Skip to main content
Log in

Equation for the density of particle-reinforced metal matrix composites: A new approach

  • Testing And Evaluation
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This paper presents a novel equation for the density of ceramic particle reinforced metal matrix composites. An overall density change occurs in composites due to the thermal mismatch between the metal matrix and the reinforcement. The thermal mismatch occurs because the coefficient of thermal expansion and the elastic properties are different for the matrix and the reinforcement. The values obtained using the proposed equation for density were compared with both the rule of mixtures for density and the experimental values obtained for aluminium and zinc alloy composites. The composite specimens were fabricated using compocasting technique (one of the types of liquid metallurgy route). The proposed mathematical model is found have better agreement with the experimental results at lower volume fractions of the reinforcement; however, some deviations were observed at higher volume fractions of the reinforcement. The proposed equation yields agreeable results for aluminium composites and fairly agreeable results for zinc alloy composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.C. Sharma, B.M. Girish, B.M. Satish, and R. Kamath: JMEP, 1998, 7(1), p. 93.

    Article  CAS  Google Scholar 

  2. S.C. Sharma: Metall. Trans., 2000, 31A, p. 773.

    Article  CAS  Google Scholar 

  3. L. Keith, R. Karasek, and L. Berk: J. Appl. Phys., 1981, 53(3), p. 1370.

    Google Scholar 

  4. J.E. Bishop and V.K. Kinra: Metall. Trans. A, 1995, 26A, p. 2773.

    Article  CAS  Google Scholar 

  5. S.C. Sharma, B.M. Girish, R. Kamath, and B.M. Satish: Wear, 1997, 213, p. 33.

    Article  CAS  Google Scholar 

  6. H.A. Hanna and F. Shehata: Inst. Lubrication Eng., 1993, 49(6), p. 473.

    CAS  Google Scholar 

  7. V.C. Nardone and K.M. Prewo: Scripta Metall., 1986, 20, pp. 43–50.

    Article  CAS  Google Scholar 

  8. H. Hung and M.B. Bush: Mater. Sci. Eng., 1997, A232, p. 63.

    Article  Google Scholar 

  9. H. Tota, T. Gouda, and M. Kobayashi: Mater. Sci. Eng., 1998, 14, p. 925.

    Google Scholar 

  10. M.B. Bush: Mater. Sci. Eng., 1992, A154, p. 139.

    Article  CAS  Google Scholar 

  11. O.B. Pederson: Acta. Metall., 1983, 31, p. 139.

    Article  Google Scholar 

  12. M. Hoffman, S. Skirl, W. Pompe, and J. Rodel: Acta Mater., 1999, 47, p. 565

    Article  CAS  Google Scholar 

  13. E.U. Lee: Metall. Trans. A, 1992, 23A, p. 2205.

    Article  CAS  Google Scholar 

  14. Y.T. Ziu and J.H. Devletian: Metal. Trans. A, 1992, 23A, p. 451.

    Google Scholar 

  15. Z. Trojanova, M. Pahutova, J. Kiehn, P. Lukac, and K.U. Kainer: in Proceedings of the 1st International Conference, San Sebastian, Spain, Sept 1996, p. 1001.

  16. B. Budiansky, J.W. Hutchinson, and J.C. Lambropoulos: Int. J. Solids Struct., 1983, 19, p. 337.

    Article  Google Scholar 

  17. M. Vogelsang, R.J. Arsenault, and R.M. Fisher: Metall. Trans., 1986, 17A, p. 379.

    Article  CAS  Google Scholar 

  18. R.J. Arsenault and N. Shi: Mater. Sci. Eng., 1986, 81, p. 175.

    Article  CAS  Google Scholar 

  19. R.J. Arsenault, L. Wang, and C.R. Feng: Acta Metall. Mater., 1991, 39, p. 47.

    Article  CAS  Google Scholar 

  20. N. Shi, B. Wilner, and R.J. Arsenault: Acta Metall. Mater., 1992 40, p. 2841.

    Article  CAS  Google Scholar 

  21. H.H. Ledbetter and M.W. Ausin: Mater. Sci. Eng., 1989, 89, p. 53.

    Article  Google Scholar 

  22. R. Hill: The Mathematical Theory of Plasticity, Oxford University Press, London, U.K., 1950, p. 97.

    Google Scholar 

  23. D.C. Dunand and A. Mortensen: Acta Metall., 1991, 39, p. 127.

    Article  CAS  Google Scholar 

  24. K.K. Chawla: Composite Materials, Springer-Verlag, New York, 1987, p. 177.

    Book  Google Scholar 

  25. J.D. Eshelby: “Elastic Inclusions and Inhomogeneities” in Progress in Solid Mechanics 2, I.N. Sneddon and R. Hill, ed., North-Holland, Amsterdam, The Netherlands, 1961, pp. 89–140.

    Google Scholar 

  26. R. Meharabian, R.G. Fick, and M.C. Flemings: Metall. Trans. A, 1974, 5, p. 1899.

    Article  Google Scholar 

  27. M. Gupta, T.S. Srivastan, F.A. Mohamed, and E.J. Lavernia: J. Mater. Sci., 28, 1993, p. 2245.

    Article  CAS  Google Scholar 

  28. Y.M. Ito, M. Rosenblatt, L.Y. Cheng, F.F. Lange, and A.G. Evans: Inst. J. Fract., 1981, 17, p. 483.

    Google Scholar 

  29. F.F. Lange: Fracture Mechanics of Ceramics, 1974, 2, p. 599.

    CAS  Google Scholar 

  30. C.K. Chao and L.Y. Kuo: J. Thermal Stresses, 1994, 17, p. 271.

    Article  Google Scholar 

  31. X.Q. Xu and D.F. Watt: Acta Mater., 44, 1996, p. 801.

    Article  CAS  Google Scholar 

  32. D.F. Watt, X.Q. Xu, and D.J. Lloyd: Acta Mater., 1996, 44, p. 789.

    Article  CAS  Google Scholar 

  33. L.L. Shaw and D.B. Miracle: Acta Mater., 1996, 44(5), p. 2043.

    Article  CAS  Google Scholar 

  34. P.R. Smith, C.G. Rhodes, and W.C. Revelos: Interfaces in Metal-Ceramics Composites, The Minerals, Metals and Materials Society, Warrendale, PA, 1989, p. 35.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, S.C. Equation for the density of particle-reinforced metal matrix composites: A new approach. J. of Materi Eng and Perform 12, 324–330 (2003). https://doi.org/10.1361/105994903770343187

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1361/105994903770343187

Keywords

Navigation