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OPTIMAL BOUNDS FOR THE VOLUMES OF

KÄHLER-EINSTEIN FANO MANIFOLDS

KENTO FUJITA

Abstract. We show that any n-dimensional Fano manifold X

admitting Kähler-Einstein metrics satisfies that the anti-canonical
volume is less than or equal to the value (n+ 1)n. Moreover, the
equality holds if and only if X is isomorphic to the n-dimensional
projective space.

Contents

1. Introduction 1
2. Preliminaries 4
3. Ding polystability 9
4. Ding semistability and filtered linear series 13
5. Proofs 23
References 23

1. Introduction

An n-dimensional smooth complex projective variety X is said to
be a Fano manifold if the anti-canonical divisor −KX is ample. If
n ≤ 3, then the anti-canonical volume ((−KX)

·n) is less than or equal
to (n+1)n, and the equality holds if and only if X is isomorphic to the
projective space Pn by [Isk77, MM81]. However, if n ≥ 4, there exists
an n-dimensional Fano manifold X such that ((−KX)

·n) > (n + 1)n

holds (see [IP99, p. 128] for example). Recently, Berman and Berndts-
son [BB11] conjectured that, if X admits Kähler-Einstein metrics, then
the value ((−KX)

·n) would be less than or equal to (n + 1)n. In fact,
if X is toric, then the conjecture is true by [BB11, Theorem 1] and
[NP14, Proposition 1.3]. Moreover, Berman and Berndtsson [BB12]
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2 KENTO FUJITA

proved the above conjecture under the assumption that X admits a
Gm-action with finite number of fixed points.
The purpose of this article is to refine the result [BB12] in full gen-

erality. The following is the main result in this article.

Theorem 1.1 (Main Theorem). Let X be an n-dimensional Fano man-

ifold admitting Kähler-Einstein metrics. If ((−KX)
·n) ≥ (n+1)n, then

X ≃ Pn.

The strategy to prove Theorem 1.1 is algebraic and is completely dif-
ferent from the argument in [BB12]. For a Fano manifoldX , recall that,
X admits Kähler-Einstein metrics if and only if the pair (X,−KX) is
K-polystable (see [Tia97, Don05, CT08, Sto09, Mab08, Mab09, Bm12,
CDS15a, CDS15b, CDS15c, Tia12]). In [Bm12], Berman proved the
“only if” direction by viewing the slope of the Ding functional (see
[Din88]) along a geodesic ray in the space of Kähler potentials. Berman
also treated the case thatX is a Q-Fano variety, that is, a complex pro-
jective variety which is log terminal and −KX is an ample Q-Cartier
divisor. In this article, we heavily use Berman’s results [Bm12]. In
Section 3 of this article, we introduce the notions of Ding polystability

and Ding semistability. These notions are nothing but interpretations
of Berman’s formula for the slope of the Ding functional. The result in
[Bm12, §3] shows that, if a Q-Fano variety X admits Kähler-Einstein
metrics, then X is Ding polystable (and also Ding semistable, see The-
orem 3.2). A Q-Fano variety X is said to be Ding semistable if the Ding
invariant Ding(X ,L) satisfies that Ding(X ,L) ≥ 0 for any normal test
configuration (X ,L)/A1 of (X,−rKX) (see Section 3 in detail). The
key idea for the proof of Theorem 1.1 is constructing specific test con-
figurations of (X,−rKX) from any nonzero proper closed subscheme
Z ⊂ X and calculating those Ding invariants and taking the limit.
The construction of test configurations is similar to the construction in
[Fuj15a, Fuj15b]. We consider a sequence of test configurations. The
following is one of the main consequence of the key idea.

Theorem 1.2 (=Theorem 4.10). Let X be a Q-Fano variety. Assume

that X is Ding semistable. Take any nonempty proper closed subscheme

∅ 6= Z ( X corresponds to an ideal sheaf 0 6= IZ ( OX . Let σ : X̂ → X
be the blowup along Z, let F ⊂ X̂ be the Cartier divisor defined by the

equation OX̂(−F ) = IZ · OX̂ . Then we have β(Z) ≥ 0, where

β(Z) := lct(X ; IZ) · volX(−KX)−
∫ ∞

0

volX̂ (σ∗(−KX)− xF ) dx.
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Note that, vol is the volume function (see Definition 2.1), and lct(X ; IZ)
is the log canonical threshold of IZ with respects to X (see Definition

2.6).

More generally, we construct a sequence of test configurations from
filtered linear series in Section 4.2. From Theorem 1.2, we can imme-
diately show the following corollary.

Corollary 1.3 (see Theorem 5.1). Let X be an n-dimensional Q-Fano

variety. Assume that X is Ding semistable. Then we have ((−KX)
·n) ≤

(n+ 1)n.

Theorem 1.1 is immediately obtained by Corollary 1.3 and a descrip-
tion of Seshadri constants (Theorem 2.3), together with the results
[CMSB02] and [Keb02]. For detail, see Section 5.
The article is organized as follows. In Section 2, we recall the notions

of the volume functions, Seshadri constants, log canonical thresholds
and K-stability. We characterize Seshadri constants in terms of the
volume function in Theorem 2.3. The theorem is important in order to
characterize the projective space. In Section 3, we recall Berman’s re-
sult [Bm12]. We introduce the notions of Ding invariants, Ding polysta-
bility and Ding semistability. Section 4 is the core of this article. In
Section 4.1, we consider a general theory of the saturation of filtered
linear series. In Section 4.2, we construct a sequence of semi test con-
figurations from given filtered linear series. The construction is similar
to the one in [Szé14]. Our construction enables us to calculate (a kind
of) the limit of those Ding invariants via the saturation of the given
filtration. See Theorem 4.9 in detail. In Section 4.3, motivated by the
work of Ross and Thomas [RT07], we consider specific test configura-
tions obtained by the natural filtered linear series coming from fixed
closed subschemes. By taking the limit of those Ding invariants, we
get Theorem 4.10. In Section 5, we prove Theorem 1.1. This is an
immediate consequence of previous sections.

Acknowledgments. The author thanks Doctor Yuji Odaka, who in-
troduced him the importance of [Bm12, §3] and helped him to deduce
Proposition 3.5, and Professor Robert Berman, who gave him com-
ments related to [Bm12]. The author is partially supported by a JSPS
Fellowship for Young Scientists.

Throughout this paper, we work in the category of algebraic (sepa-
rated and of finite type) scheme over the complex number field C. A
variety means a reduced and irreducible algebraic scheme. For a pro-
jective surjective morphism α : X → C with X a normal variety and
C a smooth curve, let KX/C := KX − α∗KC be the relative canonical
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divisor. Moreover, for a closed point t ∈ C, let Xt be the scheme-
theoretic fiber of α at t ∈ C. For a Q-Fano variety X , ω is said to be
a Kähler-Einstein metric on X if ω is a Kähler-Einstein metric on the
smooth locus Xsm of X and the volume of ω on Xsm coincides with the
value ((−KX)

·n) (see [BBEGZ11, Bm12] for detail).
For any c ∈ R, let ⌊c⌋ ∈ Z be the biggest integer which is not bigger

than c and let ⌈c⌉ ∈ Z be the smallest integer which is not less than c.

