-
lapping) drive each surrogate variable, where the surrogate
variables may be correlated with the primary variables. It also
does not require any assumptions about the relative strength
of signal due to each source of variation.
Multiple testing dependence. It is clear that EH induces

widespread dependence in expression variation across genes.
EH is therefore related to the issue of multiple testing
dependence, which has been recognized as an important
problem [1,2,30]. A number of methods have been proposed
for adjusting for dependence in multiple tests that make
adjustments directly once the tests are summarized as p-
values or test-statistics, rather than the original dataset [31–
35]. It does not appear that these multiple testing procedures
can solve the problem of EH at the level of generality of SVA.
Figure 5 shows a histogram composed of all null p-values
affected by EH from the simulation study. Without the
presence of EH, these null p-values would be Uniformly
distributed between zero and one. However, it is also possible
to produce a set of p-values from an experiment unaffected
by EH, where a subset of tests are true alternatives and have p-
values pushed towards zero so that they are indistinguishable
from Figure 5. In other words, by only observing the set of p-
values in Figure 5, it is not possible to know whether they are
all null and affected by EH, or whether they are unaffected by
EH and a subset are true alternatives.
If the original data are ignored and an adjustment for EH is

applied to the p-values, then the only unbiased adjustment is
to make all p-values larger so that the histogram in Figure 5 is
transformed to a flat, Uniformly distributed histogram.
Therefore, if one adjusts for EH based only on p-values, then
all p-value histograms that look like Figure 5 should be made
flat. By producing datasets with stronger EH, it is possible to
produce histograms where the p-values are pushed even more
strongly towards zero because of the stronger dependence.
This argument shows that any method that adjusts for EH in
general at the level of p-values must make all p-value
histograms Uniformly distributed. The same argument holds
for test-statistics, where they would have to be transformed to
be distributed as their ‘‘theoretical null’’ distribution (Figure
S11). Therefore, it does not appear that one can generally
adjust for EH based only on p-values or test-statistics,
especially when considering examples such as that in Figure
5. This point can be further supported with a more
theoretical argument (Text S1). Additionally, methods that
adjust for what is typically defined as multiple testing
dependence do not usually take into account the fact that
the sources of dependence may have signal that overlaps with
the primary variables of interest, whereas SVA does. It
appears that the framework presented here may be a

Figure 5. Null p-Values under Heterogeneity

A histogram of the null p-values from a single simulated experiment
affected by heterogeneity. The distribution of these p-values appears
identical to a complete set of p-values from an experiment that is not
subject to heterogeneity. Therefore, it is not possible to identify and
account for heterogeneity by analyzing one-dimensional p-values or test-
statistics (see also Text S1).
doi:10.1371/journal.pgen.0030161.g005
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generalization of the multiple testing problem, but this issue
requires further investigation.

Discussion

Expression heterogeneity due to technical, genetic, envi-
ronmental, or demographic variables is common in gene
expression studies. Here we have introduced a new method,
SVA, for identifying, estimating, and incorporating sources of
EH in an expression analysis. SVA uses the expression data
itself to identify groups of genes affected by each unobserved
factor and estimates the factor based on the expression of
those genes. Simulations show that SVA accurately detects
expression heterogeneity and improves significance analyses.
We performed SVA on experiments involving recombinant
inbred lines, individuals of varying disease state, and
expression measured over time to illustrate the broad range
of studies on which SVA can be applied. One advantage of the
SVA approach is the ability to disentangle correlated and
overlapping differential expression signals. This approach
may be particularly useful in clinical studies, where a large
number of clinical variables may have a complicated joint
impact on expression. We have implemented SVA in an open
source package available for downloading at http://www.
genomine.org/sva/.

Materials and Methods

Expression data. Three publicly available datasets were employed
to represent a broad range of gene expression studies performed in
practice. The first dataset consists of gene expression measurements
for 6,216 genes in 112 segregants of a cross between two isogenic
strains of yeast, as well as genotypes across 3,312 markers [10,21]. The
second dataset consists of gene expression for 3,226 genes in seven
BRCA1 and eight BRCA2 mutation–positive tumor samples [22];
several genes with apparent outliers were removed as described [23]
for a total of 3,170 genes. The third dataset consists of gene
expression measurements in kidney samples from normal kidney
tissue obtained at nephrectomy from 133 patients [7]; the 34,061
genes analyzed in [8] were also analyzed here. Seventy-four of the
tissue samples were obtained from the cortex and 59 from the
medulla. Details of the protocol for each study appear in the
corresponding references. All expression data were analyzed on the
log scale.

