Skip to main content
Log in

Thermodynamic assessment of the Co-O system

  • Basic And Applied Research
  • Published:
Journal of Phase Equilibria

Abstract

The thermodynamic properties of CoO, Co3O4, and the liquid phase were assessed, and an optimized set of parameters of Gibbs energy functions is proposed. The two stable solid oxides, CoO and Co3O4, were both treated as stoichimetric compounds. The paramagneticantiferromagnetic transition of CoO is well represented by a magnetic ordering model. The Co3O4 spinel phase was described as a normal spinel at room temperature and with cation redistribution at high temperatures. A high-temperature anomaly of Co3O4 was interpreted as a normal-inverse spinel transition. An ionic two-sublattice model was used to model the liquid phase. A calculated phase diagram is presented, and values for the thermodynamic properties are compared with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Biltz: “On the Question of the Temperature Dependence of the Valency in Heterogeneous Systems,” Z. Phys. Chem., 1907, 67, pp. 561–75 (in German).

    Google Scholar 

  2. H.W. Foote and E.K. Smith: “On the Dissociation Pressures of Certain Oxides of Copper, Cobalt, Nickel, and Antimony,” J. Am. Chem. Soc., 1908, 30, pp. 1344–50.

    Article  Google Scholar 

  3. W.G. Mixter: “The Heat of Formation of the Oxides of Cobalt and Nickel; and Sixth Paper on the Heat of Combination of Acidic Oxides With Sodium Oxide,” Am. J. Sci., 1910, 30, pp. 193–201.

    Article  ADS  Google Scholar 

  4. P.H. Emmett and J.F. Shultz: “Equilibrium in the System Co-H2O-CoO-H2. Free Energy Changes for the Reaction CoO+H2=Co+H2O and the Reaction Co+1/2O2=CoO,” J. Am. Chem. Soc., 1929, 51, pp. 3249–62.

    Article  Google Scholar 

  5. P.H. Emmett and J.F. Shultz: “Equilibrium in the System Co-CO2-CoO-CO. Indirect Calculation of the Water Gas Equilibrium Constant,” J. Am. Chem. Soc., 1930, 52, pp. 1782–93.

    Article  Google Scholar 

  6. S.B. Hendricks, M.E. Jefferson, and J.F. Shultz: “The Transition Temperatures of Cobalt and of Nickel, Some Observations on the Oxides of Nickel,” Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem., 1930, 73, pp. 376–80.

    Google Scholar 

  7. M. Watanabe: “On the Equilibrium in the Reduction of Cobaltous Oxide by Carbon Monoxide,” Bull. Inst. Phys. Chem. Res. (Tokyo), 1930, 9, pp. 676–82 (in Japanese).

    Google Scholar 

  8. W.A. Roth and H. Havekoss: “Enthalpy of Formation of Cobalt (II) Oxide,” Z. Anorg. Allg. Chem., 1931, 195, pp. 239–40 (in German).

    Article  Google Scholar 

  9. H. von Wartenberg and W. Gurr: “Melting Diagrams of Refractory Oxides. III,” Z. Anorg. Allg. Chem., 1931, 196, pp. 374–83 (in German).

    Article  Google Scholar 

  10. H. von Wartenberg and E. Prophet: “Melting Diagrams of Refractory Oxides. V. Systems With MgO,” Z. Anorg. Allg. Chem., 1932, 208, pp. 369–81 (in German).

    Article  Google Scholar 

  11. Z. Shibata and I. Mori: “Reduction Equilibrium Between Metal Oxide and Hydrogen. I. Measurement of CoO+H2=Co+H2O Using a New Measurement Technique,” Z. Anorg. Allg. Chem., 1933, 212, pp. 305–16 (in German).

    Article  Google Scholar 

  12. M. Watanabe: “On the Dissociation Pressure of Cobalto-Cobaltic Oxide,” Bull. Inst. Phys. Chem. Res. (Tokyo), 1933, 12, pp. 255–63 (in Japanese).

    Google Scholar 

  13. A.U. Seybolt and C.H. Mathewson: “Solubility of Oxygen in Solid Cobalt and the Upper Transformation Point of the Metal,” Trans. AIME, 1935, 117, pp. 156–72.

    Google Scholar 

  14. L. Marick: “Variation of Resistance and Structure of Cobalt With Temperature and a Discussion of Its Photoelectric Emission,” Phys. Rev., 1936, 49, pp. 831–37.

