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TWIXT CUP AND LIP: DO EQUATION-OF-STATE MEASUREMENTS REALLY TELL US
ANYTHING USEFUL ABOUT INTERMOLECULAR FORCES?

Charles M. Knobler

Department of Chemistry, University of California, Los Angeles, CA 90024, USA

Abstract - The development of a method for the direct inversion of second
virial coefficient data to obtain information about the intermolecular po-
tential allows us to establish criteria for the significance of measure-
ments of the equation of state. Precise virial coefficient measurements
show evidence of systematic errors caused by adsorption; mixing methods for
determining excess second virial coefficients are also susceptible to ad-
sorption errors. If the range of applicability of volumetric techniques

is limited by adsorption, other methods must be found that allow the impor-
tant low-temperature region to be investigated. In principle, acoustic and
calometric (isothemmal Joule-Thomson and heat-of-mixing) methods for deter-
mining second virial coefficients can be used at low temperatures. The
limitations of these methods and the problem of extracting the virial co-
efficients from the primary data are discussed.

INTRODUCTION

The relatively small number of posters submitted to this section suggests a lack of research
activity in the properties of gases and gaseous mixtures. A brief search through the past
four years of Chemical Abstracts turned up about 200 papers relating to equations of state;
the field is not moribund but neither is it flourishing.

In part, the low count of papers is attributable to the fact that equation-of-state measure-
ments are difficult and that there are no commercial instruments with which they can be made
routinely. If measurements are difficult, should they be made at all? If there are impor-
tant questions that can be answered, can we make the measurements more easily? These are the
questions that I will address.

INTERMOLECULAR FORCES AND THE EQUATION OF STATE

Like many other workers, I have stated in papers and proposals that the primary goal in stud-
ies of the equations of state of gases is to learn about intermolecular forces. I submit
that, with very few exceptions, most of the work in the field, mine included, has told us
very little about interactions between molecules. Let us examine my contention. What might
we expect from studies of equations of state?

Following Keller and Zumino (1,2), one is accustomed to argue that at best measurements of
the second virial coefficient B(T) alone could provide us with no more information about the
intermolecular potential U(r) than its repulsive branch and its width as a function of its
depth. The proof of this statement rests on the demonstration that B(T) is essentially the
Laplace transform of A=rp®-1R® , where 1 and rR are the left- and right-hand turning
points of the potential:
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Here e 1is the depth of the potential and ¢=U(r) +¢e .

Recently, however, Smith and coworkers (3,4,5) have shown that the Keller and Zumino proof,
while formally correct, probably does not rule out the direct inversion of second virial co-
efficient data. They have developed an inversion procedure whose success appears to rest on
the conditions that the potential is analytic and that it must be continuous at the point at
which U(r)=0 .

The basis of the inversion is the postulation of a one-to-one relation between a characteris-
tic length T(T) , which can be derived from the experimental properties of the second virial
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coefficient at some temperature T, and U(T) , the value of the intermolecular potential at
a separation T :

U(®) = G(T*)kT

whire G(T*) 1is called the inversion function; the reduced temperature T*
kT/e .

(2)

is, as usual,
Experience has shown that T 1is best defined as

1

B+T % /3
r=|— (3)

21N/ 3
The inversion function is determined by an iterative procedure. A first approximation
G(U,,T*) is obtained by calculating values of B+ T(dB/dT) from an approximate potential
Uy . The approximate function is then combined with the experimental virial coefficient data
to obtain a second approximation to the potential

U, () = G(U,,T*)KT (4)

This potential is then used to evaluate an inversion function G(U,,T*) , from which a better
approximation to U(Y) can be obtained.

(Of course, since the calculation of B(T) requires
integration over r , it is necessary to extrapolate U; outside the range for which T can
be calculated. The extrapolation can be accomplished with an approximate potential function
adjusted to join smoothly to U; .) The procedure is repeated until some measure of conver-
gence is satisfied.

Suitable criteria might be the degree to which the values of B+ T(dB/dT)
calculated from the potential match the experimental values or the extent to which successive
estimates of U(TY) agree.

The inversion procedure has been tested on data simulated from known potential energy func-
tions (3,4) and has proved successful, as shown in Fig. 1.

