Electromagnetic scattering of high-permittivity

particles on a substrate

Philippe Gay-Balmaz and Olivier J. F. Martin

We contribute to the study of the optical properties of high-permittivity nanostructures deposited on
surfaces. We present what we believe is a new computational technique derived from the coupled-dipole
approximation (CDA), which can accommodate high-permittivity scatterers. The discretized CDA equa-
tions are reformulated by use of the sampling theory to overcome different sources of inaccuracy that arise

for high-permittivity scatterers.

We first give the nonretarded filtered surface Green’s tensor used in the

new scheme. We then assess the accuracy of the technique by comparing it with the standard CDA
approach and show that it can accurately handle scatterers with a large permittivity. © 2001 Optical

Society of America

OCIS codes: 290.5880, 240.0240, 290.5850, 260.2110.

1. Introduction

The Green’s tensor technique, also known as coupled-
dipole approximation (CDA) or discrete-dipole ap-
proximation, is a powerful tool to solve scattering
problems. It has been applied to numerous config-
urations, ranging from scattering by interstellar
graphite dust particles,! scattering by irregular inho-
mogeneous particles,? the optical properties of metal
spheres in suspension,? or the study of near-field op-
tical microscopy* and optical nanolithography.5

An attractive feature of the CDA is that it is also well
suited for calculation of scatterers located above sur-
faces or embedded inside a multilayer background.é.?
In such cases the free-space Green’s tensor is replaced
with that corresponding to the surface or to the mul-
tilayer background. In this approach only the scat-
terers must be discretized, the background being taken
into account in the Green’s tensor.

Unfortunately, the CDA becomes less accurate when
scatterers with a high permittivity are at hand. Re-
fining the discretization mesh in that case does not
necessarily increase the result accuracy, as was inves-
tigated in detail in Ref. 8. To overcome these limita-
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tions, we introduced a modified CDA scheme based on
sampling theory and using the so-called filtered
Green’s tensor.? This scheme was shown to handle
scatterers accurately with a permittivity as large as
10, located in an infinite homogeneous background.

In the present paper we propose to extend this
theory to small scatterers embedded inside or depos-
ited on a surface. For this purpose, in Section 2, we
derive the filtered Green’s tensor associated with a
surface. In Section 3 we assess the accuracy of this
new scheme by comparing results obtained with the
filtered and the nonfiltered schemes for scatterers of
various permittivities. We also analyze two scatter-
ing problems involving semiconductors with high
permittivity. Some concluding remarks are given in
Section 4.

2. Theory

A. Integral Equation for the Coupled-Dipole
Approximation

In this paper we consider a scatterer of relative per-
mittivity €(r) embedded inside a two-layer back-
ground, as shown in Fig. 1. The structure is
illuminated by an incident electric field E°(r). We
consider nonmagnetic materials (. = po) and assume
an exp(—iwt) time dependence.

The field E(r) scattered by this system is given by
the integral equation

E(r) = E%r) + J. dr’'GE(x, r') - Bo*Ae(r')E(r'),

\4



Fig. 1. Typical scattering problem considered in this study: The
scatterer £(r) is deposited on, or embedded inside, a surface of
permittivity €, and illuminated with an incident field E°(r). The
upper medium has a permittivity &,.

where Ae(r’) is the dielectric contrast between the
scatterer and the surrounding medium, which is
given by

As(r) = g(r) — €5. (2)

The background permittivity €5 depends on the z
coordinate of the point r and is defined by (Fig. 1)

forz <0
forz=0. 3)

In Eq. (1) the integration runs over the entire scat-
terer volume V; GZ(r, r') is the dyadic Green’s tensor
of the reference medium, with prime and nonprime
variables associated with the source and the obser-
vation point, respectively; %k, is the wave number in
vacuum.

To solve Eq. (1) numerically, the volume of the
scatterer is discretized into NV cells. Introducing V;
and r; for the volume and the position of the center of
cell i, respectively, we can define E(r).cy ~ E; =
E(r,) and Ag;(r)|,cy ~ Ag; = Ag(r;). In this way Eq.
(1) can be rewritten as a dense system of linear equa-
tions,

Eg = &

:82

N
E =E'+ > G -kAc¢EV,+ M, kiAcE,

J=1,j#i
Ag; .
- L- E, i=1,...,N, 4)
B
with
M, = lim J. dr'G2(r, r'). (5)
3V—0 v

In Eq. (4) M; is the self-induction term for which
approximations can be found in the literature.2 The

source dyadic L depends on the exclusion volume
shape and is tabulated in Ref. 10.