    Article  ADS  Google Scholar 

  15. O.S. Edwards and H. Lipson: “An X-Ray Study of the Transformation of Cobalt,” J. Inst. Met. 1943, 69, pp. 177–88.

    Google Scholar 

  16. O.J. Kleppa: “On the Equilibrium CoO+H2=Co+H2O. The Molar Entropy of Cobaltous Oxide,” Svensk Kemisk Tidskrift, 1943, 55(2), pp. 18–25.

    Google Scholar 

  17. A.R. Troiano and J.L. Tokich: “The Transformation of Cobalt,” Trans. AIME, 1948, 175, pp. 728–41.

    Google Scholar 

  18. G.I. Chufarov, M.G. Zhuravleva, and E.P. Tatievskaya: “Dissociation Pressure of Oxides of Cobalt and Nickel,” Dokl. Akad. Nauk SSSR, 1950, 73, pp. 1209–12 (in Russian).

    Google Scholar 

  19. P. Asanti and E.J. Kohlmeyer: “On the Thermal Properties of Compounds of Cobalt With Oxygen and Sulphur,” Z. Anorg. Allg. Chem., 1951, 265, pp. 90–98 (in German).

    Article  Google Scholar 

  20. J.B. Newkirk and A.H. Geisler: “High Temperature Hexagonal Phase of Cobalt,” Acta Metall., 1953, 1, pp. 456–57.

    Article  Google Scholar 

  21. G. Assayag and H. Bizette: “On the Specific Heat Anomaly of Cobalt Oxide CoO and the Solid Solutions CoO-NiO and CoO-CuO,” Compt. Rend., 1954, 239, pp. 238–47 (in French).

    Google Scholar 

  22. B.J. Boyle, E.G. King, and K.C. Conway: “Heats of Formation of Nickel and Cobalt Oxides (NiO and CoO) of Combustion Calorimetry,” J. Am. Chem. Soc., 1954, 76, pp. 3835–37.

    Article  Google Scholar 

  23. R.E. Carter and F.D. Richardson: “An Examination of the Decrease of Surface-Activity Method of Measuring Self-Diffusion Coefficients in Wustite and Cobaltous Oxide,” J. Met., 1954, 6, pp. 1244–57.

    Google Scholar 

  24. V. V. Averin, A. Y. Polyakov, and A.M. Samarin: Izv. Akad. Nauk. SSSR., Otd. Tekhn, 1957, p. 120 (in Russian).

  25. E.G. King: “Heat Capacities at Low Temperatures and Entropies at 298.15 K of Nickelous Oxide, Cobaltous Oxide and Cobalt Spinel,” J. Am. Chem. Soc., 1957, 79, pp. 2399–400.

    Article  Google Scholar 

  26. K. Kiukkola and C. Wagner: “Measurements on Galvanic Cells Involving Solid Electrolytes,” J. Electrochem. Soc., 1957, 104(6), pp. 379–87.

    Article  Google Scholar 

  27. M. Hansen and K. Anderko, ed.: Constitution of Binary Alloys, McGraw-Hill Book Company, Inc., New York, NY, 1958, pp. 487–88.

    Google Scholar 

  28. F. Hund and W. Dürrwächter: “Electrochemical Investigations of Reduction Equilibria of Metal Oxides,” Naturwiss., 1958, 45, p. 209 (in German).

    Google Scholar 

  29. E.G. King and A.U. Christensen: “Heat Contents Above 298.15 K of Oxides of Cobalt and Nickel,” J. Am. Chem. Soc., 1958, 80, pp. 1800–01.

    Article  Google Scholar 

  30. J. Aubry and C. Gleitzer: “Study of the Reduction Equilibria of Cobalt (II) Oxide by Hydrogen,” Bull. Soc. Chim. Fr., 1960, pp. 2086–87 (in French).

  31. V.F. Balakirev and G.I. Chufarov: “Equilibrium Constant of Co-H and Co-O-H Systems,” Dokl. Akad. Nauk SSSR, 1961, 138, pp. 112–14 (in Russian).