(Also successful was a ''blind-
fold'" challenge (5), in which the potential used to generate the data was revealed only after
the inversion.)
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Fig. 1. Inversion of pseudoexperimental second virial coefficient data.
The line represents the Lennard-Jones 12-6 potential used to generate the
data; the points represent the potential obtained by inversion. Each sym-
bol type corresponds to a different initial approximate potential. (From
Ref. 3.)

Real data for argon have also been inverted (4). Values of B in the temperature range 90-
700 K were employed and the inversion procedure was carried out for a number of different

e/k . A fairly sharp minimum in
the mms deviation of the calculated second virial coefficients from the input data was found
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for e/k=150+5K and the corresponding collision diameter o was 0.334 nm. These values
are close to the best estimates (6) for argon, ¢/k=142.5+1.0K and o=0.335nm , which
have been obtained from analyses of a combination of properties. The difference may be indi-
cative of systematic errors in some of the virial coefficient measurements.

Smith and Tindell(7) have recently made the first efforts at applying the inversion procedure
to effective spherical potentials that are consistent with virial coefficients calculated for
an anisotropic model potential. In the same spirit, let us use an approximate inversion func-
tion as a general guide to the design of virial coefficient measurements for the relatively
simple polyatomic molecules that are of interest to many chemists. What measurements must be
performed if we are to increase our knowledge of the intermolecular potentials for such mole-
cules?

With an approximate inversion function obtained from a Lennard - Jones 12-6 potential, we find
that virial coefficient data in the range T*=0.6 to T*=4 could define the potential be-
tween r*=71/0=1.7 and r*=0.9 . (For comparison, recall that r%*=1.12 at the potential
minimum.) If we assume e/k=250K, a value typical of many hydrocarbons, this T* range
corresponds to 850K . The normal boiling point lies roughly at T*=0.9 , which corresponds
to r¥=1.3.

Clearly, only measurements over a very large temperature range and to temperatures below the
normal boiling point will serve to define the potential. Although less ambitious studies
may produce useful data, they will tell us little about intermolecular forces. In the next
section we will examine the constraints that these requirements impose.

EXPERIMENTAL PROCEDURES AND EXPERIMENTAL PROBLEMS

A large number of ingenious techniques for measuring virial coefficients by essentially volu-
metric methods continue to be developed. These include 'two-bulb' (8), ''three-bulb" (9),
"four-bulb" (10,11) and even ''five-bulb" (12) apparatuses, each bulb increment allowing some
parameter or apparatus constant to be determined without calibration. All of the methods re-
quire the precise measurement of the pressure within a bulb or of the pressure difference be-
tween bulbs. It is surprising how difficult such measurements can be.

Bell and Dunlop (13) have recently reported their experiences with the calibration of a quartz
spiral pressure gauge that has a sensitivity exceeding one part in 10° . Similar observations
that were made in our laboratory (14) are summarized in the calibration curve, Fig. 2, which
shows the apparatus constant as a function of the pressure. (The digital output of the gauge
must be multiplied by the apparatus constant to obtain the pressure.) Our gauge had a range
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Fig. 2. Apparatus constant K as a function of pressure for a quartz spiral
gauge. Full symbols represent the manufacturer's calibrations.



458 C. M. KNOBLER

of 1000 torr and was calibrated by the manufacturer at ' 50-torr intervals; these calibrations
are indicated by the full symbols. Subsequent calibrations by us on a much finer grid are
represented by the open symbols. Had we simply interpolated smoothly between the original
calibrations, we would have made errors as large as 0.2 torr.

Differential pressure measuring devices are also not immune to calibration problems. Ewing
and Marsh (9) discovered that a sensitive pressure transducer, which according to the manufac-
turer's specifications has an accuracy independent of the total pressure, had a systematic
error that varied by one percent over the pressure range 2 to 103kPa. So acute is the cali-
bration problem that a dual dead-weight gauge system has been constructed (15) specifically
for the calibration of precision differential pressure gauges over a range of line pressures.