2. Preliminaries

In this section, we recall some basic definitions and see those prop-
erties.

2.1. The volumes of divisors.

Definition 2.1 (see [Laz04a, Laz04b]). Let X be an n-dimensional
projective variety. For a Cartier divisor L on X , we set

volX(L) := lim sup
k→∞

h0(X,OX(kL))

kn/n!
.

We know that the limsup computing volX(L) is actually a limit (see
[Laz04b, Example 11.4.7]). If L and L′ are numerically equivalent, then
volX(L) = volX(L

′) (see [Laz04a, Proposition 2.2.41]). Moreover, we
can extend uniquely to a continuous function

volX : N1(X) → R≥0

(see [Laz04a, Corollary 2.2.45]).

2.2. Seshadri constants, pseudo-effective thresholds.

Definition 2.2. LetX be a projective variety, L be an ample Q-divisor
on X , ∅ 6= Z ( X be a nonempty proper subscheme corresponds to an
ideal sheaf 0 6= IZ ( OX , σ : X̂ → X be the blowup along Z, and F ⊂
X̂ be the Cartier divisor defined by the equation OX̂(−F ) = IZ · OX̂ .

(1) The Seshadri constant εZ(L) of L along Z is defined by

εZ(L) := sup{x ∈ R>0 | σ∗L− xF : ample}.
(2) The pseudo-effective threshold τZ(L) of L along Z is defined by

τZ(L) := sup{x ∈ R>0 | σ∗L− xF : big}.
If X is a Q-Fano variety, then we write εZ := εZ(−KX) and τZ :=
τZ(−KX) for simplicity.
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Theorem 2.3. Let X be an n-dimensional projective variety with n ≥
2, L be an ample Q-divisor on X, p ∈ X be a smooth closed point,

σ : X̂ → X be the blowup along p, and F ⊂ X̂ be the exceptional

divisor of σ.

(1) For any x ∈ R≥0, we have

volX̂(σ
∗L− xF ) ≥ ((σ∗L− xF )·n) = (L·n)− xn.

(2) Set Λp(L) := {x ∈ R≥0 | volX̂(σ∗L − xF ) = ((σ∗L − xF )·n)}.
Then we have

εp(L) = max{x ∈ R≥0 | y ∈ Λp(L) for all y ∈ [0, x]}.
Proof. Take any k ∈ Z>0 such that kL is Cartier. For any j ∈ Z>0, we
have

h0 (jF, σ∗OX(kL)|jF ) =

j−1
∑

l=0

(

n− 1 + l

n− 1

)

=

(

n− 1 + j

n

)

,

hi (jF, σ∗OX(kL)|jF ) = 0 (if i > 0),

since we have exact sequences

0 → OPn−1(l) → σ∗OX(kL)|(l+1)F → σ∗OX(kL)|lF → 0

for all 1 ≤ l ≤ j − 1.
(1) We can assume that x ∈ Q>0 since the function volX̂(σ

∗L− xF )
is continuous. Take any sufficiently large k ∈ Z>0 with kx ∈ Z>0 and
kL Cartier. Since

H1
(

X̂, σ∗OX(kL)
)

≃ H1 (X,OX(kL)) = 0,

we get the following exact sequence:

0 → H0
(

X̂,OX̂(σ
∗(kL)− kxF )

)

→ H0
(

X̂, σ∗OX(kL)
)

→ H0 (kxF, σ∗OX(kL)|kxF ) → H1
(

X̂,OX̂(σ
∗(kL)− kxF )

)

→ 0.

Thus we have

h0
(

X̂,OX̂(σ
∗(kL)− kxF )

)

≥ h0 (X,OX(kL))−
(

n− 1 + kx

n

)

=
(L·n)− xn

n!
kn + o(kn).

(2) Let a be the right-hand side of the equation in (2). For any nef
divisor M , the volume of M is equal to the self intersection number.
Thus the inequality εp(L) ≤ a is obvious. In particular, we have a > 0.
Take any ε ∈ R>0 such that a − ε ∈ Q>0. It is enough to show that
σ∗L− (a− ε)F is ample in order to show the inequality εp(L) ≥ a. Fix
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δ ∈ Q>0 such that δ < εp(L), that is, σ∗L − δF is ample. Take any
rational number t with

0 ≤ t < min

{

1,
a− ε

δ
,

ε

a− δ

}

,

and set xt := (a − ε − tδ)/(1 − t). We note that xt ∈ (0, a) ∩ Q.
Moreover, we have

σ∗L− (a− ε)F − t(σ∗L− δF ) = (1− t)(σ∗L− xtF ).

Take any sufficiently large k ∈ Z>0 with kxt ∈ Z>0 and kL Cartier.
Then, from the exact sequence

0 → OX̂ (σ∗(kL)− kxtF ) → OX̂ (σ∗(kL)) → σ∗OX(kL)|kxtF → 0

and the previous arguments, we have

lim sup
k

h1
(

X̂,OX̂(σ
∗(kL)− kxtF )

)

kn/n!

= lim sup
k

(

h0
(

X̂,OX̂(σ
∗(kL)− kxtF )

)

kn/n!

+
h0 (kxtF, σ

∗OX(kL)|kxtF )

kn/n!
− h0(X,OX(kL))

kn/n!

)

= volX̂(σ
∗L− xtF ) + xn

t − (L·n) = 0

since xt ∈ Λp(L). Similarly, we have

hi
(

X̂,OX̂(σ
∗(kL)− kxtF )

)

= hi
(

X̂,OX̂(σ
∗(kL))

)

= 0

for any i ≥ 2. Thus, by [dFKL07, §2.3 and Theorem 4.1], σ∗L−(a−ε)F
is ample. Therefore the assertion follows. �

2.3. Log canonical thresholds.

Definition 2.4. (1) Let (Y,∆) be a pair such that Y is a normal
variety and ∆ is a (possibly non-effective) R-divisor on Y such
that KY + ∆ is R-Cartier. The pair (Y,∆) is said to be sub

log canonical if a(E, Y,∆) ≥ −1 holds for any proper birational

morphism φ : Ỹ → Y with Ỹ normal and for any prime divisor
E on Ỹ , where a(E, Y,∆) := ordE(KỸ − φ∗(KY +∆)).

