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We analyze normal mode splitting in a pair of vertically coupled microdisk resonators. A

full vectorial finite element model is used to find the eigen frequencies of the symmetric and

antisymmetric composite modes as a function of coupling distance. We find that the coupled

microdisks can compete with the best Fabry-Perot resonators in displacement sensing. We

also show how we configured FreeFem++ for the sphere eigenvalue problem.

1. Introduction

In whispering gallery mode (WGM) resonators the electromagnetic field is trapped inside

a circular dielectric by total internal reflections from the boundary [1–3]. Modes of such

resonators are distinguished by compact volume and quality factors as high as Q > 1011

[4] in a broad range of frequencies. Demonstrated applications of such resonators include

microwave cavities for atomic clocks [5], cavity optomechanics [6], nonlinear and quantum

optics [7–9], frequency standards [10], biosensors [11–13], microcavity frequency combs [14],

RF photonics [15], optical clocks and ultrastable lasers [16].

When two optical microresonators are placed side by side, the weak evanescent field just

outside the surface mediates energy exchange, resulting in optical coupling and normal mode

splitting [17–19]. The coupled microsphere resonators have been shown to have better dis-

placement sensitivity than those based on Fabry–Perot resonators [17]. This sensitivity re-

sults from the strong dependence of the normal mode splitting of the coupled microtoroid

resonators on the gap between the cavities [20]. A further improvement in sensitivity over the

edge–coupled configuration was predicted for vertically coupled hemispherical resonators [17].

The experimental realization of such hemispheres has remained unattainable. However, re-

cently developed on–chip microdisk resonators [21] can be fabricated with sufficient control

over spectra to make vertically coupled resonator configuration possible.
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We here study the normal mode splitting of two identical vertically coupled microdisk

resonators. Using the finite element method (FEM) we find normal mode splitting (NMS)

for idealized coupled resonator geometries. We also provide a basic noise performance analysis

of such displacement transducer.

2. WGM eigenvalue problem with FEM

Analytical solutions for WG modes are only available for a limited number of ideal geometries,

such as a sphere or an ellipsoid [1–3, 22]. The three dimensional vectorial Maxwell wave

equation can be solved numerically, taking the axial symmetry of WGM resonators into

account. In this approach [23, 24], the problem can be reduced to a system of 3 coupled

equations in a cylindrical 2D “ρ − z” section of a resonator. The spurious modes resulting

from the improper accounting of the curl operator zero space [25] are partially suppressed

by using the penalty coefficient method, enforcing the ∇ ·H = 0 condition approximately.

We used a scriptable and scalable FreeFem++ solver [26], which utilizes ARPACK [27]

for eigenvalue problem solutions. We used UMFPACK [28] as a matrix solver due to its

better handling of large matrices compared to other solvers available in FreeFem. We here

show [29] how to set a simple spherical eigenvalue WGM problem in FreeFem++ following

the approach of ref. [24]. The results obtained with FreeFem++ are very close to those

obtained with the commercial package COMSOL Multiphysics, taking into account the lack

of easy mesh portability between the two.

3. A dielectric sphere

We start with the weak formulation [24] to compute the fundamental TE and TM mode

frequencies and field distributions in a fused silica sphere with refractive index of 1.46 and

azimuthal index M = 103. Exact analytical complex eigen values can be obtained by numer-

ically solving the following equation [3]

y
(
Pnh

(1)
M (y)jM−1(ny)− jM(ny)h

(1)
M−1(y)

)
+M(1− P )(h

(1)
M (y)jM(ny)) = 0 (1)

Here jM(ny) and h
(1)
M (y) are the spherical Bessel and Hankel functions of order M , y ≡ ka,

a is resonator’s radius, n is the refractive index. P = 1 for TE modes and P = 1/n2 for TM

modes. The imaginary parts of the numerical solutions give radiative quality factor of the

mode: Qrad = Re(y)
2Im(y)

. Simplified real equation may also be solved, where Hankel functions

are replaced with the Neumann function.