These pressure-measurement problems are typical of those that haunt the equation-of-state ex-
perimenter. They are systematic errors and are difficult to detect. The recent measurements
on ethylene (16,17) shown in Fig. 3 are unusual in that four different volumetric studies
agree, essentially within their precisions, over a wide temperature range. Systematic devia-
tions, such as those for the one discordant study, are more often the rule.
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Fig. 3. Deviations of five sets of second virial coefficient data for
ethylene from an empirical polynomial relation. The curved lines represent
two other correlations. Note the systematic deviations at low temperatures
of the measurements represented by diamonds. (From Ref. 16)

The most pernicious of systematic errors are those caused by adsorption. Such errors pose the
rnost severe limitation on our ability to make measurements at the low temperatures necessary
to define the attractive portion of the potential. The sytematic deviation at low tempera-
tures of the points labeled LSH in Fig. 3 is evidence of adsorption. That something is amiss
was also indicated by apparent decreases in density observed in isochorically coupled Burnett
expansion isotherms (18).

Dramatic effects of adsorption are seen in measurements of the pressure change on mixing gases
at constant volume, a method used to determine interaction virial coefficients (19). Although
the total pressure changes very little during the measurement, the partial pressure of each
component is halved during the mixing process and the surface area available to each component
is usually doubled. Measurments involving polar substances (20,21) are particularly suscep-
tible to error.

The seriousness of the adsorption problem is illustrated in Fig, 4, which shows the uncertain-
ty introduced by adsorption into measurements of the excess second virial coefficient

&[=B12 - Y% (B11 +Bs2)] for benzene + cyclohexane (22). It has been assumed in the calcula-
tion that the adsorption isotherms can be represented by the BET equation, that the surface
area is simply the geometric area, and that the adsorption isotherm of the mixture is a linear
combination of the isotherms of the pure components. The calculations are therefore approxi-
mate and necessarily specific to the mixture and to the apparatus. As a measure of the magni-
tude of the errors, consider that over most of the temperature range shown the excess second
virial coefficient is about 40x107° m® mol~?!, ’

The primary experimental .quantity, the pressure change developed on mixing, depends quadrati-
cally on the filling pressure p , hence it is desirable to work at high pressures. As a rule
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of thumb, workers have avoided pressures greater than 80 percent of saturation (p/p,=0.8)
to forestall capillary condensation. Adherence to this simple rule clearly does not guaran-
tee that the error due to adsorption is negligible.

Although adsorption corrections have been applied to measurements of & (21,22), the tenuous
character of the underlying assumptions leads me to question their validity. Since adsorption
errors depend on the system studied and on the nature and cleanliness of the surfaces, nothing
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Fig. 4. Difference between true and apparent values of the excess second
virial coefficient & as a function of the degree of saturation, p/po ;
the lines represent different temperatures. Throughout most of this tem-—
perature range, & is no larger than 40%107% m® mol-!. (From Ref. 22)

short of an experimental determination of the amount of substance adsorbed will guarantee that
volumetric measurements at low temperatures are free of systematic adsorption errors. The key
to handling adsorption is to avoid it, and this means abandoning volumetric methods. Let us
consider two alternatives.

ALTERNATIVE METHODS FOR DETERMINING THE EQUATION OF STATE

Measurements of the speed of sound

If a gas is placed in a cylinder of length L capped by transducers that can excite and de-
tect longitudinal sound modes, the amplitude of the detected waves can be studied as a func-
tion of the excitation frequency. The frequencies £, at which the detected amplitude passes

through a maximum are given by
= ¢
=7 ()

where ¢ 1is the speed of sound in the gas and n is an integer identifying the mode. The
dependence of the sound speed on both temperature and pressure can be expressed as a virial

expansion

c*(T,p) = Y‘;,?T + A (T)p + A (T)p + - )

in which 7Y, (T) 4is the specific heat ratio Cp/Cv in the zero pressure limit, M is the
molecular weight, and A; and A, are acoustic virial coefficients. A; is related to the
ordinary second virial coefficient through

- 2 2
mm = 3|28 20, - T Eo (YoYol) e &3 .

Measurements of the speed of sound as a function of pressure and temperature can therefore
give information about the equation of state and the ideal-gas heat capacity; indeed, two
such studies (17,23) are reported at this conference.

The simple expression (5) must be corrected for frequency shifts associated with boundary-
layer contributions to the acoustic admittances of the sides and ends of the resonator.
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These corrections, which involve the transport properties and the specific heat ratio of the
gas, are well understood. The relative size of the corrections Af/f 1is inversely propor-
tional to f£Y2 . In principle, then, errors can be minimized by working at high frequency.
An obvious practical limit to the frequency is the time required for the internal degrees of
freedom of a polyatomic molecule to come into equilibrium with the translational degrees of
freedom. With few exceptions, notably diatomic molecules, the relaxation time at 1atm is
no longer than about 1 ps , so measurements at frequencies up to 1 MHz would be unaffected.
Less easy to evaluate are the systematic errors that result from the mixing of longitudinal
and transverse sound modes that may occur when the acoustic wavelength is small compared to
the resonator dimensions.