(2) Let Y be a variety which is log terminal, a1, . . . , al ⊂ OY

be coherent nonzero ideal sheaves, and c1, . . . , cl be (possibly
negative) real numbers. The pair (Y, a·c11 · · · a·cll ) is said to be
sub log canonical if a(E, Y, a·c11 · · · a·cll ) ≥ −1 holds for any
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proper birational morphism φ : Ỹ → Y with Ỹ normal and
for any prime divisor E on Ỹ , where a(E, Y, a·c11 · · · a·cll ) :=

ordE(KỸ − φ∗KY )−
∑l

i=1 ci · ordE(ai).
(3) Let Y be a variety which is log terminal, r0 ∈ Z>0, {ar}r≥r0

be a graded family of coherent ideal sheaves on Y , that is,
ar · ar′ ⊂ ar+r′ holds for any r, r′ ≥ r0, b1, . . . , bl ⊂ OY be
coherent nonzero ideal sheaves, c1, . . . , cl ∈ R and c ∈ R>0.
The pair (Y, a·c• · b·c11 · · · b·cll ) is said to be sub log canonical if
a(E, Y, a·c• · b·c11 · · · b·cll ) ≥ −1 holds for any proper birational

morphism φ : Ỹ → Y with Ỹ normal and for any prime divisor
E on Ỹ , where a(E, Y, a·c• · b·c11 · · · b·cll ) is defined by the value

ordE(KỸ − φ∗KY )−
l
∑

i=1

ci · ordE(bi)− lim inf
r→∞

c · ordE(ar)

r
.

Lemma 2.5. Let Y be a variety which is log terminal, r0 ∈ Z>0,

{ar}r≥r0 be a graded family of coherent ideal sheaves on Y , b ⊂ OY be

a coherent nonzero ideal sheaf, c ∈ R>0 and a ∈ R.

(1) Assume that there exists a sequence {ar}r≥r0 with limr→∞ ar = a

and the pair (Y, a
·(c/r)
r · b·ar) is sub log canonical for any suffi-

ciently divisible r ≫ 0. Then the pair (Y, a·c• · b·a) is sub log

canonical.

(2) Assume that there exists a coherent ideal sheaf I ⊂ OY such

that ar ⊂ Ir for any r ≥ r0 and the pair (Y, a·c• · b·a) is sub log

canonical. Then the pair (Y, I ·c · b·a) is sub log canonical.

Proof. Take any proper birational morphism φ : Ỹ → Y with Ỹ normal
and a prime divisor E on Ỹ . For any r ≥ r0 and k ∈ Z>0, we have

1

kr
ordE(akr) ≤

1

kr
ordE(a

k
r) =

1

k
ordE(ar).

Thus we have

lim inf
r→∞

c · ordE(ar)

r
= lim inf

r→∞

c · ordE(akr)

kr

for any k ∈ Z>0.
(1) By assumption, for any sufficiently divisible r ≫ 0,

−1 ≤ ordE(KỸ − φ∗KY )−
c · ordE(ar)

r
− ar · ordE(b)

holds. By taking lim supr→∞, we have −1 ≤ a(E, Y, a·c• · b·a).
(2) For any r ≥ r0, we have cr−1 · ordE(ar) ≥ c · ordE(I). Thus we

get the inequality −1 ≤ a(E, Y, I ·c · b·a). �
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Definition 2.6. (1) Let (Y,∆) be a pair as in Definition 2.4 (1)
and B be a nonzero effective R-Cartier divisor on Y . The log

canonical threshold lct(Y,∆;B) of B with respects to (Y,∆) is
defined by the following:

• If the pair (Y,∆ + cB) is not sub log canonical for any
c ∈ R, then we set lct(Y,∆;B) := −∞.

• Otherwise, we set

lct(Y,∆;B) := sup{c ∈ R | (Y,∆+ cB) : sub log canonical}.
(2) Let (Y, a·c11 · · ·a·cll ) be a pair as in Definition 2.4 (2) and 0 6=

b ( OY be a coherent ideal sheaf. The log canonical threshold

lct(Y, a·c11 · · ·a·cll ; b) of b with respects to (Y, a·c11 · · · a·cll ) is defined
by the following:

• If the pair (Y, a·c11 · · · a·cll · b·c) is not sub log canonical for
any c ∈ R, then we set lct(Y, a·c11 · · · a·cll ; b) := −∞.

• Otherwise, we set

lct(Y, a·c11 · · ·a·cll ; b)

:= sup{c ∈ R | (Y, a·c11 · · · a·cll · b·c) : sub log canonical}.
Moreover, if l = 1 and a1 = OY , then we write lct(Y ; b) :=
lct(Y, a·c11 ; b) for simplicity.

2.4. K-stability.

Definition 2.7 ([Tia97, Don02, RT07, Odk13, LX14]). Let X be an
n-dimensional Q-Fano variety.

(1) Let r ∈ Z>0 such that −rKX is Cartier. A test configuration

(resp. a semi test configuration) (X ,L)/A1 of (X,−rKX) con-
sists of the following data:

• a variety X such that admitting Gm-action and the mor-
phism α : X → A1 is Gm-equivariant, where the action
Gm × A1 → A1 is given by (a, t) 7→ at, and

• a Gm-equivariant α-ample (resp. α-semiample) line bundle
L on X such that (X ,L)|α−1(A1\{0}) is Gm-equivariantly iso-
morphic to (X,OX(−rKX))× (A1 \ {0}) with the natural
Gm-action.

Moreover, if X is normal in addition, then we call the (X ,L)/A1

a normal test configuration (resp. a normal semi test configura-

tion) of (X,−rKX).
(2) Assume that (X ,L)/A1 is a normal semi test configuration of

(X,−rKX). Let α : (X̄ , L̄) → P1 be the natural equivariant
compactification of (X ,L) → A1 induced by the compactifica-
tion A1 ⊂ P1. The Donaldson-Futaki invariant DF(X ,L) of
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(X ,L)/A1 is defined by

DF(X ,L) := 1

(n+ 1)((−KX)·n)

(

n

rn+1
(L̄·n+1) +

n+ 1

rn
(L̄·n ·KX̄/P1)

)

.

(3) • The pair (X,−KX) is called K-semistable if DF(X ,L) ≥ 0
for any normal test configuration (X ,L)/A1 of (X,−rKX).

• The pair (X,−KX) is called K-polystable if DF(X ,L) ≥ 0
for any normal test configuration (X ,L)/A1 of (X,−rKX),
and the equality holds only if X ≃ X × A1.

• The pair (X,−KX) is called K-stable if DF(X ,L) ≥ 0 for
any normal test configuration (X ,L)/A1 of (X,−rKX),
and the equality holds only if the pair (X ,L) is trivial,
that is, the pair (X ,L) is Gm-equivariantly isomorphic to
the pair (X × A1,OX×A1(−rKX×A1/A1)) with the natural
Gm-action.

3. Ding polystability

We recall the theory in [Bm12, §3]. The author learned the theory
from Odaka.

Definition 3.1 (see [Bm12, §3]). Let X be an n-dimensional Q-Fano
variety.

(1) Let (X ,L)/A1 be a normal semi test configuration of (X,−rKX)
and (X̄ , L̄)/P1 be its natural compactification as in Definition
2.7 (2).
(i) Let D(X ,L) be the Q-divisor on X such that the following

conditions are satisfied:
• The support SuppD(X ,L) is contained in X0. (Note
that X0 is the fiber of X → A1 at 0 ∈ A1.)