Linkage analysis of yeast cross. The SVA algorithm identified 14
significant surrogate variables from the expression data. We
performed both an unadjusted and an SVA-adjusted linkage analysis
for each expression trait. In the unadjusted analysis, linkage p-values
were calculated from an F-test comparing an additive genetic model
to the null model of no genetic association [42]. SVA-adjusted p-
values were calculated from an F-test comparing the full model of
genetic association and the null model of no association, both models
including all significant surrogate variables as additive terms.

Simulation details. For each study, we simulated expression for
1,000 genes on 20 arrays divided between the two disease states. For
simplicity, the expression measurements for each gene were drawn
from a normal distribution with mean zero and variance one. We
simulated expression heterogeneity with a dichotomous unmodeled
factor independent of the disease state. The mean differences
between disease states and states of the unmodeled factor were
drawn from two independent normal distributions. For the real data
example, we calculated the residuals from the regression of BRCA
tumor type on expression for the Hedenfalk data [22]. Then, for each
simulated study, we independently permuted each row of the
expression data to create a matrix of residuals. To this matrix, we
added signal, as in the case of the purely simulated data. The
simulation studies were based on data generated using the R
programming language [43]. All differential expression analyses were
performed by a t-test based on standard linear regression. The genes
were ranked for relative significance by the absolute values of their t-
statistics.

Analysis of the human studies. Differential expression was

calculated using a t-test based on standard linear regression for the
disease class data. The method of Storey et al. [8] was applied for the
time-course data. q-Values were estimated using previously described
methodology [23].

Statistical model for SVA. Let Xmxn¼ (x1,..,xm)
T be the normalized m

3 n expression matrix with n arrays for m genes, where xi¼ (xi1,..,xin)
T

is the vector of normalized expression for gene i. Let y¼ (y1,..,yn)
T be

a vector of length n representing the primary variable of interest.
Without loss of generality model xij¼ liþ fi( yj)þ eij, where li is the

baseline level of expression, fi( yj)¼ E(xij j yj) � li gives the relationship
between measured variable of interest and gene i, and eij is random
noise with mean zero. As a simple example, for a dichotomous
outcomes yj 2 f�1,1g we would employ the linear model xij¼ liþ bi yj
þeij and estimate li and bi by least squares. We could then perform a
standard test of whether bi¼ 0 or not for each gene. This hypothesis
test is exactly equivalent to performing a test of differential
expression between the two classes.

Suppose in a microarray study there are L biologically meaningful
unmodeled factors, such as age, environmental exposure, genotype,
etc. Let g‘ ¼ (g‘1,...,g‘n) be an arbitrarily complicated function of
the ‘th factor across all n arrays, for ‘¼1,2,...,L. Therefore, we can
now model the expression for gene i on array j as xij ¼ li þ
fi ( yj)þ

PL
‘¼1 c‘ig‘j þ e�ij , where c‘i is a gene-specific coefficient for the

‘th unmodeled factor. If unmodeled factor ‘ does not influence the
expression of gene i, then c‘i¼ 0. The fact that we employ an additive
model is actually quite general: it has been shown that even
complicated nonlinear functions of factors can be represented in
an additive fashion for a reasonable choice of a nonlinear basis [44];
we simply define the g‘ to be as nonlinear as necessary and make L as
large as necessary to best fit the additive effect. Since there are n
arrays, each gene’s expression can be modeled by at most n linearly
independent factors, and hence any dependence structure between
genes can be represented using L � n vectors in this additive
fashion.

Due to this formulation, the inter-gene dependent eij have now
been replaced with

PL
‘¼1 c‘ig‘j þ e�ij , where e�ij is the true gene-

specific noise, now sufficiently independent across genes. In other
words, we have broken the error eij into two terms, one that
represents dependent variation across genes due to unmodeled
factors,

PL
‘¼1 c‘ig‘j , and one that represents gene-specific independ-

ent fluctuations in expression e�ij .
It is not possible in general to directly estimate the unmodeled g‘,

and SVA does not attempt to do so. The key observation is to note
that for L vectors in n space, it is possible to identify an orthogonal
set of vectors hk , k¼ 1,...,K (K�L) that spans the same linear space as
the g‘ In other words, for any set of vectors g‘ and coefficients c‘i, it is
possible to identify mutually orthogonal vectors hk and coefficients
kki such that