Note that Eq. (4) forms a large system of algebraic
equations with 3N equations and 3N unknowns from
which the electric field inside the scatterer can be
found. The field outside the scatterer can then sim-
ply be obtained from the field inside the object by
means of discretizing Eq. (1) for any r ¢ V'.

One of the powerful features associated with Eq. (1)
is that it can be used for solving configurations that
include scatterers embedded inside an inhomoge-
neous background by use of the appropriate Green’s
tensor corresponding to this background. In this
manner only the scatterers, not the background,
must be discretized. In Subsection 2.B we derive
the Green’s tensor for the two-layer system depicted
in Fig. 1.

B. Surface Green’s Tensor

References 11 and 12 give expressions for the Green’s
tensors associated with horizontal and vertical di-
poles embedded inside a stratified medium. These
Green’s tensors are first derived in the spectral do-
main, where analytical expressions can be obtained.
They are then transformed into the direct space do-
main via numerical Sommerfield integrals.13:11

In the quasi-static case, which can be used when
the scatterers are small, these Sommerfield integrals
take a simple form and can be solved analytically.14

Considering the system depicted in Fig. 1, with z
being the normal to the surface ¢;, forz = 0 and z' =
0 (i.e., for the observation point and the source point
in the upper medium), the nonretarded Green’s ten-
sor *G(r, r') has the following form?4:

5Glr, 1) = *GAr, ) T L 2 EG(r, 1), (6)
€+ &

where *G?(r, r’) is the quasi-static Green’s tensor for
an infinite homogeneous three-dimensional (3D) me-
dium of permittivity &,. Note that *G*(r, r") takes
into account the effect of an image source located at
r". In Eq. (6) the minus sign and the plus sign,
respectively, refer to horizontal (x- and y-directed)
and vertical (z-directed) sources, respectively.

For z < 0 and z’ < 0 the surface Green’s tensor is
given by

€, — €
*G(r7 I',) = *Gl(r7 I',) x 81 =+ 82 *Gl(r7 I'"), (7)
1 2

where *Gl(r, r') is the Green’s tensor for an infinite
homogeneous 3D medium of permittivity €;. In this
case the plus sign and the minus sign are associated
with horizontal and vertical sources, respectively.

For z < 0 and 2z’ = 0, the surface Green’s tensor
becomes

G "N — 28, Tel! ' (8)
(1) = = G, ),
1T &
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and forz = 0andz' < 0itis

*G(r, v') = =

17T &

*GX(r, r'). 9

Equations (6)—(9) are valid for the regular Green’s
tensor and for the filtered Green’s tensor. In the
following, an expression associated with the filtered
Green’s tensor is derived in detail.

C. Three-Dimensional Filtered Green’s Tensor

We derive the components of the 3D filtered Green’s
tensor by following the procedure described in Ref. 9.
The main idea is to filter out the components of the
Green’s tensor that limit the accuracy of the field
representation in the discretized system.

1. Fourier Transform

The filtering procedure is performed in Fourier space
with the 3D Fourier-transform pair defined in Ref. 9.
Since the spatial function g(x, y, z) is the scalar
Green’s function associated with an infinite homoge-
neous medium, it is only a function of the relative
distance R = |r — r'| between source and observation
points. Introducing spherical coordinates and per-
forming angle integrations, we can write the pair
Fourier transform in the simple form

g(k) = 4 f " dRg(R)jo(kR)R?, (10)

1 0
8R) = 2172f dkg (k) jo(kR)k. (11)
0

In Egs. (10) and (11), j,(kR) is the spherical Bessel
function defined with j,(kR) = sin(kR)/kR.