• The divisor −rD(X ,L) is a Z-divisor corresponds to
the divisorial sheaf L̄(rKX̄/P1). (Thus the divisor
−r(KX̄/P1 +D(X ,L)) is a Cartier divisor corresponds

to L̄.)
Since the divisorial sheaf L̄(rKX̄/P1) is trivial on X̄ \ X0,
the D(X ,L) exists and is unique.

(ii) The Ding invariant Ding(X ,L) of (X ,L)/A1 is defined by

Ding(X ,L) := −(L̄·n+1)

(n+ 1)rn+1((−KX)·n)
−
(

1− lct(X , D(X ,L);X0)
)

.

(2) • X is called Ding semistable if Ding(X ,L) ≥ 0 for any nor-
mal test configuration (X ,L)/A1 of (X,−rKX).

• X is called Ding polystable if
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– X is Ding semistable, and
– if (X ,L) is a normal test configuration of (X,−rKX)
which satisfies that L ≃ OX (−rKX/A1), X0 is log
terminal and Ding(X ,L) = 0, then X ≃ X × A1.

The following is a theorem of Berman.

Theorem 3.2 ([Bm12]). Let X be a Q-Fano variety.

(1) If X admits Kähler-Einstein metrics, then X is Ding polystable.

(2) For any normal test configuration (X ,L)/A1 of (X,−rKX), we
have DF(X ,L) ≥ Ding(X ,L). Moreover, the equality holds if

and only if

• L ≃ OX (−rKX/A1), and
• the pair (X ,X0) is log canonical.

Proof. We repeat the proof in [Bm12, §3] for the reader’s convenience.
Pick any normal test configuration (X ,L)/A1 of (X,−rKX). Set n :=
dimX and

q(X ,L) := DF(X ,L)− Ding(X ,L)

= 1− lct(X , D(X ,L);X0)−
(L̄·n ·D(X ,L))

rn((−KX)·n)
.

(1) Let γ : X ′ → X be a Gm-equivariant log resolution of the pair
(X ,X0) and let γ : X̄ ′ → X̄ be its natural compactification. Since
X̄ \ X0 is log terminal, if we set D∗ := −KX̄ ′\X ′

0
+ γ∗KX̄ \X0

then any
coefficient of D∗ is strictly smaller than one. Let ∆′ be the Q-divisor
on X̄ ′ such that the following conditions are satisfied:

• The support Supp(∆′+ D̄∗) is contained in X ′
0, where D̄

∗ is the
closure of D∗ in X̄ ′.

• The divisor r∆′ is a Z-divisor and corresponds to γ∗L̄(rKX̄ ′/P1).

Let
X ′

0 =
∑

i∈I

m′
iE

′
i, ∆′ + D̄∗ =

∑

i∈I

c′iE
′
i

be the irreducible decompositions. By construction, we have

γ∗(KX̄ +D(X ,L) + cX0) = KX̄ ′ −∆′ + cX ′
0

for any c ∈ R. Thus we have

lct(X , D(X ,L);X0) = lct(X ′,−∆′;X ′
0) = min

i∈I

{

1 + c′i
m′

i

}

.

Moreover, we have

−(L̄·n ·D(X ,L)) = (γ∗L̄·n ·∆′ + D̄∗) =
∑

i∈I

c′i(γ
∗L̄·n · E ′

i)



BOUNDS FOR THE VOLUMES 11

since γ∗(∆
′ + D̄∗) = −D(X ,L) holds. Therefore,

q(X ,L) = max
i∈I

{

m′
i − 1− c′i
m′

i

}

+
1

rn((−KX)·n)

∑

i∈I

c′i(γ
∗L̄·n · E ′

i)

holds. The equation is nothing but Formula (3.30) in [Bm12]. Hence,
if X admits Kähler-Einstein metrics, then Ding(X ,L) ≥ 0 holds by
[Bm12, Theorem 3.11 and Formula (3.2)] (see also [Bn09] and [BBGZ12,
Formula (6.5)]). If we further assume that L ≃ OX (−rKX/A1), X0 is log
terminal and Ding(X ,L) = 0, then D(X ,L) = cX0 for some c ∈ Q and
lct(X , D(X ,L);X0) = 1 − c. This implies that DF(X ,L) = Ding(X ,L)
since q(X ,L) = 0 holds. Hence X ≃ X × A1 by [Bm12, Theorem
1.1] (more precisely, by [Bm12, Proposition 3.5]). Thus X is Ding
polystable.
(2) (See [Bm12, Proof of Theorem 3.11].) Let

X0 =
∑

i∈J

miEi, −D(X ,L) =
∑

i∈J

ciEi

be the irreducible decompositions. Note that

q(X ,L) = 1

rn((−KX)·n)

(

L̄·n · (1− lct(X , D(X ,L);X0))X0 −D(X ,L)

)

.

Since

1− lct(X , D(X ,L);X0) ≥ max
i∈J

{

mi − 1− ci
mi

}

,

we have

(1− lct(X , D(X ,L);X0))X0 −D(X ,L)

≥
∑

i∈J

(

mi − 1− ci
mi

·mi + ci

)

Ei =
∑

i∈J

(mi − 1)Ei ≥ 0

Since L̄ is α-ample, we get q(X ,L) ≥ 0. Moreover, q(X ,L) = 0 holds
if and only if X0 is reduced and D(X ,L) = (1 − lct(X , D(X ,L);X0))X0

holds. Thus we get the assertion. �

Remark 3.3. From Theorem 3.2 and [LX14, Corollary 1] (see [Bm12]),
if a Q-Fano variety X is Ding semistable (resp. Ding polystable), then
the pair (X,−KX) is K-semistable (resp. K-polystable). Thus, by
[CDS15a, CDS15b, CDS15c, Tia12], if X is a Fano manifold, then
the following three conditions are equivalent:

• X admits Kähler-Einstein metrics.
• X is Ding polystable.
• (X,−KX) is K-polystable.
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Lemma 3.4. Let X be a Q-Fano variety and γ : (Y , γ∗L) → (X ,L) be
a Gm-equivariant birational morphism between normal semi test con-

figurations of (X,−rKX). Then Ding(X ,L) = Ding(Y , γ∗L) holds.
Proof. Since KȲ +D(Y ,γ∗L) = γ∗(KX̄ +D(X ,L)), we have

lct(X , D(X ,L);X0) = lct(Y , D(Y ,γ∗L);Y0).

Thus the assertion follows immediately. �

Proposition 3.5. Let X be an n-dimensional Q-Fano variety which is

Ding semistable, let r be a positive integer such that −rKX is Cartier,

let IM ⊂ · · · ⊂ I1 ⊂ OX be a sequence of coherent ideal sheaves, let

I := IM + IM−1t
1 + · · ·+ I1t

M−1 + (tM) ⊂ OX×A1
t
, let Π: X → X ×A1

be the blowup along I, let E ⊂ X be the Cartier divisor defined by

OX (−E) = I · OX , and let L := Π∗OX×A1(−rKX×A1/A1) ⊗ OX (−E).
Assume that L is semiample over A1. Then (X ,L)/A1 is naturally

seen as a (possibly non-normal) semi test configuration of (X,−rKX).
Under these conditions, the pair (X ×A1

t , I ·(1/r) · (t)·d) must be sub log

canonical, where

d := 1 +
(L̄·n+1)

(n+ 1)rn+1((−KX)·n)
.

