Skip to main content
Log in

Aligned Carbon Nanotube Stationary Phases for Electrochromatographic Chip Separations

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

This paper reports a novel approach for developing a microfluidic electrochromatographic chip device using patterned vertically aligned carbon nanotubes as the stationary phase material. Patterned growth of nanotubes in a specific location of the channel is carried out using a solid phase Fe–Al catalyst as well as a vapor deposited ferrocene catalyst. Proof-of-concept applications are demonstrated using reversed phase capillary electrochromatographic separations as well as solid phase extraction of a glycosylated protein using concanavalin A immobilized onto the nanotube bed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Qu H, Wang H, Huang Y, Zhong W, Lu H, Kong J, Yang P, Liu B (2004) Anal Chem 76:6426–6433. doi:10.1021/ac049466g

    Article  CAS  Google Scholar 

  2. Renzi RF, Stamps J, Horn BA, Ferko S, VanderNoot VA, West JAA, Crocker R, Weidenman B, Yee D, Fruetel JA (2005) Anal Chem 77:435–441. doi:10.1021/ac049214f

    Article  CAS  Google Scholar 

  3. Harrison DJ, Fluki F, Seiler K, Fan Z, Effenhauser CS, Manz A (1993) Science 261:895–897. doi:10.1126/science.261.5123.895

    Article  CAS  Google Scholar 

  4. Rossier JS, Roberts MA, Ferrigno R, Girault HH (1999) Anal Chem 71:4294–4299. doi:10.1021/ac981382i

    Article  CAS  Google Scholar 

  5. Yu C, Mutlu S, Selvaganapathy P, Mastrangelo CH, Svec F, Frechet JMJ (2003) Anal Chem 75:1958–1961. doi:10.1021/ac026455j

    Article  CAS  Google Scholar 

  6. Santini JT, Richards AC, Scheidt R, Cima MJ, Langer R (2000) Angew Chem Int 39:2397–2407

    Google Scholar 

  7. Kopp MU, de Mello AJ, Manz A (1998) Science 280:1046–1048. doi:10.1126/science.280.5366.1046

    Article  CAS  Google Scholar 

  8. Schilling EA, Kamholz E, Yager P (2002) Anal Chem 74:1798–1804. doi:10.1021/ac015640e

    Article  CAS  Google Scholar 

  9. Olsen KG, Ross DJ, Tarlov MJ (2002) Anal Chem 74:1436–1441. doi:10.1021/ac0156969

    Article  CAS  Google Scholar 

  10. Soper SA, Ford SM, Qi S, McCarley RL, Kelly K, Murphy MC (2000) Anal Chem 72:642–643. doi:10.1021/ac9910987

    Article  Google Scholar 

  11. Peterson DS, Rohr T, Svec F, Frechet JMJ (2002) Anal Chem 74:4081–4088. doi:10.1021/ac020180q

    Article  CAS  Google Scholar 

  12. Duffy DC, McDonald JC, Schueller OJA, Whitesides G (1998) Anal Chem 70:4974. doi:10.1021/ac980656z

    Article  CAS  Google Scholar 

  13. Jacobson SC, Culbertson CT, Daler JE, Ramsey JM (1998) Anal Chem 70:3476. doi:10.1021/ac980349t

    Article  CAS  Google Scholar 

  14. Shi YN, Simpson JR, Scherer JR, Wexler D, Skibola C, Smith MT, Mathies RA (1999) Anal Chem 71:5354. doi:10.1021/ac990518p

    Article  CAS  Google Scholar 

  15. Guihen E, Glennon JD (2004) J Chromatogr A 1044:67–81. doi:10.1016/j.chroma.2004.05.107

    Article  CAS  Google Scholar 

  16. Ocvirk G, Verpoorte A, Manz M, Grasserbauer M, Widmer HM (1995) Anal Methods Instrum 2:74

    CAS  Google Scholar 

  17. Ceriotti L, de Rooij NF, Verpoorte E (2002) Anal Chem 74:639. doi:10.1021/ac0109467

    Article  CAS  Google Scholar 

  18. Oleshuk RD, Shultz-Lockyear LL, Ning Y, Harrison DJ (2000) Anal Chem 72:585. doi:10.1021/ac990751n

    Article  Google Scholar 

  19. He B, Tait N, Regnier FE (1998) Anal Chem 70:3790. doi:10.1021/ac980028h

    Article  CAS  Google Scholar 

  20. Slentz BE, Penner NA, Lugowska E, Regnier F (2001) Electrophoresis 22:3736. doi:10.1002/1522-2683(200109)22:17<3736::AID-ELPS3736>3.0.CO;2-Y

    Article  CAS  Google Scholar 

  21. Svec F (2005) J Sep Sci 28:729–745. doi:10.1002/jssc.200400086

    Article  CAS  Google Scholar 

  22. Le Gac S, Carlier J, Camart J-C, Cren-Olive C, Rolando C (2004) J Chromatogr B Analyt Technol Biomed Life Sci 808:3–14. doi:10.1016/j.jchromb.2004.03.067

    Article  CAS  Google Scholar 

  23. Iijima S (1991) Nature 354:56–58. doi:10.1038/354056a0

    Article  CAS  Google Scholar 

  24. Weisman RB, Subramoney S (2006) Electrochem Soc Interface 15(2):42–46

    CAS  Google Scholar 

  25. Li Y, Chen Y, Xiang R, Ciuparu D, Pfefferle LD, Horvath C, Wilkins JA (2005) Anal Chem 77:1398–1406. doi:10.1021/ac048299h