2. Dynamic Green’s Tensor

The Green’s tensor GE(r, r') for an infinite homoge-
neous 3D background medium €5 is readily given by'5

kR — 1
Gir, r) =1+ 57 e 1
8 — 3iksR — k3R’ __\ expliksR)
- — .
k3R RR| 4R
(12)

In Eq. (12), 1 is the unit Green’s tensor, R = [R| = |r —
r'| is the relative distance between source and obser-
vation points, and kg is the wave number of the back-
ground medium. We can derive the filtered Green’s
tensor for an infinite homogeneous 3D background
medium Gf(r, r') in a similar way, looking for the
filtered scalar Green’s function g”(r, ') and then de-
riving the Green’s tensor with the following relation:

Gi(r, r") = (1 + :V) F(y, v'). (13)
B
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We find the Fourier transform of gZ(r, r’) by intro-
ducing g(R) = exp(ikgR)/4wR into Eq. (10). We ob-
tain

k 1 (14)
£0) = 17— s

Then the inverse Fourier transform must be applied
to Eq. (14) by use of Eq. (11), where the integration
region must be limited to the passthrough region of
the filter, i.e.,to 2 = 0, ..., kr. Since the function

g(k), as defined by Eq. (14), has a pole within the

passthrough region, for £ = %, we instead use the
complementary filter, integrating for 2 = kg, ..., o,
and subtract the result from the nonfiltered func-

tion?®:
1 )
g"(R) =g(R) - 2ﬂ_2J. dkg(k)jo(kR)E*. (15)
kr

Introducing Eq. (14) into Eq. (15), we find for the
filtered scalar Green’s function

g ) = ) SRR i, 1 1y R)
. cos(kzR)
— Ci[(kp — kp) R]} — AR
X {m = Sil(ky + k)R] — Sil(ky — kp) RI}.
(16)

The filtered Green’s tensor can then be derived from
Eq. (13); it has the form

'F _ nF
GF(r,r’)z(gF+g )1+< g +g )RR

k3R k3R ERR®

3k2 A(r—r,). 17
ref

All the terms included in this equation are given in
Appendix A.

3. Quasi-Static Green’s Tensor

For the quasi-static case the Green’s tensor associ-
ated with an infinite homogeneous 3D background
medium is obtained from Eq. (12) with k5 — 0. Itis
given by

GPrr)=| -t 1+ > Rr|-! (18)
qS(r’ r ) - k123R2 k2R4 4TrR :

To obtain the filtered Green’s tensor, we operate in a
similar way as in the dynamic case: A Fourier
transform is applied to the scalar Green’s function
associated with the background for 2z — 0. This
leads to

1
g(k) = ? (19)



=00, 9=23°

Fig. 2. Geometry used for the calculations: A rectangular scat-
terer with dimensions d, = 110 nm, d,, = 55 nm, d, = 55 nm is
deposited on a surface. The scatterer and the surface have the
same permittivity (see text). This system is illuminated with a
plane wave propagating at = 23°. The incident electric field E°
is linearly polarized, with a 30° angle from the p-polarization axis.

Introducing Eq. (19) into Eq. (15) where g(R) =
1/4=wR, the following equation is obtained,

11
4R 47R
The filtered Green’s tensor has then the form,

'F _ & F nF
G, 1) = (gqs )1 +( o 8 qS)RR

[7 — 2 Si(krR)]. (20)

F _
gqs_

kZR kER®  kZR*

+

3kahr(lr— r). (21)

All the terms included in this equation are also given
Appendix A.

3. Results and Discussion

In this section we first study the limitation of regular
CDA for large-permittivity scatterers on a surface
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Fig. 3. Amplitude of the E, field component at the center of the
structure depicted in Fig. 2 (the field is calculated along the AB line
shown in Fig. 2). The vertical dotted—dashed lines represent the
scatterer boundary. Nonfiltered Green’s tensor.
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Fig. 4. Comparison between nonfiltered (continuous curve) and
filtered (dashed curve) solutions for the two continuous field com-

ponents E, and E,. (a) Same region as in Fig. 3. (b) Blowup of
the region surrounding the right-hand interface.

and show how these limitations can be overcome by
use of the filtered CDA developed in Section 2. We
then apply our new scheme to a practical example
produced by semiconductor technology.

A. Assessment of the Method

Let us consider a scatterer with moderate dimensions
so that the quasi-static model—which is the core of
this study—can be used.’* Figure 2 depicts the ge-
ometry under study: A small homogeneous scat-
terer with permittivity € is deposited on a surface
with the same permittivity (¢, = €). We first con-
sider a scatterer with the following dimensions:
d, =110 nm, d, = 55 nm, d, = 55 nm; it is discretized
witha A, = A, = A, = 5 nm mesh. This system is
illuminated with a plane wave propagating at 6 =
23°, linearly polarized, with a 30° polarization angle
from the p-polarization axis. The illumination
wavelength in vacuum is A = 1000 nm.