PL
‘¼1 c‘ig‘j ¼

PK
k¼1 kkihkj and

xij ¼ li þ fiðyjÞ þ
XL

‘¼1
c‘ig‘j þ e�ij

¼ li þ fiðyjÞ þ
XK

k¼1
kkihkj þ e�ij

Therefore, we do not need to estimate the specific variables g‘. We
only need to estimate the linear combination

PL
‘¼1 c‘ig‘j , so we can

choose a set of vectors that spans the same space but is statistically
tractable. Here we choose the set of K orthogonal vectors (denoted by
the hk) to be those that are the right non-zero singular vectors
provided by the singular value decomposition of the m 3 n matrix
with (i, j) entry

PL
‘¼1 c‘ig‘j . This justifies the use of the singular value

decomposition to identify orthogonal signatures of expression
heterogeneity for surrogate variable estimates. We call these
h1,h2,...,hK the ‘‘surrogate variables.’’

An intuitive question that arises from an inspection of this
formulation is about the model assumptions of the g‘j. Whereas the
term fi ( yj) is a model of the measured variable, yj, it is not generally
possible to analogously formulate g‘j as a function of a well-defined,
measured variable. Since we estimate the outcomes

PL
‘¼1 c‘ig‘j

directly from the expression data (as
PK

k¼1 kkihkj), it is not necessary
to determine a model of the g‘j in terms of a biologically meaningful
variable. Thus, we can bypass the need to know what the most
relevant model of a measured variable is for g‘j for the purposes of
estimating the EH.

SVA algorithm. The goal of the SVA algorithm is therefore to
identify and estimate the surrogate variables, hk ,¼ (hk1,...,hkn)

T, based
on certain consistent patterns of expression variation. Methods for
empirically identifying [37] and estimating [40] expression trends or
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clusters have previously been developed. However, care must be
taken when estimating expression trends for use in subsequent
analyses of measured variables of interest. Specifically, surrogate
variables must represent signal due to sources other than the primary
variable and allow for potential overlap with the primary variable.
The SVA algorithm is designed to estimate surrogate variables that
meet both requirements. We assume that n , m and, for simplicity,
that there is only a single primary variable; the extension to multiple
primary variables simply requires one to include all of them in the
model fit occurring in each Step 1 below.

The algorithm is decomposed into two parts: detection of
unmodeled factors and construction of surrogate variables. The basic
form of the first algorithm has been proposed previously [27]. The
second algorithm has been proposed and justified in this manuscript

Algorithm to detect unmodeled factors.
1. Form estimates l̂i and f̂ i by fitting the model xij¼ liþ fi (yj)þ eij,

and calculate the residuals rij¼ xij�l̂i � f̂ i (yj) to remove the effect of
the primary variable on expression. Form the m3n residual matrix R,
where the (i, j) element of R is rij.

2. Calculate the singular value decomposition of the residual
expression matrix R¼UDVT.

3. Let d‘ be the ‘th eigenvalue, which is the ‘th diagonal element of
D, for ‘¼1,...,n. If df is the degrees of freedom of the model fit l̂iþ f̂i (yj),
then by construction the last df eigenvalues are exactly zero and we
remove them from consideration. For eigengene k¼1,..., n-df set the
observed statistic to be

Tk ¼
d2kPn�df
‘¼1 d2‘

;

which is the variance explained by the kth eigengene.
4. Form a matrix R* by permuting each row of R independently to

remove any structure in the matrix. Denote the (i, j) entry of R* by r�ij .
5. Fit the model r�ij ¼ l�i þ f �i ðyjÞ þ e�ij and calculate the residuals

r0ij ¼ r�ij � l̂�i � f̂
�
i ðyjÞ to form the m 3 n model-subtracted null matrix

R0.
6. Calculate the singular value decomposition of the centered and

permuted expression matrix R0 ¼U0D0VT
0 .

7. For eigengene k form a null statistic

T0
k ¼

d20kPn�df
‘¼1 d20‘

as above, where d0‘ is the ‘th diagonal element of D0.
8. Repeat steps 4�7 a total of B times to obtain null statistics T0b

k for
b¼ 1,...,B and k ¼ 1,...,n-df.

9. Compute the p-value for eigengene k as:

pk ¼
#fT0b

k . ¼ Tk; b ¼ 1; :::;Bg
B

:

Since eigengene k should be significant whenever eigengene k9 is
(where k9.k), we conservatively force monotonicity among the p-
values. Thus, set pk ¼max (pk�1, pk) for k ¼ 2,...,n-df.