The amount of substance does not enter into either the basic equations or the correction
terms, hence acoustic measurements might be expected to be unaffected by adsorption. Unfor-
tunately, some recent studies by Mehl and Moldover (24) suggest that this is not the case.
They interpret the sharp decrease in the speed of sound in nitrogen at low temperatures
(Fig. 5) observed by Younglove and McCarthy (25) as a precondensation phenomenon.
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Fig. 5. Apparent speed of sound in Fig. 6. Pressure dependence of the
nitrogen as a function of pressure fractional deviations of the measured
at 80K. The line in the lower speed of sound in propane from meas-
curve was calculated from a corre- urements taken with the fifth mode of
lation of the thermophysical prop- spherical resonator A. Measurements
erties of Nj; ; the upper curve taken with the cylindrical resonator
shows the difference between the are labeled by C; those with the
calculated and experimental values. spherical resonators by A and B.
Py is the saturation pressure. The subscripts identify the mode.
(From Ref. 24) (From Ref. 24)

To test their hypothesis, Mehl and Moldover measured the speed of sound in propane with three
resonators, two of which were spherical but of different diameter, while the third was cylin-
drical and similar in dimensions to the one used for the nitrogen study. The propane data
exhibit an anomaly much like the one observed in nitrogen. As shown in Fig. 6 , the anomaly
is strongest at low frequency; it depends as well on the surface-to-volume ratio of the reso-
nators and the finish of the resonator surface. A model for the acoustic admittance of a
liquid film is in qualitative agreement with the observations.

Further measurements and analyses are required to determine if the acoustic method is appli-
cable to low-temperature equation-of-state measurements. It is clear, however, that where

adsorption is not a problem, reliable very high precision absolute measurements of the speed
of sound can be made. Relative measurements (23,26), which are less sensitive to systematic
errors and which avoid the determination of apparatus constants, may prove even more reliable.

It is no trivial matter, however, to extract the ordinary second virial coefficient from A, :
the terms within the parentheses in Eqn.(7) are typically of the same magnitude and Y, 1is
usually not accurately known. The obvious first step is to obtain A; and 7Y, from the
pressure dependence of c® . This procedure is similar to that followed in dealing with
ordinary p,V,T-data and in discussing it I have the opportunity of making a few general
remarks about data analysis.

Twenty years ago, Scott and Dunlap (27) fitted experimental p,V-measurements on butane with
both the pressure and density forms of the virial equation. The two methods of analysis led
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to second virial coefficients whose standard deviations, as determined by the least-squares
procedure, were about 5cm® mol™! ; the two values differed, however, by 30 am® mol™! !

They soon realized that the linear expressions they were using gave the average values of
the slope of pV/nRT vs. n/V and pV/nRT vs. p/RT , while the second virial coefficients
are defined as the Zimiting slopes at n/V=0 and p/RT=0 . Even though the two isotherms
appeared to be quite linear, it was only when terms in (n/V)? and (p/RT)? were included
in the analysis that the values of B obtained from the two series agreed within their esti-
mated uncertainties.

I raise this bit of "ancient history' because its lesson has sometimes been forgotten and al-
so because it is possible to interpret the Scott-Dunlap observations in another way that il-
lustrates an important feature of data analysis that is often overlooked -- the concept of
covariance. To illustrate, I have fitted p,V-data for dichloromethane (28) along a single
isotherm (349.53 K) by both linear and quadratic equations in the density. The results of
the least-squares analyses are given in Table 1.

TABLE 1. Fit of Z=pV/nRT = A+B(n/v) +C(n/V)? for dichloromethane at 349.5 K

Linear Quadratic
o 1.56x10° " 0.36x10""
A 1.00024 + 0.00009 0.99994 + 0.00003
B/cm® mol™} -570.8 * 2.0 -541.2 + 2.9
C/10° cm® mol - 3.17 + 0.30

The magnitude of the standard deviations of the parameters in the quadratic fit is determined
by the scatter of the data, the number of observations, the range of densities and, if A,B,
and C are not independent, the variations in the other parameters. Covariances oj; , which
are easily obtained from the off-diagonal terms of the inverse matrix used to solve %he least-
squares normal equations, express the correlations between parameters i and j . The co-
variances and the standard deviations of the parameters o. and o. can be used to define

a correlation coefficient p (29): . J

o= (8)

The magnitude of p ranges between zero (no correlation) and one (complete correlation).