Moreover, we have the equality

(L̄·n+1) = − lim
k→∞

dim
(

H0(X×A1,OX×A1
(−krKX×A1/A1))

H0(X×A1,OX×A1
(−krKX×A1/A1 )·I

k)

)

kn+1/(n+ 1)!
.

Proof. Let ν : X ν → X be the normalization. Then α : (X ν , ν∗L) → A1

is a normal semi test configuration of (X,−rKX). Set

Y := Proj
⊕

m≥0

α∗(ν
∗L⊗m)

and let φ : X ν → Y be the natural morphism. Then there exist a
positive integer m and a line bundle M on Y with a Gm-action such
that φ∗M isGm-equivariantly isomorphic to ν∗L⊗m and (Y ,M)/A1 is a
normal test configuration of (X,−mrKX). Since X is Ding semistable,
we have Ding(Y ,M) ≥ 0. On the other hand, by Lemma 3.4, we have
Ding(Y ,M) = Ding(X ν , ν∗L⊗m). Thus we have Ding(X ν , ν∗L) ≥ 0
since Ding(X ν, ν∗L⊗m) = Ding(X ν , ν∗L) holds. Note that

OX̄ ν

(

r(KX̄ ν/P1 +D(X ν ,ν∗L))
)

≃ ν∗L̄⊗(−1)

≃ ν∗OX̄

(

r(Π∗KX×P1/P1 + (1/r)E)
)

.
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Hence, for c ∈ R, the pair (X ν, D(X ν ,ν∗L) + cX ν
0 ) is sub log canonical if

and only if the pair (X × A1, I ·(1/r) · (t)·c) is sub log canonical. Thus
we have the equality

lct(X ν , D(X ν ,ν∗L);X ν
0 ) = lct(X × A1, I ·(1/r); (t)).

This implies that the pair (X × A1, I ·(1/r) · (t)·d) is sub log canonical.
The remaining part is trivial (see [Odk13, §3] for example). �

4. Ding semistability and filtered linear series

4.1. The saturations of filtered linear series. We recall the defi-
nitions in [BC11, §1].
Definition 4.1 (see [BC11, §1]). Let X be a projective variety, L be
a big line bundle on X , V• be the complete graded linear series of L,
that is, Vr := H0(X,L⊗r) for any r ∈ Z≥0. Let F be a decreasing,
left-continuous R-filtration of the graded C-algebra V•.

(1) F is said to be multiplicative if

FxVr ⊗C Fx′

Vr′ → Fx+x′

Vr+r′

holds for any r, r′ ∈ Z≥0 and x, x′ ∈ R.
(2) F is said to be linearly bounded if emin(V•,F), emax(V•,F) ∈ R,

where

emin(V•,F) := lim inf
r→∞

(

inf{x ∈ R | FxVr 6= Vr}
r

)

,

emax(V•,F) := lim sup
r→∞

(

sup{x ∈ R | FxVr 6= 0}
r

)

.

(3) Assume that F is multiplicative. For any x ∈ R, we set

vol(FV x
• ) := lim sup

r→∞

dimF rxVr

rn/n!
,

where n := dimX .

Definition 4.2. Let X be a projective variety, L be an ample line
bundle on X , V• be the complete graded linear series of L and F be
a decreasing, left-continuous, multiplicative and linearly bounded R-
filtration of V•. For any r ∈ Z≥0 and x ∈ R, we set

IF(r,x) := I(r,x) := Image(FxVr ⊗C L⊗(−r) → OX),

where the homomorphism is the evaluation homomorphism. Moreover,
we set F̄xVr := H0(X,L⊗r · I(r,x)).
Proposition 4.3. Let X, L, V• and F be as in Definition 4.2.
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(1) For any r, r′ ∈ Z≥0 and x, x′ ∈ R, we have I(r,x) · I(r′,x′) ⊂
I(r+r′,x+x′).

(2) For any r ∈ Z≥0 and x ≤ x′, we have I(r,x′) ⊂ I(r,x).
(3) For any r ∈ Z≥0 and x > r · emax(V•,F), we have FxVr = 0. In

particular, I(r,x) = 0 holds.

(4) For any e− < emin(V•,F), there exists r1 ∈ Z>0 such that

F re−Vr = Vr and I(r,re−) = OX hold for any r ≥ r1.
(5) For any r ∈ Z≥0 and x ∈ R, FxVr ⊂ F̄xVr holds. Moreover,

the homomorphism F̄xVr ⊗C OX → L⊗r · I(r,x) is surjective.
(6) F̄ is also a decreasing, left-continuous, multiplicative and lin-

early bounded R-filtration of V•. Moreover, we have

emin(V•,F) ≤ emin(V•, F̄) ≤ emax(V•, F̄) = emax(V•,F).

Furthermore, for any r ∈ Z≥0 and x ∈ R, we have IF(r,x) = I F̄(r,x).

Proof. (1) Follows from the diagram

(FxVr ⊗C Fx′

Vr′)⊗C L⊗(−(r+r′)) // //

��

I(r,x) · I(r′,x′)
� � // OX

Fx+x′

Vr+r′ ⊗C L⊗(−(r+r′)) // // I(r+r′,x+x′)
� � // OX .

(2) This is obvious since F is decreasing.
(3) (See [BC11, Lemma 1.4].) By the definition of emax(V•,F), there

exists k ∈ Z>0 such that FkxVkr = 0. Thus FxVr = 0 since V• is an
integral domain.
(4) By [Laz04a, Example 1.2.22], there exists r0 ∈ Z>0 such that the

homomorphisms

Vr ⊗C Vr′ → Vr+r′,

Vr ⊗C L⊗(−r) → OX

are surjective for all r, r′ ≥ r0. By the choice of e−, there exist distinct
prime numbers p1, p2 with p1, p2 ≥ r0 such that Fpie−Vpi = Vpi for
i = 1, 2. Set r1 := p1p2. For any r ≥ r1, there exist k1, k2 ∈ Z≥0

such that r = k1p1 + k2p2 holds. Then F re−Vr contains the image of
(Fp1e−Vp1)

⊗k1 ⊗C (Fp2e−Vp2)
⊗k2 = V ⊗k1

p1
⊗C V ⊗k2

p2
. Thus F re−Vr = Vr

and I(r,re−) = OX hold.
(5) Consider the diagram

FxVr ⊗C OX
// //

� _

��

L⊗r · I(r,x)
� _

��

H0(X,L⊗r)⊗C OX
// L⊗r.
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By taking H0, we get FxVr ⊂ F̄xVr. From the diagram

FxVr ⊗C OX
// //

� _

��

L⊗r · I(r,x)

F̄xVr ⊗C OX
// L⊗r · I(r,x),

we get the assertion.
(6) From (2), F̄ is decreasing, and obviously left-continuous. From

(1), F̄ is multiplicative. From (5), emin(V•,F) ≤ emin(V•, F̄) and
emax(V•,F) ≤ emax(V•, F̄) hold. Moreover, from (3), emax(V•,F) ≥
emax(V•, F̄) holds. Thus F̄ is linearly bounded. Moreover, the condi-
tion IF(r,x) = I F̄(r,x) follows from (5). �

Definition 4.4. Let X , L, V•, F be as in Definition 4.2.