    Google Scholar 

  32. C. Gleitzer: “Non-Stoichiometry of Cobalt (II) Oxide,” Bull. Soc. Chim. Fr., 1962, pp. 75–77 (in French).

  33. E. Aukrust and A. Muan: “Activities of Components in Oxide Solid Solutions: The Systems CoO-MgO, CoO-MnO, and CoO-“FeO” at 1200 °C,” Trans. Metall. Soc. AIME, 1963, 227, pp. 1378–80.

    Google Scholar 

  34. A. Burdese, F. Abbattista, and R. Damiani: “Reduction Equilibria of Iron, Cobalt and Nickel Silicates,” La Metallurgia Italiana, 1963, 55, pp. 557–59 (in Italian).

    Google Scholar 

  35. T.R. Ingraham: “Thermochemistry of the Co-S-O System From 950 to 1200 K,” Can. Metall. Quart., 1964, 3(3), pp. 221–34.

    Article  Google Scholar 

  36. W.L. Roth: “The Magnetic Structure of Co3O4,” J. Phys. Chem. Solids, 1964, 25, pp. 1–10.

    Article  ADS  Google Scholar 

  37. E.S. Tankins, N.A. Gokcen, and G.R. Belton: “The Activity and Solubility of Oxygen in Liquid Iron, Nickel, and Cobalt,” Trans. Metall. Soc. AIME, 1964, 230, pp. 820–27.

    Google Scholar 

  38. R.W. Taylor and H. Schmalzried: “The Free Energy of Formation of Some Titanates, Silicates, and Magnesium Aluminate From Measurements Made With Galvanic Cells,” J. Phys. Chem., 1964, 68(9), pp. 2444–49.

    Article  Google Scholar 

  39. C.B. Alcock, K. Sudo, and S. Zador: “The Free Energies of Formation of the Sulfates of Cobalt, Copper, Nickel, and Iron,” Trans. Metall. Soc. AIME, 1965, 233, pp. 655–61.

    Google Scholar 

  40. H.M. O’Bryan and G. Parravano: “The Univariant Equilibrium Between the Oxides of Cobalt” in Reactivity of Solids: 5th International Symposium on the Reactivity of Solids, G-M. Schwab, ed., Elsevier Publishing Company, Amsterdam, 1965, pp. 256–68.

    Google Scholar 

  41. J.D. Tretjakow and H. Schmalzried: “On the Thermodynamics of Spinels (Chromites, Ferrites, Aluminates),” Ber. Bunsenges. Phys. Chem., 1965, 69(5), pp. 396–402 (in German).

    Article  Google Scholar 

  42. W.A. Fischer and W. Ackermann: “Direct Electrochemical Determination of Oxygen Content of Metal Melts, I. Investigation of Iron, Cobalt, Nickel and Copper Melts,” Arch. Eisenhüttenwes., 1966, 37, pp. 43–47 (in German).

    Article  Google Scholar 

  43. L.M. Lenev and I.A. Novokhatskii: “Thermodynamic Properties of Cobalt and Nickel Chromites,” Russ. J. Phys. Chem., 1966, 40(9), pp. 1097–99.

    Google Scholar 

  44. S. Müller and P. Scholten: “The Crystal Structure of Cobalt at High Temperature,” Z. Angew. Phys., 1966, 20(6), pp. 498–502 (in German).

    Google Scholar 

  45. B.F. Belov, I.A. Novokhatskiy, and Y.A. Lobanov: “Determination of the Solubility of Oxygen in Molten Iron, Cobalt and Nickel,” Russ. Metall., 1967, 3, pp. 19–23.

    Google Scholar 

  46. J. Moriyama, N. Sato, H. Asao, and Z. Kozuka: “Thermodynamic Study on the Systems of Metals and Their Oxides by EMF Measurements Using Solid Electrolyte,” Mem. Fac. Eng., Kyoto Univ., 1969, 31, pp. 253–67.

    Google Scholar 

  47. D.D. Wagman, W.H. Evans, V.B. Parker, I. Halow, S.M. Bailey, and R.H. Schumm, ed.: NBS Technical Note 270–4: Selected Values of Chemical Thermodynamic Properties, Tables for Elements 35 Through 53 in the Standard Order of Arrangement, U.S. Department of Commerce, National Bureau of Standards, Washington, DC, 1969, p. 54.

    Google Scholar 

  48. W.G. Bugden and J.N. Pratt: “Solid Electrolyte Galvanic Cell Studies: Free Energies of Formation of CoO and Co3O4,” Trans. Inst. Mining Metall., 1970, 79, pp. c221–25.