In the following we vary the permittivity € of the
scatterer and the surface and study its influence on
the result accuracy. To measure this accuracy, we

1 September 2001 / Vol. 40, No. 25 / APPLIED OPTICS 4565



180
120+
60—
0-
—60—-

—120 "=
-300

z [nm)]

-150

(b)
Fig. 5. Intensity E_E* of the x electric field component along the
center of a scatterer with dimensions d, = 300 nm, d, = 300 nm,
d, = 60 nm and permittivity € = 10. The substrate has g, = 10,
and the illumination wavelength in A\ = 600 nm. (a) Nonfiltered
Green’s tensor, (b) filtered Green’s tensor.

consider how well the boundary conditions required
by Maxwell’s equations are fulfilled by our numerical
results.

In Fig. 3 we show the amplitude E, of the z com-
ponent of the electric field computed with the regular
Green’s tensor along the AB line in the middle of the
structure (Fig. 2), for six different scatterer permit-
tivities €.

This field component should be continuous upon
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Fig. 6. Field continuity at the left-hand interface of the scatterer
depicted in Fig. 5 for three different permittivities € = €; = 2, 6, or
10; A = 600 nm. The intensity of the x electric field component is
shown for the nonfiltered (continuous curve) and the filtered

(dashed curve) Green’s tensor.
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Fig. 7. Simulation of defects on a high-permittivity substrate
(¢, = 10). (a) Trench (d, = 600 nm, d, = 100 nm, d, = 50 nm) is
etched in the substrate. (b) Mesoscopic protrusion (d, = 600 nm,
d, =100 nm, d, = 50 nm) with similar permittivity is deposited on
the surface.

crossing the air—scatterer interfaces at x = =55 nm,
because it is parallel to the material interfaces.’® In
Fig. 3 we see that with the regular Green’s tensor this
boundary condition is fulfilled only for scatterers with
low permittivity. Even for € = 2 the field is discon-
tinuous at the material interfaces. This effect in-
creases for larger permittivities.

In Fig. 4(a) we give similar results for the selected
permittivities € = 2, 6, and 10. Both E, and E, are
represented. These two field components should be
continuous. In addition to the regular Green’s ten-
sor, we now also show the results obtained with the
filtered Green’s tensor described in Subsection 2.C.3.
The field obtained with this new scheme now per-
fectly fulfills the boundary conditions, even for a per-
mittivity as high as € = 10. This is also visible in
Fig. 4(b), where we present a blowup of the region
surrounding the right-hand material interface.
Note how well the boundary conditions are fulfilled
with the filtered scheme.

In Ref. 14 we showed that the quasi-static approx-
imation can be successfully used to investigate scat-
terers of larger dimensions, typically as great as 1
wavelength. In Fig. 5 we consider a high-
permittivity scatterer (¢ = 10) with dimensions d, =
d, = 300 nm, d, = 60 nm (see Fig. 2), located on a
surface with a similar permittivity. The illumina-
tion conditions are similar to those in the previous
example, now with a wavelength of A = 600 nm.
Figure 5 shows the intensity of the x electric field
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above the substrate, when a trench is etched in the dielectric
[geometry of Fig. 7(a)]. Two incident polarizations are investi-
gated: (a)p polarization and (b) s polarization. The wavelength
is A = 633 nm.

component computed with the regular and the fil-
tered Green’s tensors, in the plane x = 0. This field
component should be continuous across all the differ-
ent material interfaces. We see in Fig. 5(a) that this
is not the case when the field is computed with the
regular Green’s tensor: Depolarization fields arise at
the material interfaces, disrupting the continuity of
this field component and rendering the scatterer
boundary clearly visible. This is particularly the case
at the proximity of the scatterers’ corners at z = 60 nm
and y = *£150 nm. However, when the filtered
Green’s tensor is used, the field is perfectly continuous,
and the object boundary is invisible [Fig. 5(b)].

This effect is investigated in more detail in Fig. 6,
where we show the intensity of the x field component
at the vicinity of the left-hand-side vertical interface,
evaluated along a line defined by x = 0 nm, z = 30
nm. Different scatterers and surface permittivities
€ are considered. Note the discrepancy between the
regular and the filtered solutions, especially for high-
permittivity scatterers (Fig. 6). Striking in Fig. 6 is
how well the field continuity is fulfilled with the fil-
tered scheme, even for € = 10.