    Article  CAS  Google Scholar 

  26. Weng X, Bi H, Liu B, Kong J (2006) Electrophoresis 27:3129–3135. doi:10.1002/elps.200500840

    Article  CAS  Google Scholar 

  27. Balasubramanian K, Burghard M (2006) Anal Bioanal Chem 385:452–468. doi:10.1007/s00216-006-0314-8

    Article  CAS  Google Scholar 

  28. Ashish M, Nikhil K, Eric L, Bingqing W, Pullickel MA (2003) Nature 424(6945):171–174. doi:10.1038/nature01777

    Google Scholar 

  29. Wang Z, Luo G, Chen J, Xiao S, Wang Y (2003) Electrophoresis 24:4181–4188. doi:10.1002/elps.200305575

    Article  CAS  Google Scholar 

  30. Luong JHT, Bouvrette P, Liu Y, Yang D-Q, Sacher E (2005) J Chromatogr A 1074:187–194. doi:10.1016/j.chroma.2005.02.089

    Article  CAS  Google Scholar 

  31. Cai Y, Jiang G, Liu J, Zhou Q (2003) Anal Chem 75:2517–2521. doi:10.1021/ac0263566

    Article  CAS  Google Scholar 

  32. Saridara C, Mitra S (2005) Anal Chem 77:7094–7097. doi:10.1021/ac050812j

    Article  CAS  Google Scholar 

  33. Li Q, Yuan D (2003) J Chromatogr A 1003:203–209. doi:10.1016/S0021-9673(03)00848-3

    Article  CAS  Google Scholar 

  34. Kim JY, Baek JY, Kim HH, Lee KA, Lee SH (2006) Sens Actuators A 128:7–13. doi:10.1016/j.sna.2005.12.039

    Article  Google Scholar 

  35. McKnight TE, Melechko AV, Austin DW, Sims T, Guillorn MA, Simpson ML (2004) J Phys Chem B 108:7115–7125. doi:10.1021/jp037987m

    Article  CAS  Google Scholar 

  36. Jindal R, Cramer SM (2004) J Chromatogr A 1004:277–285. doi:10.1016/j.chroma.2004.05.065

    Article  Google Scholar 

  37. Hata K, Don N, Futaba K, Mizuno T, Namai M, Yumura S, Iijima S (2004) Science 306:1362–1364. doi:10.1126/science.1104962

    Article  CAS  Google Scholar 

  38. Lingbo Z, Yonghao X, Dennis WH, Ching-Ping W (2005) Nano Lett 5:2641–2645. doi:10.1021/nl051906b

    Article  Google Scholar 

  39. Yurdumakan B, Raravikar NR, Ajayan PM, Dhinojwala A (2005) Chem Commun (Camb) 3799. doi:10.1039/b506047h

  40. Chakrapani N, Wei BQ, Carillo A, Ajayan PM, Kane RS (2004) Proc Natl Acad Sci USA 101:4009. doi:10.1073/pnas.0400734101

    Article  CAS  Google Scholar 

  41. Cao A, Ajayan PM (2004) J Phys Chem B 108:6160. doi:10.1021/jp036635c

    Article  CAS  Google Scholar 

  42. Jung YJ, Wei B, Vajtai R, Ajayan PM (2003) Nano Lett 3:561. doi:10.1021/nl034075n

    Article  CAS  Google Scholar 

  43. Wei BQ, Vajtai R, Jung Y, Ward J, Zhang Y, Ramanath G, Ajayan PM (2002) Nature 416:49. doi:10.1038/416495a

    Article  Google Scholar 

  44. Vohrer U, Zschoerper NP, Koehne Y, Langowski S, Oehr C (2007) Plasma Process Polym 4(1):S871–S877. doi:10.1002/ppap.200732102

    Article  Google Scholar 

  45. Childs RE, Bardsley WG (1975) Biochem J 145(1):93–103

    CAS  Google Scholar 

  46. Xuan X, Li D (2005) J Chromatogr A 1064:227–237. doi:10.1016/j.chroma.2004.12.033

    Article  CAS  Google Scholar 

  47. Crabtree JH, Cheong ECS, Tilroe DA, Blackhouse CJ (2001) Anal Chem 73:4079–4086. doi:10.1021/ac010217r

    Article  CAS  Google Scholar 

  48. Fluri K, Fitzpatrick G, Chiem N, Harrison DJ (1996) Anal Chem 68:4285–4290. doi:10.1021/ac9604090

    Article  CAS  Google Scholar 

  49. Schulze P, Ludwig M, Kohler F, Belder D (2005) Anal Chem 77:1325–1329. doi:10.1021/ac048596m

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Rohit Jindal and Dr. Guna Vishwanathan for technical guidance. Finally, we acknowledge financial support from the National Science Foundation (Grant No. 0403789).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven M. Cramer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goswami, S., Bajwa, N., Asuri, P. et al. Aligned Carbon Nanotube Stationary Phases for Electrochromatographic Chip Separations. Chroma 69, 473–480 (2009). https://doi.org/10.1365/s10337-008-0948-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-008-0948-0

Keywords

Navigation