    Google Scholar 

  49. W.A. Fischer and G. Pateisky: “The Suitability of Solid Metal-Metal Oxide Mixtures as Reference Potentials in Oxygen Measurements Cells,” Arch. Eisenhüttenwes., 1970, 41, pp. 661–73 (in German).

    Article  Google Scholar 

  50. J. Chenavas and J.C. Joubert: “Low-spin → High-Spin State Transition in High Pressure Cobalt Sesquioxide,” Solid State Commun., 1971, 9, pp. 1057–60.

    Article  ADS  Google Scholar 

  51. W.A. Fischer and D. Janke: “The Gibbs Energy of Dissolution of Oxygen in Copper-Nickel, Copper-Cobalt and Copper-Iron Melts,” Z. Metallkde., 1971, 62, pp. 747–51 (in German).

    Google Scholar 

  52. D.M. Chizhikov, Y.V. Tsvetkov, E.K. Kazenas, and V.K. Tagirov: “Mass Spectrometric Study of the Vaporisation of Cobalt Oxides,” Zh. Neorg. Khim., 1972, 17(4), pp. 891–94 (in Russian).

    Google Scholar 

  53. J.P. Coutures and M. Foëx: “On the Solidification Temperature and the Nonstoichiometry of Cobaltous Oxide in an Oxidizing Atmosphere,” Nat. Bur. Stand. Spec. Publ. 364, 1972, pp. 471–81.

    Google Scholar 

  54. H. Rau and J.F.R. Guedes de Carvalho: “Equilibria of the Reduction of NiO and CoO With Hydrogen Measured With a Palladium Membrane,” J. Chem. Thermodyn., 1973, 5, pp. 387–91.

    Article  Google Scholar 

  55. Y.I. Mel’nik, D.M. Chizhikov, Y.V. Tsvetkov, and E.K. Kazenas: “Chromatographic Study of Heterogeneous Equilibria in the Cobalt-Oxygen and Cobalt Monoxide-Silicon Dioxide Systems,” Russ. J. Phys. Chem., 1974, 48(1), pp. 64–66.

    Google Scholar 

  56. G. Rog, B. Langanke, G. Borchardt, and H. Schmalzried: “Determination of the Standard Gibbs Free Energies of Formation of the Silicates of Cobalt, Magnesium, and Strontium by E.M.F. Measurements,” J. Chem. Thermodyn., 1974, 6, pp. 1113–19.

    Article  Google Scholar 

  57. G. Inden: “Determination of Chemical and Magnetic Interchange Energies in BCC Alloys. I. General Treatment,” Z. Metallkde., 1975, 66(10), pp. 577–82.

    Google Scholar 

  58. G. Lefebvre, M. Dirand, and J. Hertz: “Determination of the Ellingham Curves of Oxidation of Monovalent Copper and Divalent Cobalt by the Point Electrode Method,” C. R. Acad. Sc. Paris, Sér. C, 1975, 281, pp. 67–69 (in French).

    Google Scholar 

  59. E.S. Ramakrishnan, O.M. Sreedharan, and M.S. Chandrasekharaiah: “The Free Energy of Formation of Iridium Oxide by Solid Electrolyte Galvanic Cell,” J. Electrochem. Soc., 1975, 122(3), pp. 328–31.

    Article  Google Scholar 

  60. T. Chiang and Y.A. Chang: “The Activity Coefficient of Oxygen in Binary Liquid Metal Alloys,” Metall. Trans. B, 1976, 7B, pp. 453–67.

    Article  ADS  Google Scholar 

  61. E. Fryt: “Defect Structure in CoO,” Oxid. Met., 1976, 10(5), pp. 311–27.

    Article  Google Scholar 

  62. G. Rog: “Studies on the Thermodynamic Properties of Chosen Oxide Systems by the Solid Galvanic Cell Technique,” Zeszyty Naukowe Akademii Górniczo-Hutniczej Imienia Stanislawa Staszica (Kraków), 1976, 543, pp. 1–138 (in Polish).

    Google Scholar 

  63. G.K. Sigworth and J.F. Elliott: “The Thermodynamics of Dilute Liquid Cobalt Alloys,” Can. Metall. Quart., 1976, 15(2), pp. 123–27.