(1) The filtration F̄ of V• in Definition 4.2 is called the saturation

of F .
(2) If FxVr = F̄xVr for any r ∈ Z≥0 and x ∈ R, then we say that

the filtration F is saturated. Note that, by Proposition 4.3, for
any F in Definition 4.2, the saturation F̄ is saturated.

4.2. Test configurations from filtered linear series. In this sec-
tion, we fix

• an n-dimensional Q-Fano variety X which is Ding semistable,
• r0 ∈ Z>0 such that −r0KX is Cartier,
• L := OX(−r0KX),
• the complete graded linear series V• of L,
• a decreasing, left-continuous, multiplicative, linearly bounded
R-filtration F of V•, and

• e+, e− ∈ Z with e+ > emax(V•,F) and e− < emin(V•,F).

Set e := e+ − e−. Fix r1 ∈ Z>0 as in Proposition 4.3 (4). For any
r ≥ r1, we set

Ir := I(r,re+) + I(r,re+−1)t
1 + · · ·+ I(r,re−+1)t

re−1 + (tre) ⊂ OX×A1
t
.

By Proposition 4.3, {Ir}r≥r1 is a graded family of coherent ideal
sheaves. For any r ≥ r1, k ∈ Z≥0 and j ∈ [kre−, kre+] ∩ Z, we set

J(k;r,j) :=
∑

j1+···+jk=j,
j1,...,jk∈[re−,re+]∩Z

I(r,j1) · · · I(r,jk).

By construction,

Ik
r = J(k;r,kre+) + J(k;r,kre+−1)t

1 + · · ·+ J(k;r,kre−+1)t
kre−1 + (tkre)
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holds. Moreover, by Proposition 4.3 (5), J(k;r,j) is the image of the
homomorphism

W(k;r,j) ⊗C L⊗(−kr) → OX ,

where W(k;r,j) is defined by the image of the homomorphism
⊕

j1+···+jk=j,
j1,...,jk∈[re−,re+]∩Z

F̄ j1Vr ⊗C · · · ⊗C F̄ jkVr → F̄ jVkr.

Lemma 4.5. For any r ≥ r1, k ∈ Z≥0 and j ∈ [kre−, kre+] ∩ Z, we
have the following:

(1) W(k;r,j) ⊂ H0(X,L⊗kr · J(k;r,j)) ⊂ F̄ jVkr holds.

(2) The homomorphism

H0(X,L⊗kr · J(k;r,j))⊗C OX → L⊗kr · J(k;r,j)

is surjective.

Proof. From the homomorphism

W(k;r,j) ⊗C OX → L⊗kr · J(k;r,j),

we get the inclusion W(k;r,j) ⊂ H0(X,L⊗kr ·J(k;r,j)). Furthermore, from
the diagram

W(k;r,j) ⊗C OX
// //

� _

��

L⊗kr · J(k;r,j)

H0(X,L⊗kr · J(k;r,j))⊗C OX
// L⊗kr · J(k;r,j),

we have proved (2). Moreover, from the diagram

W(k;r,j) ⊗C L⊗(−kr) // //
� _

��

J(k;r,j)
� � // OX

F̄ jVkr ⊗C L⊗(−kr) // // I(kr,j)
� � // OX ,

we have J(k;r,j) ⊂ I(kr,j). Thus we have proved (1). �

For any r ≥ r1, let

• Πr : Xr → X × A1 be the blowup along Ir,
• Er ⊂ Xr be the Cartier divisor defined by OXr(−Er) = Ir ·OXr ,
and

• Lr := Π∗
rOX×A1(−rr0KX×A1/A1)⊗OXr(−Er).

Lemma 4.6. Lr is semiample over A1. Thus (Xr,Lr)/A
1 is a semi

test configuration of (X,−rr0KX).
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Proof. (See also [Fuj15a, Lemma 3.4].) Let α : Xr → A1 and p2 : X ×
A1 → A1 be the natural morphisms. For any k ∈ Z≥0, by Lemma 4.5
(2), we have

H0(X × A1,OX×A1(−krr0KX×A1/A1) · Ik
r )⊗C[t] OX×A1

=

(

kre−1
∑

j=0

tj ·H0(X,L⊗kr · J(k;r,kre+−j))

+
∑

j≥kre

tj ·H0(X,L⊗kr)

)

⊗C[t] OX×A1

։

kre−1
∑

j=0

tj · L⊗kr · J(k;r,kre+−j) +
∑

j≥kre

tj · L⊗kr

= OX×A1(−krr0KX×A1/A1) · Ik
r .

Therefore, by [Laz04a, Lemma 5.4.24], for any k ≫ 0, we have

α∗α∗L⊗k
r

= Π∗
r(p2)

∗(p2)∗
(

OX×A1(−krr0KX×A1/A1) · Ik
r

)

= Π∗
r

(

H0(X × A1,OX×A1(−krr0KX×A1/A1) · Ik
r )⊗C[t] OX×A1

)

։ Π∗
r

(

OX×A1(−krr0KX×A1/A1) · Ik
r

)

։ Π∗
rOX×A1(−krr0KX×A1/A1)⊗OXr(−kEr) = L⊗k

r .

Thus Lr is semiample over A1. �

Thus, by Proposition 3.5, the pair (X × A1, I ·(1/(rr0))
r · (t)·dr) is sub

log canonical, where

dr := 1 +
(L̄·n+1

r )

(n+ 1)rn+1rn+1
0 ((−KX)·n)

.

Set

wr(k) := − dim

(

H0(X × A1,OX×A1(−krr0KX×A1/A1))

H0(X × A1,OX×A1(−krr0KX×A1/A1) · Ik
r )

)

.

Then

(L̄·n+1
r ) = lim

k→∞

wr(k)

kn+1/(n+ 1)!
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holds by Proposition 3.5. We set

vr(k) :=

kre+
∑

j=kre−+1

h0(X,L⊗kr · J(k;r,j)),

Ar := lim
k→∞

vr(k)

kn+1rn+1rn+1
0 /n!

.

Since wr(k) = −kre · h0(X,L⊗kr) + vr(k), the limit in the definition of
Ar actually exists. Note that dr = 1− e/r0 + Ar/((−KX)

·n).

Lemma 4.7 (cf. [BC11, Theorem 1.14]). We have

lim
r→∞

Ar =
1

rn+1
0

∫ e+

e−

vol(F̄V x
• )dx.