The correlation coefficient associated with B and C in the quadratic fit of the dichloro-
methane isotherm is -0.99 , the negative sign indicating that errors that cause B to be
high will cause C to be low. In effect, the least-squares procedure has determined pairs
of B's and C's that are consistent with the data, rather than with independent parameters.
As a result of the high degree of correlation, some of the uncertainty in B must be asso-
ciated with the uncertainty in C. We can therefore reduce the apparent uncertainty in B
by fixing the value of C, say at zero. In doing so, we must also adjust B so that it is
consistent with C=0 . The adjustment can be calculated (29) from the change in C
(+3.17x10%), the covariance, and the variance of C

opc’
BB = AC [_(:2_ 9
o
C
We find AB = - 29.7 am® mol ' , so the adjusted value of B is - 570.9 cm® mol ', the

value obtained from the linear least-squares analysis.

The large difference between the second virial coefficients derived from the linear and quad-
ratic fits may therefore be seen as resulting from the constraint of the highly correlated
third virial coefficient. The standard deviations of the coefficients must not be interpre-
ted as a measure of the precision of the coefficients as independent parameters.

Covariances must be considered in assessing errors in derived quantities. If a quantity vy
is a function of two variables o and B that are correlated, then the expression for the
propagated error must include a term Zoagz(ay/aa)(ay/as) in addition to the terms involving
the variances of a and B . This is the case in the analysis of acoustic data, where
[Eqn.(7)] B=B(A1,Y,) , if A; and 7Y, are both obtained from fitting c2? as a function
of p [Egqn.(6)].

PAAC 55:3 - D



462 C. M. KNOBLER

The relation between the errors in ¢ and the errors in A; and Y, is not obvious and
will depend on the method of analysis. Mehl and Moldover (30) have treated Eqn.(7) as a dif-
ferential equation for B and integrated it by estimating B and dB/dT at 273K from the
volumetric measurements of Douslin and Harrison (31). The differences between the virial co-
efficients derived from the acoustic data and those obtained volumetrically (31,32) are shown
in Fig. 5. The deviations, which are systematic, reach 0.8 cm® mol™! at the highest temper-
ature.
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Fig. 7. Deviations of the data of Douslin and Harrison (31) and Waxman
and Davis (32) from the virial coefficients calculated by integration
of acoustic data. (From Ref. 30)

Ewing et al. (23) have adopted a different analysis procedure. They represent the second
virial coefficient by a general polynomial

(592

B(T) = J a.T (10)

=1
which gives
k
1

j=1

A (D

with
Yj =0ro/MIZ+ (Yo -D(5-3) + (vo-D2(5-3)(3-3)/4Y,) (12)

The coefficients 4 can be determined by fitting A; by least squares. This method of
analysis is very sensitive to the polynomial chosen for B, which must represent satisfactor-
ily both the first and second derivatives. It is not clear that this criterion can be met
for data of high precision that extend over a large temperature range.

Flow calorimetric methods

In principle, measurements of the isothermal Joule-Thomson coefficient can be employed to de-
termine the equation of state of pure substances and direct measurements of the enthalpy of
mixing can yield interaction virial coefficients. The feasibility of such methods has long
been recognized, but it is only recently that reliable techniques for measurements at low
reduced temperatures have been developed, chiefly by Wormald and coworkers.

The chief advantage of flow calorimetric methods for equation-of-state studies is the free-
dom from errors caused by adsorption. Flow methods may also be advantageous at high temper-
atures, where decomposition can be a problem. Two basic components comprise the apparatus:
(1) a system for establishing steady flows at fixed pressures and (2) a calorimeter. The
success of an experiment rests on the attention paid to detail in its design.

When the substances being studied are gaseous, flow control is easy; the generation of a
steady flow of vapor by the evaporation of liquid is more difficult. Controlled flows of
vapor have been produced by injecting liquid from a calibrated metering pump into a flash
vaporizer (33,34) but a simpler system (35) that utilizes a refluxing liquid as the vapor
source is equally effective (Fig. 8).