We can estimate the error of the FEM solutions as δy = |(yfem − yexact)|. The TE and

TM solutions are generated on meshes that were adapted to the magnitude of magnetic field

vector. The mesh and the mode profile of a TM mode are shown in Fig. 1. The results are

shown in Table 1. The absolute frequency error is given by δF = δy(c/2πa). For our mesh
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Fig. 1. Adapted mesh in mode localization region. Inset: FEM solution for a

sphere – TM1000,1000,1 mode. Iso-value lines are equally spaced, scale for the

mesh and the solution is the same.

this corresponds to around 80 MHz (TE) for a sphere with radius a = 36µm. It shows that

the FEM formulation used here, as implemented in FreeFem++, provides good precision for

eigen modes of a sphere. In small microspheres and non-spherical resonators the modes are

no longer pure TM and TE, but have hybridized polarizations. Since the weak formulation

used here assumes no approximations and models the full field vector, it can be used for

arbitrary axially symmetric resonator geometries and expected to retain good precision.

4. Vertically coupled microdisk resonators

We used the FEM tool to compute eigen modes of a pair of vertically coupled microdisk

resonators. The computation window with typical resonator geometry is shown in Fig. 2.

The figure also shows symmetric (s) and antisymmetric (a) composite modes for TE and

TM polarizations [19]. The modes found by the solver were classified as TE or TM by

comparing E2
z and E2

r integrated over the computational window. For TE modes most of the

energy resides in the Ez component.

We investigated the dependence of NMS on the air gap for modes with the wavelength

around 1550 nm, with disk radii of 20 (M = 102), 180 (M = 103) and 1750 (M = 104)

micrometers. For each mode, we started with a homogeneous mesh with approximately 104
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Table 1. Computed errors of y = ka for a spherea, M = 103, n = 1.46

TE TM

mesh sizeb 34120/17072 37466/18745

δy 6.2× 10−5 7.6× 10−6

a Second order Lagrange triangular finite elements were used. Boundary conditions is electric wall on the

computational window edges. Sphere radius is a = 36µm, computation window height is 20µm, left edge is

at a− 8µm, right edge is at a+ 5µm. b number of triangles / number of vertices.

Fig. 2. Vertical coupling of two silica microdisks with refractive index n = 1.46,

thickness 2 µm, wedge angle 45◦, radius 180 µm, air gap 0.5 µm, and the

mode orbital index M = 588 corresponding to optical wavelength of about

1.56 µm. The amplitude of the magnetic field vector is shown with lines of

equal value. From outside, the lines are Hmax/1000, Hmax/100, Hmax/10, and

Hmax/2. Approximate electric field vector directions are shown with arrows.
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triangular elements. The mesh was then optimized to the magnetic field vector amplitude

of each mode and the new frequency was found. The number of mesh elements was then

doubled until reasonable converged solution is achieved. The computation error was chosen

as the difference between frequency obtained with the final mesh and that obtained with the

previous mesh having half the elements. The mesh refinement was repeated until computation

error was less than 0.5 NMS. We observed good convergence of our solutions, as shown on Fig.

3. The computation window edges were also appropriately spaced: the change in frequency

Fig. 3. Convergence of TE composite mode frequencies with increasing number

of mesh elements. Vertical axis shows optical frequency offset by 192 THz. Air

gap 2.5 µm, R=1750 µm, M=104.

due to offset of the walls outwards by 1 micrometer was much smaller than the computation

error of the mode. Since the dependence of NMS on air gap is exponential as expected [17],

it was sufficient to only find NMS for two values of the air gap. We adjusted the air gap,

keeping the edges of the computational window unchanged. The results are presented in Fig.

4. From the data we obtain the dependence for NMS, S = 10kx+b [GHz] as a function of

the gap x [µm] for TM modes, as shown in Table 2. The effective gap [17] characterizing

tunability at optical frequency ν ' 193 THz is given by d =
(
1
ν
∂S
∂x

)−1
=
(
1
ν
ln(10)kS

)−1
.

One observation from Fig. 4 is that compared to silica microtoroids coupled side-by-side

[20], the NMS in vertically coupled microdisks is significantly larger. Another interesting

result is that the mode splitting saturates for large disks: NMS is virtually the same for

the disks with radius of 1750 µm as it is for the disks with radius of 180 µm. This may

be explained by the increased mode confinement in vertical direction in larger disks. The

increased confinement leads to smaller field overlap and coupling. In addition, once the

length of the guided whispering gallery mode exceeds the geometry-specific interaction length

[19] the maximum energy exchange has been achieved and no further increase of coupling
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Fig. 4. Mode splitting in vertically coupled microdisks. NMS of silica micro-

toroids coupled side–by–side is shown for comparison (adapted from [20]).

Error bars are similar in size to point markers and are not shown.

Table 2. Displacement sensitivities of coupled microdisks for optical

frequency around 193 THz (wavelength 1.56µm). Typical quality fac-

tor is Q ' 5×108 for microdisks and Q ' ×107 for coupled toroids [20].