Proof. Take any r ≥ r1. For k ∈ Z≥0, set

Wr,k := Image(V ⊗k
r → Vkr) = Vkr.

Moreover, we consider the R-filtration G of the complete graded lin-
ear series Wr,• of L⊗rr0, where GxWr,k is defined by the image of the
homomorphism

∑

x1+···+xk=x,
x1,...,xk∈R

F̄x1Vr ⊗C · · · ⊗C F̄xkVr → F̄xVkr.

Claim 4.8. (1) G is a decreasing, left-continuous, multiplicative,

linearly bounded R-filtration of Wr,•.

(2) We have

re− ≤ emin(Wr,•,G) ≤ emax(Wr,•,G) ≤ re+.

(3) For any k ∈ Z≥0 and j ∈ [kre−, kre+] ∩ Z, we have

Gj+k−1Wr,k ⊂ H0(X,L⊗kr · J(k;r,j)) ⊂ F̄ jVkr.

Proof of Claim 4.8. (1) We check that G is left-continuous. For any
i ∈ [1, dimVr] ∩ Z and k ∈ Z≥0, we set

er,i := sup{x ∈ R | dim F̄xVr ≥ i},

Er,k :=

{

k
∑

i=1

er,ji

∣

∣

∣

∣

j1, . . . , jk ∈ [1, dimVr] ∩ Z

}

⊂ R.

Moreover, we set er,0 := +∞ and er,dimVr+1 := −∞ for convenience.
Take any x ∈ R. Then x 6∈ {e′ + ε′ | e′ ∈ Er,k, ε

′ ∈ (0, ε]} holds for
any 0 < ε ≪ 1. Take such ε. It is enough to show Gx−εWr,k ⊂ GxWr,k

for proving that G is left-continuous. Pick any x′
1, . . . , x

′
k ∈ R with

x′
1 + · · · + x′

k = x − ε. For any 1 ≤ i ≤ k, there exists a unique
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0 ≤ ji ≤ dimVr such that x′
i ∈ (er,ji+1, er,ji]. By the choice of ε, we

have
∑k

i=1(er,ji − x′
i) ≥ ε. Thus there exist x1, . . . , xk ∈ R such that

x1 + · · · + xk = x and xi ∈ (er,ji+1, er,ji] for any 1 ≤ i ≤ k. Since
F̄x′

1Vr ⊗C · · · ⊗C F̄x′

kVr = F̄x1Vr ⊗C · · · ⊗C F̄xkVr, we get Gx−εWr,k ⊂
GxWr,k. The remaining assertions are trivial.
(2) Pick any k ∈ Z≥0. For any x < kre−, we have F̄x/kVr = Vr.

Thus GxWr,k = Wr,k and this implies that re− ≤ emin(Wr,•,G). For any
x > kre+ and for any x1, . . . , xk ∈ R with x1 + · · · + xk = x, there
exists 1 ≤ i ≤ k such that xi > re+. Thus F̄x1Vr ⊗C · · · ⊗C F̄xkVr = 0
and this implies that emax(Wr,•,G) ≤ re+.
(3) By Lemma 4.5 (1), it is enough to show that Gj+k−1Wr,k ⊂

W(k;r,j). Take any x1, . . . , xk ∈ R with x1 + · · · + xk = j + k − 1.
Then ⌊x1⌋+ · · ·+ ⌊xk⌋ ≥ j. Thus the image of F̄x1Vr ⊗C · · · ⊗C F̄xkVr

is contained in W(k;r,j). �

By Claim 4.8 (3), we get

∫ e++1/r

e−+1/r

dimGkrxWr,k

knrn/n!
dx ≤

kre+
∑

j=kre−+1

h0(X,L⊗kr · J(k;r,j))

kn+1rn+1/n!

≤
∫ e+

e−

dim F̄krxVkr

knrn/n!
dx.

We note that both dim F̄krxVkr and dimGkrx+kWr,k are Lebesgue mea-
surable on x ∈ [e−, e+] since both are monotone decreasing functions.
For any x ∈ [e−, e+] \ {emax(V•, F̄)}, the limit

lim
k→∞

dim F̄kxVk

kn/n!

exists by [BC11, Lemma 1.6], [LM09, Theorem 2.13] and Proposition
4.3 (3). Hence, for any r ≥ r1, we have

lim
k→∞

dim F̄krxVkr

knrn/n!
= vol(F̄V x

• ).

From dominated convergence, we have

lim
k→∞

∫ e+

e−

dim F̄krxVkr

knrn/n!
dx =

∫ e+

e−

vol(F̄V x
• )dx.

By the same argument, the limit

lim
k→∞

dimGkrxWr,k

knrn/n!
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exists for any x ∈ [e−, e+] \ {r−1 · emax(Wr,•,G)} and

lim
k→∞

∫ e++1/r

e−+1/r

dim GkrxWr,k

knrn/n!
dx =

∫ e+

e−

vol(GW rx
r,•)

rn
dx− rn0 ((−KX)

·n)

r

holds since we have
∫ e++1/r

e−+1/r

dimGkrxWr,k

knrn/n!
dx =

∫ e+

e−

dimGkrxWr,k

knrn/n!
dx− h0(X,L⊗kr)

knrn+1/n!
.

Thus we get

∫ e+

e−

vol(GW rx
r,•)

rn
dx− rn0 ((−KX)

·n)

r
≤ rn+1

0 Ar ≤
∫ e+

e−

vol(F̄V x
• )dx.

By [BC11, Lemma 1.6] and [LM09, Theorem 3.5], for any x ∈
[e−, e+] \ {emax(V•, F̄)}, we have

lim
r→∞

vol(GW rx
r,•)

rn
= vol(F̄V x

• ).

Again by dominated convergence, we have

lim
r→∞

∫ e+

e−

vol(GW rx
r,•)

rn
dx =

∫ e+

e−

vol(F̄V x
• )dx.

Therefore the limit limr→∞Ar exists and is equal to the right-hand side
of Lemma 4.7. �

By Lemmas 2.5 (1) and 4.7, the pair (X ×A1, I ·(1/r0)
• · (t)·d∞) is sub

log canonical, where

d∞ := 1− e

r0
+

1

rn+1
0 ((−KX)·n)

∫ e+

e−

vol(F̄V x
• )dx.

Consequently, we have proved the following:

Theorem 4.9. Let X, r0, L, V•, F , e+, e− be as in the beginning of

Section 4.2. Then the pair (X×A1, I ·(1/r0)
• · (t)·d∞) is sub log canonical,

where

Ir = IF(r,re+) + IF(r,re+−1)t
1 + · · ·+ IF(r,re−+1)t

r(e+−e−)−1 + (tr(e+−e−)),

d∞ = 1− e+ − e−
r0

+
1

rn+1
0 ((−KX)·n)

∫ e+

e−

vol(F̄V x
• )dx.
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4.3. Ding semistability along subschemes.