These results give us some assurance that the fil-
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Fig. 9. Relative field intensity at a constant height x = 100 nm
above the substrate, when a protrusion is deposited on the surface
[geometry of Fig. 7(b)]. Two incident polarizations are investi-
gated: (a)p polarization and (b) s polarization. The wavelength
is A = 633 nm.

tered Green’s tensor developed in Section 2 can be
used to investigate high-permittivity scatterers accu-
rately.

B. Defects on a Semiconductor Wafer

In this section we illustrate the application of the new
filtered scheme to a practical problem.

Optical wafer inspection is widely used in semicon-
ductor manufacturing plants to locate defects on a
semiconductor wafer.l” At optical frequencies most
semiconductors have a high permittivity, of the order
of € = 10. Our computation technique is therefore
well suited for investigating such wafer-inspection
techniques and computing the field scattered by
small defects on a semiconductor substrate.

To illustrate this, we investigate the two geome-
tries depicted in Fig. 7. a scratch in a high-
permittivity surface and a defect on that surface.

Figure 8 shows the relative total field intensity in a
plane parallel to the surface (z = 100 nm) for the
geometry of Fig. 7(a) (scratch in the surface). For p
polarization the field distribution reproduces the de-
fect shape, with a depletion in the field-intensity dis-
tribution just above the scratch. In addition, a small
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interference pattern resulting from the interaction of
the illuminating field with the scattered one is visi-
ble. A contrast reversal is observed for the other
illumination polarization [Fig. 8(b)]. This type of re-
versal is well known from near-field optics.18

The defect above the surface shown in Fig. 9 gives
a stronger signal than the scratch. With the back-
scattered field being stronger, so is the interference
pattern. A similar contrast reversal, with the sur-
face defect appearing now as a depletion in the field
distribution, is observed when the illumination po-
larization is changed [Fig. 9(b)].

4. Conclusions

In this paper we have proposed a filtered nonretarded
scheme capable of analyzing small scatterers of high
permittivity embedded inside or deposited above a
surface. We have formally deduced the filtered
Green’s tensor associated with a two-layer medium in
the quasi-static approximation. We have shown
that the filtered scheme provides much more accurate
results, allowing for the simulation of high-
permittivity scatterers. In particular, the results
obtained with this new scheme more accurately fulfill
the boundary conditions imposed by Maxwell’s equa-
tions.

This new technique should be useful for the scat-
tering calculations of small defects on high-
permittivity surfaces, such as semiconductors. We
shall soon provide public access to the code for com-
puting the filtered Green’s tensor at the Computer
Physics Communications Program Library.1?

Appendix A: Expressions for the Filtered
Green’s Tensor

The following terms correspond to Eq. (17):

sin(kz|r|) — kglr|cos(kgr|)

h'(r) = Al
) 2r] : (&1)
F B &«
=g’ - — A2
£ =& 4w’R’ (A2)
B ’
P - s _8 &« @
8" =ithng” — oty ops T g (A3)
2ikpg?  20° !
8" = —kpg® - ok + gz - 02L 5T az 2
R R 2m°R°>  2w°R
a”
4R’ (ad)
where

a = sin(kgR)[Ci" — Ci ] + cos(kgR)[m — Si" — Si ],

(A5)
o = ky sin(kgR)[—m + Si” + Si'] + kg cos(kzR)
2 sin(kzR
X [Ci* - CiT] - %, (A6)
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o" = k3 sin(kzR)[Ci~ — Ci'] + k% cos(kzR)[m — Si~

R? R ’

with Ci* = Ci[(kr = kg)R] and Si™ = Si[(kr * kp)R].
The following terms correspond to Eq. (21):

+ Sif]

(A7)

¢

dh-gh- lu, a8)
B ’
'F gqs 0qu O‘qs
=—-== — A9
8= "B T 4x’R’  4n’R’ (49)
., ng Q OL’ OL”
F_ “5as _ as as as A10
L
where
o =7 — 2 Si(krR), (A11)
, 2 sin(kpR)
g = — —r (A12)
. 2sin(kpR) 2ky cos(kpR)
al = 22 — 7 . (A13)
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