    Article  Google Scholar 

  64. K. Enoki, S. Hagiwara, H. Kaneko, and Y. Saito: “Studies on the Oxidation of Cobalt Using a Solid-State Galvanic Cell,” J. Jpn. Inst. Met., 1977, 41, pp. 505–10 (in Japanese).

    Article  Google Scholar 

  65. N. Kemori, I. Katayama, and Z. Kozuka: “Measurements of Standard Molar Free Energies of Formation of NiO, Cu2O and CoO by EMF Method at High Temperatures,” J. Jpn. Inst. Met., 1977, 41(8), pp. 803–08 (in Japanese).

    Article  Google Scholar 

  66. S-I. Pyun and F. Müller: “Chemical Potential of Oxygen in Reference Electrodes of the Two-Phase Mixtures Mn/MnO, Fe/“FeO”, Co/CoO, Ni/NiO, Cu/Cu2O and Cr/Cr2O3,” High Temp.—High Pressures, 1977, 9, pp. 111–20 (in German).

    Google Scholar 

  67. O.M. Sreedharan, M.S. Chandrasekharaiah, and M.D. Karkhanavala: “Thermodynamic Stabilities of Cobalt Oxides,” High Temp. Sci., 1977, 9, pp. 109–18.

    Google Scholar 

  68. I-M. Chou: “Calibration of Oxygen Buffers at Elevated P and T Using the Hydrogen Fugacity Sensor,” Am. Mineral., 1978, 63, pp. 690–703.

    Google Scholar 

  69. P. Deshmukh, T.R. Mankhand, and P.M. Prasad: “Decomposition Characteristics of Cobalto-Cobaltic Oxide,” Indian J. Technol., 1978, 16, pp. 311–16.

    Google Scholar 

  70. M. Hillert and M. Jarl: “A Model for Alloying Effects in Ferromagnetic Metals,” Calphad, 1978, 2(3), pp. 227–38.

    Article  Google Scholar 

  71. D. Janke: “Electrolytic Deoxidation of Cobalt, Nickel, Copper and Silver Melts,” Z. Metallkde., 1978, 69(5), pp. 302–07 (in German).

    Google Scholar 

  72. B. Touzelin: “Study of the Oxides of Cobalt and Nickel by High Temperature X-Ray Diffraction in Controlled Atmosphere,” Rev. Int. Hautes Tempér. Réfract., Fr., 1978, 15, pp. 33–41 (in French).

    Google Scholar 

  73. W. Betteridge: “The Properties of Metallic Cobalt,” Prog. Mater. Sci., 1979, 24, pp. 51–142.

    Article  Google Scholar 

  74. B. Björkman and E. Rosén: “Thermodynamic Studies of High Temperature Equilibria. 21. Determination of the Stability of Co3O4 in the Temperature Range 970-1340 K by Solid State EMF Measurements,” Chem. Scr., 1979, 13, pp. 139–42.

    Google Scholar 

  75. M. Iwase, M-O. Yasuda, and T. Mori: “Free Energy of Formation of MoO2 at Steelmaking Temperature From EMF Measurement,” Electrochim. Acta, 1979, 24, pp. 261–66.

    Article  Google Scholar 

  76. J. Myers and W.D. Gunter: “Measurement of the Oxygen Fugacity of the Cobalt-Cobalt Oxide Buffer Assemblage,” Am. Mineral., 1979, 64, pp. 224–28.

    Google Scholar 

  77. M. Seppänen, M. Kytö, and P. Taskinen: “Stability of the Ternary Phases in the La-Co-O System,” Scand. J. Metall., 1979, 8, pp. 199–204.

    Google Scholar 

  78. H. Oppermann, G. Stöver, L.M. Chriplowitsch, and I.E. Paukov: “Investigation of the Thermodynamic Properties of Co3O4,” Z. Anorg. Allg. Chem., 1980, 461, pp. 173–76 (in German).

    Article  Google Scholar 

  79. J.P. Cyr, J. Dellacherie, and D. Balesdent: “Standard Data for the Formation of Solid Cobaltous Oxide,” J. Chem. Eng. Data, 1981, 26, pp. 319–21.

    Article  Google Scholar 

  80. E. Jacobsson and E. Rosén: “Thermodynamic Studies of High Temperature Equilibria 25. Solid State EMF Studies of the Systems Fe-FeO, Ni-NiO and Co-CoO in the Temperature Range 1000–1600 K,” Scand. J. Metall., 1981, 10, pp. 39–43.