10. For a user-chosen significance level 0�a�1, call eigengene k a
significant signature of residual EH if pk � a.

Algorithm to construct surrogate variables.
1. Form estimates l̂i and f̂ i by fitting the model xij.¼ liþ fi(yj) þ eij,

and calculate the residuals rij ¼ xij �l̂i � f̂ i(yj) to remove the effect of
the primary variable on expression. Form the m3n residual matrix R,
where the (i, j) element of R is rij.

2. Calculate the singular value decomposition of the residual
expression matrix R¼UDVT. Let ek¼ (ek1,...,ekn)

T be the kth column of
V (for k¼1,...,n). These ek are the residual eigengenes and represent
orthogonal residual EH signals independent of the signal due to the
primary variable.

3. Set K̂ to the number of significant eigengenes found by the
above algorithm. Note that ‘‘significant’’ means that the eigengene
represents a greater proportion of variation than expected by
chance.

For each significant eigengene ek k¼1,..., K̂.
4. Regress ek on the xi (i¼ 1,...,m) and calculate a p-value testing for

an association between the residual eigengene and each gene’s
expression. This p-value measures the strength of association between
the residual eigengene ek and the expression for gene i.

5. Let p0 be the proportion of genes with expression not truly
associated with ek; form an estimate p̂0, as described previously [23]
and estimate the number of genes associated with the residual
eigengene by m̂1 ¼ bð1� p̂0 3mÞc. Let s1; :::; sm̂1 be the indices of the
genes with m̂1 smallest p-values from this test.

6. Form the m̂1 3 n reduced expression matrix Xr ¼ ðxs1; :::xsm̂1 Þ
T .

Since m̂1 is an estimate of the number of genes associated with
residual eigengene k, the reduced expression matrix represents the
expression of those genes estimated to contain the EH signature
represented by some hk as described above. As was done for R,
calculate the eigengenes of Xr, and denote these by erj for j¼1,...,n.

7. Let j*¼ argmax1�j�n cor ðek; erj Þ and set ĥk ¼ erj� . In other words,
set the estimate of the surrogate variable to be the eigengene of the
reduced matrix most correlated with the corresponding residual
eigengene. Since the reduced matrix is enriched for genes associated
with this residual eigengene, this is a principled choice for the
estimated surrogate variable that allows for correlation with the
primary variable.

8. In any subsequent analysis, employ the model xij ¼ li þ fi(yj) þPK
k¼1 kkiĥkj þ e�ij , which serves as an estimate of the ideal model xij¼ li

þ fi(yj) þ
PK

k¼1 kkihkj þ e�ij .
The singular value decomposition is employed in these SVA

algorithms. It may be possible to utilize other decomposition
methods, but since the singular value decomposition provides
uncorrelated variables that decompose the data in an additive linear
fashion with the goal of minimizing the sum of squares, we found this
to be the most appropriate decomposition. If the primary variables
are modeled for data that are not continuous, then it may make sense
to decompose the variation with respect to whatever model-fitting
criteria will be employed

Software. SVA has been made freely available as an R package at
http://www.genomine.org/sva/.

Supporting Information

Figure S1. Examples of Expression Heterogeneity

Heatmaps of hierarchically clustered gene expression data for a
random subset of 1,000 genes from three studies are shown. (A)
Hedenfalk et al. [22] compared gene expression across tumor
subtypes defined by germline BRCA mutations (yellow divides BRCA
tumor subtypes), (B) Brem et al. [10,21] measured expression in
naturally recombining yeast populations, and (C) Rodwell et al. [7]
measured gene expression in kidney samples for patients ranging in
age from 27–92 y.

Found at doi:10.1371/journal.pgen.0030161.sg001 (849 KB PDF).

Figure S2. Unadjusted p-Values Show Bias and Fluctuations

Histograms of the null p-values for nine independent realizations of
the simulated gene expression data. The null p-values should be
Uniformly distributed, or ‘‘flat,’’ for each experiment. However,
across independently simulated datasets, the null p-values range from
being conservatively biased to anticonservatively biased depending
on the configuration of the unmeasured or unmodeled factor.

Found at doi:10.1371/journal.pgen.0030161.sg002 (17 KB PDF).

Figure S3. SVA-Adjusted p-Values Are Uniform

Histograms of the null p-values for nine independent realizations of
the simulated gene expression experiment, adjusted by SVA. The p-
values for the null genes in each simulated experiment are Uniformly
distributed. None of these deviates from the Uniform according to a
Kolmogorov-Smirnov test.

Found at doi:10.1371/journal.pgen.0030161.sg003 (18 KB PDF).