The LIGO and the capacitive sensor are listed for reference.

diameter, µm M k, µm−1 b d, cm (at x=0.5µm) d/Q, cm

20 102 -1.744 2.682 0.075 1.5× 10−10

180 103 -1.763 3.45 0.013 2.6× 10−11

1750 104 -1.779 3.507 0.011 2.2× 10−11

66 Toroids -1.647 1.125 2.45 2.45× 10−7

Advanced LIGO [30] 1.2× 10−9

Capacitive sensor [31] 6× 10−9
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constant is possible. Indeed, the TM-mode NMS for M = 1.5 × 104, R = 2620µm is only

0.2% larger than for M = 104, R = 1750µm. This indicates that further optimization

of disk radius and thickness is possible, which is beyond the scope of this paper. From

physical considerations it was expected that vertically coupled configurations will be capable

of operating at larger air gaps compared to edge-coupled resonators. Indeed we find that that

vertically coupled configuration provides NMS similar to coupled microtoroids at roughly

double the gap distance. Finally, we observe that while for smaller disks TE modes have

larger NMS, for larger disks the TM modes become split more than TE. This is explained

by the influence of the disk wedge. The decrease of the wedge angle is also known to push

the mode closer to the disk center, thus we assume that to first order this corresponds to

decreasing the disk’s radius.

5. Displacement measurement

For a realistic optical quality factor of Q = 108 and a pair of resonators with M = 104 TM

modes operating at 0.5 µm gap we derive the minimum measurable displacement [17]:

∆x =
d

Q

√
hν

Wτ
= 2.2× 10−11

√
hν

Wτ
(2)

Here W is the laser pump power. For example, for W = 100µW , and the averaging time of

1 s the minimum displacement is 8× 10−18 cm. This sensitivity is comparable or better than

what can be achieved with state of the art Fabry–Perot, and superconductive microwave

cavities, however the on-chip microdisk resonators have small mass of moving parts and can

be implemented in a compact measurement setup. For comparison, the effective coefficient

of a Fabry–Perot cavity is given by finesse: d/Q = λ/2F . For state of the art resonators

F ' 2× 106 [32], giving d/Q ' 1.5× 10−11cm.

There are a number of factors that can limit the practical sensitivity of the coupled res-

onator sensor. In addition to photon shot noise, there are such fundamental factors as Brow-

nian and thermorefractive [10, 33] noises. One should also avoid the threshold of Kerr and

thermal nonlinearity. However, they are specific to a particular NMS measurement scheme

and resonator geometries. No nonlinearity was observed for some of the larger microdisks for

up to 1 mW of pump power [21]. Thermorefractive noise will be smaller in larger cavities. It

was also experimentally found that the Q factor noticeably degraded for the smallest gaps

for the coupled toroids [20]. Similarly, it can be expected that the quality factor will depend

on the air gap for the vertically coupled disks. It is possible to improve the FEM code to

directly compute the radiative Q factor of this system, as will be reported elsewhere.

The ultimate sensitivity of the vertically coupled sensor will depend on the way the NMS

is measured. In a passive scheme, laser noise and mechanical noises will determine the sen-

sitivity of the system. One alternative approach is to use an active sensor configuration,
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where, for example, one of the resonators is doped to provide optical gain. Upon pumping

the coupled resonators, lasing into normal symmetric and antisymmetric modes will occur

(e.g. similar to ref. [34]) . The beatnote of the two can be detected with a photodetector,

directly providing the NMS. The sensitivity will be limited by the beatone linewidth, which

is in turn limited by the lasing linewidth. While erbium fiber lasers have linewidth less than

10 KHz [35], alternative active schemes may also be used. Coupled resonators will experience

attractive and repulsive forces [36], the magnitude of which can be directly estimated from

the tuning curves.

6. Conclusion

We have presented a finite element analysis of the normal mode splitting in a system of two

vertically coupled silica microdisks. The analysis utilizes a publicly available FEM solver

FreeFem++. We find that with the recent advances in microdisk fabrication [21] the ver-

tically coupled resonators have more than two orders of magnitude better displacement

sensitivity compared to edge-coupled system. In addition, the sensitivity gain saturates for

larger disk diameters. The ultimate displacement measurement sensitivity of this system

is comparable to a Fabry-Perot system, while having a much smaller size. The vertically

coupled configuration opens new opportunities for scientific and industrial applications of

displacement measurements.
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