    Google Scholar 

  81. J. Kleinclauss, R. Mainard, H. Fousse, N. Ciret, D. Bour, and A.J. Pointon: “Thermomagnetic Study of the Antiferromagnetic Solid Solutions pMnO-qCoO,” J. Phys. C: Solid State Phys., 1981, 14, pp. 1163–77.

    Article  ADS  Google Scholar 

  82. K. Koumoto and H. Yanagida: “Decomposition Pressure of Co3O4 Determined From Electrical Conductivity Measurements,” Jpn. J. Appl. Phys., 1981, 20(2), pp. 445–46.

    Article  ADS  Google Scholar 

  83. L.M. Khriplovich, E.V. Kholopov, and I.E. Paukov: “Heat Capacity and Thermodynamic Properties of Co3O4 From 5 to 307 K Low-Temperature Transition,” J. Chem. Thermodyn., 1982, 14, pp. 207–17.

    Article  Google Scholar 

  84. T. Nishizawa and K. Ishida: “The Co (Cobalt) System,” Bull. Alloy Phase Diagrams, 1983, 4(4), pp. 387–90.

    Article  Google Scholar 

  85. P. Taskinen: “The Standard Gibbs Energy of Formation of CoO(s) at 1450–1600 °C,” Scand. J. Metall., 1983, 12, pp. 255–56.

    Google Scholar 

  86. F.K. chibirova, I.D. Belova, D.S. Zakhar’in, S.I. Reiman, Y.E. Roginskaya, and Y.N. Venevtsev: “High-Spin Co(III) in Co3−xO4 Films With Defects,” Sov. Phys. Solid State, 1984, 26(3), pp. 541–42.

    Google Scholar 

  87. R. Flamand: “Thermal Decomposition of the Cobalt Oxide Co3O4,” High Temp.—High Pressures, 1984, 16, pp. 323–28 (in French).

    Google Scholar 

  88. B. Jansson: Evaluation of Parameters in Thermochemical Models Using Different Types of Experimental Data Simultaneously, TRITA-MAC 234, Royal Institute of Technology, Stockholm, Sweden, 1984.

    Google Scholar 

  89. M.W. Chase, C.A. Davies, J.R. Downey, D.J. Frurip, R.A. McDonald, and A.N. Syverud: “JANAF Thermochemical Tables, 3rd ed.,” J. Phys. Chem. Ref. Data, 1985, 14(Suppl. 1), pp. 923–26.

    Google Scholar 

  90. M. Hillert, B. Jansson, B. Sundman, and J. Agren: “A Two-Sublattice Model for Molten Solutions With Different Tendency for Ionization,” Metall. Trans. A, 1985, 16(2), pp. 261–66.

    Article  Google Scholar 

  91. K.T. Jacob and J.P. Hajra: “Thermodynamic Properties and Phase Boundaries of Co-O Solutions,” Z. Metallkde., 1985, 76(10), pp. 709–13.

    Google Scholar 

  92. O.A. Nabutovskaya, G. Opperman, I.E. Paukov, and L.M. Khriplovich: “Thermodynamic Properties of Cobaltous Oxide at 5–238 K,” Russ. J. Phys. Chem., 1985, 59(5), pp. 731–32.

    Google Scholar 

  93. D. Narducci, F. Negroni, and C.M. Mari: “High Temperature Standard Gibbs Free Energy Determinations for Co-O Systems by E.M.F. Measurements. A Statistical Approach to Evaluate the Reliability of the Current Methods,” Mater. Chem. Phys., 1985, 12, pp. 377–88.

    Article  Google Scholar 

  94. H.St.C. O’Neill: “Thermodynamics of Co3O4: A Possible Electron Spin Unpairing Transition in Co3+,” Phys. Chem. Minerals, 1985, 12, pp. 149–54.

    Article  ADS  Google Scholar 

  95. B. Sundman, B. Jansson, and J-O. Andersson: “The Thermo-Calc Databank System,” Calphad, 1985, 9(2), pp. 153–90.

    Article  Google Scholar 

  96. E.J. Grimsey and K.A. Reynolds: “Equilibrium Oxygen Pressure of (Co3O4+CoO) From 1173 to 1228 K,” J. Chem. Thermodyn., 1986, 18, pp. 473–76.