Detailed descriptions of highly refined calorimeter designs can be found in the literature
(33-37). An imnovation in heat-of-mixing calorimetry, the differential flow calorimeter
(38), may be singled out. The twin calorimeter, which is shown schematically in Fig. 8, has
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v U

Fig. 8. Schematic diagram of a flow system and differential calorimeter.
The condensers and flask to the left of the boiler (1) are a system that
automatically degases the liquid. Throttle valve (3), which controls the
flow rate, and heat exchanger (2) are in a thermostatted bath. A similar
boiler and flow-control system are provided for the second component.
Heat exchangers (4), (5) and (8) are in the main thermostat with the calo-
rimeters (6) and (10). After flowing through heat exchanger (8), the
stream is split at (9) before it enters the second calorimeter. A mano-
meter connected at (7) can be used to measure the pressure in the calori-
meter. The mixture leaving the calorimeter is condensed at (11) and can
be collected and measured in bulbs (12) before it is drained into (13).
The outlet pressure is measured on manometer (14). (From Ref. 35)

the important advantage that systematic errors caused by the Joule-Thomson effect are can-
celled out. An additional advantage of the second calorimeter (35) is that it allows exo-
thermic enthalpies of mixing to be determined: The components are mixed in the first calo-
rimeter and the temperature rise is sensed. The mixture is restored to the thermostat
temperature by a heat exchange coil and power is supplied to the heater of the second calo-
rimeter until the temperature rise matches that in the first calorimeter. If the thermo-
couples used to sense the temperature in the two calorimeters are connected in opposition,
this condition is indicated by a null.

Joule-Thomson measurements have been performed on benzene and cyclohexane (33,34,39), and the
normal alkanes hexane, heptane, and octane (40) at reduced temperatures as low as 0.6 . The
strongly adsorbed compounds acetone and chloroform (36) have also been studied. Many heats
of mixing have now been investigated, including low-pressure studies of systems as '"unpleas-
ant'" as water + chloroform (41), dimethyl ether + choloroform (42), and acetone + chloroform
(35,43) and several mixtures involving water (44,45).

For a Joule-Thomson calorimeter, the power & required to maintain isothermal conditions may
be written (36):

P=pr[B—T%l%]+[C'-T%%Jp (13)

where f 1is the flow rate, Ap is the pressure drop across the calorimeter, p is the mean
pressure and C' = (C-B?)/RT . The first term in parentheses is the zero-pressure isother-
mal Joule-Thomson coefficient ¢ .

At low density, HE the heat of mixing for a binary vapor mixture is given by (35):
E p’
H = x(1-x)p (2912 - 611 - d22) - fp [Béy - (1-X)Biidnr - XBazdys] (14)

The mole fraction of the second component is represented by x and the subscripts 11, 22,
m, and 12 identify respectively the pure component, mixture, and interaction virial coeffi-
cients and Joule-Thomson_coefficients. An alternative expression for the first term in (14)
shows the relation of H= to the excess second virial coefficient:

HE=x(1-x)p[&-Tg_i§] (15)
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The direct analysis of both types of calorimetric measurement is seen to be similar to that
required for acoustic data. Measurements made as a function of pressure must be extrapolated
to the zero-pressure limit and the resulting quantities, here the intercepts, must be inte-
grated to obtain the desired parameters, B and & . Thus, additional information is neces-
sary to fix at least one limit of the integration.

In an alternative procedure, Joule-Thomson data (36) are combined with measurements of the
zero-pressure limit of the pressure derivative of the heat capacity,

aC )

) d2B

lim T [—P} = - TZ[——} (16)
0 P Jr dT?

in order to determine by least-squares the coefficients in an empirical expression such as
(10).

Here again, the success of the method rests on the suitability of the polynomial. In addi-
tion, it is necessary to establish relative weights for the various sets of data that are
combined in the analysis, a task that is clearly not trivial.

Interaction virial coefficients can be extracted fron H- measurements only when either the
pure-component virial coefficients or Joule-Thomson coefficients are known. If a specific
potential or corresponding states correlation is assumed, thedata can be used to test comb-
ining rules by which the parameters representing the unlike interaction are obtained from
the parameters for the pure components (44). For example, if the arithmetic mean is assumed
for the size p%;ameter of a two-parameter potential, the energy parameter can be written

€12 =E(e11€22)¥?2 and & can be varied to bring the calculated HE's into accord with the
measured values. Equilibrium constants_and enthalpies of reaction for weak gas-phase com-
plexes have also been extracted from HE measurements (42).