Figure S4. Behavior of Simulated Null p-Values from Microarray Data

For each simulated dataset based on the permuted residuals from the
Hedenfalk et al. study, a nested Kolmogorov-Smirnov test was
employed to assess whether the p-values of null genes followed the
correct null Uniform distribution. A quantile–quantile plot of the
one thousand Kolmogorov-Smirnov p-values are shown for the SVA-
adjusted analysis (solid line) and the unadjusted analysis (dashed line).
The grey line represents the expected quantiles. It can be seen that
the SVA-adjusted analysis provides correctly distributed null p-values,
whereas the unadjusted analysis does not, due to EH.

Found at doi:10.1371/journal.pgen.0030161.sg004 (62 KB PDF).

Figure S5. Effect of EH on Gene Ranks

A plot of the true rank (according to signal-to-noise ratio) versus the
significance test–based average rank (black) plus or minus one standard
deviation (red) for each differentially expressed gene in simulated
studies (A) affected by EH with an unadjusted analysis, (B) affected by
EH with an SVA-adjusted analysis, and (C) unaffected by EH.
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Found at doi:10.1371/journal.pgen.0030161.sg005 (439 KB PDF).

Figure S6. Effect of SVA on FDR Calculations

(A) A histogram of the estimates of the proportion of true nulls p0 for
studies affected by EH. (B) A histogram of the estimates of the
proportion of true nulls p0 for studies affected by EH, after adjusting
for SVA. (C) A histogram of the estimates of the proportion of true
nulls p0 for studies without EH. (D) A plot of observed FDR versus
true FDR (grey) and average observed FDR versus true FDR (red) for
simulated studies affected by EH. (E) A plot of observed FDR versus
true FDR (grey) and average observed FDR versus true FDR (red) for
simulated studies affected by EH, adjusted by SVA. (F) A plot of
observed FDR versus true FDR (grey) and average observed FDR
versus true FDR (red) for simulated studies without EH.

Found at doi:10.1371/journal.pgen.0030161.sg006 (265 KB PDF).

Figure S7. BRCA Surrogate Variables

(A) A plot of the top surrogate variable from the breast cancer data of
Hedenfalk et al. [22]; triangles are BRCA1, pluses are BRCA2. (B) A
plot of the expression for eukaryotic translation initiation factor 2,
EIF2S2, which follows a similar pattern to the top surrogate variable.

Found at doi:10.1371/journal.pgen.0030161.sg007 (87 KB PDF).

Figure S8. SVA-Induced Change in Gene Ranking for Differential
Expression

A plot of the p-value rankings for the SVA-adjusted versus unadjusted
significance analysis of the breast cancer data [22], showing
substantial differences in the rankings obtained from the two
analyses. The red line represents equality of ranking between the
two procedures.

Found at doi:10.1371/journal.pgen.0030161.sg008 (181 KB PDF).

Figure S9. Regression on Standard Eigengenes (Version 1) Adjusted p-
Values

Histograms of the null p-values for nine independent realizations of
the simulated gene expression experiment, after adjustment by the
first regression on standard eigengenes algorithm.

Found at doi:10.1371/journal.pgen.0030161.sg009 (16 KB PDF).

Figure S10. Regression on Standard Eigengenes (Version 2) Adjusted
p-Values

Histograms of the null p-values for nine independent realizations of
the simulated gene expression experiment, after adjustment by the
second regression on standard eigengenes algorithm.

Found at doi:10.1371/journal.pgen.0030161.sg010 (16 KB PDF).

Figure S11. ‘‘Empirical Null’’ p-Values Show Bias

For 1,000 simulated datasets based on the Normal residuals, a nested
Kolmogorov-Smirnov test was employed to assess whether the p-
values of null genes followed the correct null Uniform distribution. A
quantile–quantile plot of the one thousand Kolmogorov-Smirnov p-
values are shown for the SVA-adjusted analysis (solid line) and the
‘‘Empirical Null’’ technique [31,32]. The grey line represents the
expected quantiles. It can be seen that the SVA-adjusted analysis
provides correctly distributed null p-values, whereas the ‘‘Empirical
Null’’ adjusted null p-values do not.

Found at doi:10.1371/journal.pgen.0030161.sg011 (62 KB PDF).

Text S1. Supplementary Text for Capturing Heterogeneity in Gene
Expression Studies by Surrogate Variable Analysis

Found at doi:10.1371/journal.pgen.0030161.sd001 (50 KB PDF).
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