    Article  Google Scholar 

  97. R.D. Holmes, H.St.C. O’Neill, and R.J. Arculus: “Standard Gibbs Free Energy of Formation for Cu2O, NiO, CoO, and FexO: High Resolution Electrochemical Measurements Using Zirconia Solid Electrolytes From 900–1400 K,” Geochim. Cosmochim. Acta, 1986, 50, pp. 2439–52.

    Article  ADS  Google Scholar 

  98. A.F. Guillermet: “Critical Evaluation of the Thermodynamic Properties of Cobalt,” Int. J. Thermophys., 1987, 8(4), pp. 481–510.

    Article  ADS  Google Scholar 

  99. H.St.C. O’Neill: “Free Energies of Formation of NiO, CoO, Ni2SiO4, and Co2SiO4,” Am. Mineral., 1987, 72, pp. 280–91.

    Google Scholar 

  100. G.M. Kale, S.S. Pandit, and K.T. Jacob: “Thermodynamics of Cobalt (II, III) Oxide (Co3O4): Evidence of Phase Transition,” Trans. Japan Inst. Met., 1988, 29(2), pp. 125–32.

    Article  Google Scholar 

  101. X. Liu and C.T. Prewitt: “High-Temperature X-ray Diffraction Study of Co3O4: Transition From Normal to Disordered Spinel,” Phys. Chem. Minerals, 1990, 17, pp. 168–72.

    Article  ADS  Google Scholar 

  102. T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, ed.: Binary Alloy Phase Diagrams Second Edition, Materials Information Society, OH, 1990, pp. 1214–17.

    Google Scholar 

  103. A.T. Dinsdale: “SGTE Data for Pure Elements,” Calphad, 1991, 15(4), pp. 317–425.

    Article  Google Scholar 

  104. B. Sundman: “An Assessment of the Fe-O System,” J. Phase Equilib., 1991, 12(1), pp. 127–40.

    Article  Google Scholar 

  105. K. Mocala, A. Navrotsky, and D.M. Sherman: “High-Temperature Heat Capacity of Co3O4 Spinel: Thermally Induced Spin Unpairing Transition,” Phys. Chem. Minerals, 1992, 19, pp. 88–95.

    Article  ADS  Google Scholar 

  106. V.I. Kuznetsov, V.A. Sadykov, V.A. Razdobarov, and A.G. Klimenko: “The Structural Features of Cobalt Oxides: 57Fe Mössbauer Spectroscopy, TEM, and Static Magnetic Susceptibility Measurements,” J. Solid State Chem., 1993, 104, pp. 412–21.

    Article  ADS  Google Scholar 

  107. H.St.C. O’Neill and M.I. Pownceby: “Thermodynamic Data From Redox Reactions at High Temperatures. I. An Experimental and Theoretical Assessment of the Electrochemical Method Using Stabilized Zirconia Electrolytes, With Revised Values for the Fe-“Fe-O”, Co-CoO, Ni-NiO and Cu-Cu2O Oxygen Buffers, and New Data for the W-WO2 Buffer,” Contrib. Mineral. Petrol., 1993, 114, pp. 293–314.

    ADS  Google Scholar 

  108. B. Hallstedt, D. Risold, and L.J. Gauckler: “Thermodynamic Assessment of the Copper-Oxygen System,” J. Phase Equilib., 1994, 15(5), pp. 483–99.

    Article  Google Scholar 

  109. M. Catti and G. Sandrone: “Ab initio Study of Corundum-Like Me2O3 Oxides (Me=Ti, V, Cr, Fe, Co, Ni),” Faraday Discuss., 1997, 106, pp. 189–203.

    Article  ADS  Google Scholar 

  110. Scientific Group Thermodata Europe: “SGTE Substance Database at KTH,” Stockholm, Sweden, 1997.

  111. W. Jauch, M. Reehuis, H.J. Bleif, and F. Kubanek: “Crystallographic Symmetry and Magnetic Structure of CoO,” Phys. Rev. B, 2001, 64(5), pp. 052102-1–052102-3.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, M., Hallstedt, B. & Gauckler, L.J. Thermodynamic assessment of the Co-O system. JPE 24, 212–227 (2003). https://doi.org/10.1361/105497103770330514

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1361/105497103770330514

Keywords

Navigation