The determination of interaction parameters, for use in the prediction of the properties of
fluid mixtures, is still a motivating force for the measurement of interaction virial coeffi-
cients. Despite much searching, no generally applicable combining rules have been found.
Diaz Pefia et al. (46) have given a general formula for generating combining rules for a
two-parameter potential :

<ecfY>
€12 =——6—‘ (17)
<o>j <Y>k

The subscripts i, j, and k specifiy the form of the mean indicated by the bracket and Y
stands for additional substance-specific parameters, such as I, a”2, x 2, or y/o , where
I, o, and x are the ionization energy, polarizability, and diamagnetic susceptibility,
respectively. Rules may then be defined by specifying vy and the type of mean (arithmetic,
geometric, or harmonic) for each index. A total of 108 distinguishable rules is generated
when y=1 is allowed and the simple means for e;, are also included.

The rules have been ranked by comparing experimental values of B;, for 73 nonpolar binary
mixtures with those calculated from a Lennard-Jones 12-6 potential. Included in the sample

were noble gases, diatomic and pseudospherical molecules, and hydrocarbons. Three statisti-
cal criteria were taken as figures of merit.

A rule previously proposed by Good and Hope (47) was the most successful. It corresponds to
the relations

012 = (011022)1/2

e12= (e11622) 2 F(y) (18)
1

F(y) = 2(Ii1,) 2/ (I, + 1)

Eqns.(18) are only marginally better than several others, however, including the geometric
mean of € and the geometric mean of o with F(y)=1 and, at a slightly lower ranking,
the familiar combination of the geometric and arithmetic means.

The rules were also tested with the Kihara spherical core potential, for which the combina-
tion rule for the third parameter ai» is specified as the arithmetic mean. The rankings of
combination rules for this potential are less clear-cut and do not correspond to those for
the Lennard-Jones potential. Diaz Pefia et al. conclude that only rules that correspond to
the arithmetic mean for the energy parameter are clearly inferior. For the rest, 'none

of the rules tested shows a clear advantage over the other rules in correlating experimental
data for all of the systems or for groups of similar systems.'
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CONCLUSIONS

Definitive information about the intermolecular potential can be obtained from equation-of-
state measurements that meet the criteria of high precision, freedom from systematic errors,
and sufficient range. Very few measurements on polyatomic molecules come up to this standard,
but they are feasible and should be pursued. An insensitivity to adsorption errors gives
isothermal Joule-Thomson coefficient studies clear advantage over volumetric methods for
measurements at low temperatures; acoustic measurements at intermediate frequencies may also
be advantageous. Practical procedures for extracting virial coefficients from high-precision
calorimetric and acoustic data must be developed, however.

It is neither necessary nor desirable, of course, to choose only one experimental method.
The beautiful study of ethylene described at this meeting (17) is an example of the success-
ful combination of several different experiments. It is likely, as well, that calorimetric
or acoustic measurements are best analyzed by linking them to a few precise volumetric meas-
urements at temperatures at which adsorption is clearly negligible. My discussion has, of
course, been limited to the second virial coefficient; I see few alternatives to volumetric
methods for the determination of higher virial coefficients.

I have focused primarily on the importance of measurements as they relate to microscopic
interactions. There are certainly good practical reasons to perform limited, moderate-pre-
cision measurements. We should not delude ourselves, however, that we can learn very much
from them about intermolecular forces. Most measurements of interaction virial coefficients
fall into this category. They provide us with essential information about unlike interac-
tions, but only in terms of the potentials assumed for the pure substances. Here again,
extensive well conceived heat - of - mixing measurements in combination with volumetric
measurements can lead to new insights. Studies of the excess heat capacity of gaseous mix-
tures (48) may also be helpful.

High-temperature studies might be considered as well. Matias et al. (49) have calculated
the second virial coefficients of alkali metal vapors in the temperature range 1000 to
10,000 K. Stephenson (50) has shown that the softening of the molecular hard core at high
temperatures is mirrored in the detailed behavior of Cp . The testing of these theoretical
predictions provides a formidable challenge.
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