Theorem 4.10. Let X be an n-dimensional Q-Fano variety. Assume

that X is Ding semistable. Take any nonempty proper closed subscheme

∅ 6= Z ( X corresponds to an ideal sheaf 0 6= IZ ( OX . Let σ : X̂ → X
be the blowup along Z, let F ⊂ X̂ be the Cartier divisor defined by the

equation OX̂(−F ) = IZ · OX̂ . Then we have β(Z) ≥ 0, where

β(Z) := lct(X ; IZ) · ((−KX)
·n)−

∫ ∞

0

volX̂ (σ∗(−KX)− xF ) dx.

Proof. Fix r0 ∈ Z>0 with −r0KX Cartier and set L := OX(−r0KX).
Let V• be the complete graded linear series of L. Consider the R-
filtration F of V• defined by

FxVr :=

{

H0(X,L⊗r · I⌈x⌉Z ) if x ∈ R≥0,

Vr otherwise.

Then F is a decreasing, left-continuous, multiplicative and linearly
bounded R-filtration of V•. In fact, we can immediately check that
emin(V•,F) = 0 and emax(V•,F) = r0τZ . We note that the filtration F
is saturated. Indeed, the homomorphism

FxVr ⊗C L⊗(−r)
։ I(r,x)

induces the inclusion I(r,x) ⊂ I
⌈x⌉
Z for any x ∈ R≥0. Thus F̄xVr =

H0(X,L⊗r · I(r,x)) ⊂ FxVr.
Fix e+, e− ∈ Z with e+ > r0τZ and e− < 0. By Theorem 4.9, the

pair (X × A1, I ·(1/r0)
• · (t)·d∞) is sub log canonical, where

Ir = I(r,re+) + I(r,re+−1)t
1 + · · ·+ I(r,re−+1)t

r(e+−e−)−1 + (tr(e+−e−)),

d∞ = 1− e+ − e−
r0

+
1

rn+1
0 ((−KX)·n)

∫ e+

e−

vol(FV x
• )dx.

Note that

vol(FV x
• ) =

{

rn0 volX̂(σ
∗(−KX)− (x/r0)F ) if x ∈ R≥0,

rn0 ((−KX)
·n) otherwise.

Thus d∞ = 1− τ + S holds, where τ := e+/r0 and

S :=
1

((−KX)·n)

∫ ∞

0

volX̂(σ
∗(−KX)− xF )dx.

Moreover, for any r ≫ 0,

Ir ⊂ I
re+
Z + I

re+−1
Z t1 + · · ·+ I1Zt

re+−1 + (tre+) = (IZ + (t))re+.
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By Lemma 2.5 (2), the pair (X × A1, (IZ + (t))·τ · (t)·d∞) is sub log
canonical.
Let θ : Y → X×A1 be a common log resolution ofX×A1, IZ+(t) and

(t), that is, Y is smooth, (IZ+(t))·OY =: OY(−F1), (t)·OY =: OY(−F2)
satisfy that Exc(θ), Exc(θ) + F1 + F2 are divisors with simple normal
crossing supports. For any c1, c2 ∈ R, we set

J
(

X × A1, (IZ + (t))·c1 · (t)·c2
)

:= θ∗OY (⌈KY − θ∗KX×A1 − c1F1 − c2F2⌉) ,
where ⌈KY − θ∗KX×A1 − c1F1 − c2F2⌉ is the smallest Z-divisor which
contains KY − θ∗KX×A1 − c1F1 − c2F2. If c1, c2 ∈ R≥0, then this is
nothing but the multiplier ideal sheaf of the pair (X×A1, (IZ +(t))·c1 ·
(t)·c2) (see [Laz04b, §9] or [Tak06]). Take any 0 < ε ≪ 1. Then we
have

OX×A1 ⊂ J
(

X × A1, (IZ + (t))·(1−ε)τ · (t)·(1−ε)d∞
)

since X × A1 is log terminal. Pick any positive integer N with (1 −
ε)d∞+N > 0. By the definition of J (X × A1, (IZ + (t))·c1 · (t)·c2), we
have

(tN ) ⊂ J
(

X × A1, (IZ + (t))·(1−ε)τ · (t)·(1−ε)d∞+N
)

⊂ OX×A1 .

By [Tak06, Theorem 3.2] and [Laz04b, Remark 9.5.23], we have

J
(

X × A1, (IZ + (t))·(1−ε)τ · (t)·(1−ε)d∞+N
)

=
∑

0≤τ ′≤(1−ε)τ

J
(

X × A1, I ·τ
′

Z · (t)·(1−ε)(d∞+τ)−τ ′+N
)

=
∑

0≤τ ′≤(1−ε)τ

J (X, I ·τ
′

Z ) ·
(

t⌊(1−ε)(d∞+τ)−τ ′⌋+N
)

,

where J (X, I ·τ
′

Z ) is the multiplier ideal sheaf of the pair (X, I ·τ
′

Z ). This
implies that

OX =
∑

τ ′>S−ε(1+S)

J (X, I ·τ
′

Z )

since (1−ε)(d∞+τ)−1 = S−ε(1+S). Therefore we get the inequality
lct(X ; IZ) ≥ S. �

Remark 4.11. Assume that X is smooth. If Z is a reduced divisor
with (X,Z) log canonical (resp. Z is a smooth subvariety with [Fuj15b,
Assumption 3.1]), then the value β(Z) is equal to the value η(Z) in
[Fuj15a, Definition 1.1] (resp. in [Fuj15b, Remark 3.10]).
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5. Proofs

Theorem 5.1. Let X be an n-dimensional Q-Fano variety which is

Ding semistable. Then we have ((−KX)
·n) ≤ (n+1)n. Moreover, if we

further assume that X is smooth and ((−KX)
·n) = (n+1)n, then X is

isomorphic to the projective space Pn.

Proof. We can assume that n ≥ 2. Take any smooth closed point
p ∈ X . Let σ : X̂ → X be the blowup along p and let F be the
exceptional divisor of σ. By Theorem 4.10, we have

n · ((−KX)
·n) ≥

∫ ∞

0

volX̂(σ
∗(−KX)− xF )dx.

On the other hand, by Theorem 2.3 (1), we have

∫ ∞

0

volX̂(σ
∗(−KX)− xF )dx ≥

∫ n
√

((−KX)·n)

0

(((−KX)
·n)− xn)dx

= n
√

((−KX)·n) ·
n

n+ 1
((−KX)

·n).

Hence we get the inequality (n + 1)n ≥ ((−KX)
·n). Assume that (n +

1)n = ((−KX)
·n). Then

volX̂(σ
∗(−KX)− xF ) = (n+ 1)n − xn

for all x ∈ [0, n+ 1]. Thus, by Theorem 2.3 (2), we have εp = n+ 1. If
X is smooth, this implies that X ≃ Pn by [CMSB02] and [Keb02] (see
also [BS09]). �

Proof of Theorem 1.1. This is an immediate consequence of Theorems
3.2 and 5.1. �
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[LM09] R. Lazarsfeld and M. Mustaţă, Convex bodies associated to linear series,
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