Skip to content
Publicly Available Published by De Gruyter January 1, 2009

Divalent carbon(0) compounds

  • Gernot Frenking and Ralf Tonner

Abstract

Quantum chemical studies show that there is a class of carbon compounds with the general formular CL2 where the carbon atom retains its four valence electrons as two lone pairs. The C-L bonds come from L → C donor-acceptor interactions where L is a strong σ-donor. Divalent C(0) compounds (carbones) are conceptually different from divalent C(II) compounds (carbenes) and tetravalent carbon compounds, but the bonding situation in a real molecule may be intermediate between the three archetypes. There are molecules like tetraaminoallenes which may be described in terms of two double bonds (R2N)2C=C=C(NR2)2 where the extraordinary donor strength of the dicoordinated carbon atom comes only to the fore through the interactions with protons and Lewis acids. They may be considered as "hidden divalent C(0) compounds". The donor strength of divalent C(0) molecules has been investigated by calculations of the binding energies with protons and with main-group Lewis acids and the bond dissociation energies (BDEs) of transition-metal complexes.


Conference

International Conference on Physical Organic Chemistry (ICPOC-19), International Conference on Physical Organic Chemistry, ICPOC, Physical Organic Chemistry, 19th, Santiago de Compostela, Spain, 2008-07-13–2008-07-18


References

1. (a) doi:10.1021/ja00302a032, A. Baceiredo, G. Bertrand, G. Sicard. J. Am. Chem. Soc. 107, 4781 (1985);Search in Google Scholar

1. (b) doi:10.1021/ja00227a028, A. Igau, H. Grutzmacher, A. Baceiredo, G. Bertrand. J. Am. Chem. Soc. 110, 6463 (1988);Search in Google Scholar

1. (c) doi:10.1002/ange.19891010513, A. Igau, A. Baceiredo, G. Trinquier, G. Bertrand. Angew. Chem. 101, 617 (1989);Search in Google Scholar

1. (d) doi:10.1002/anie.198906211, A. Igau, A. Baceiredo, G. Trinquier, G. Bertrand. Angew. Chem., Int. Ed. 28, 621 (1989).Search in Google Scholar

2. doi:10.1021/ja00007a092, A. J. Arduengo III, R. L. Harlow, M. Kline. J. Am. Chem. Soc. 113, 2801 (1991).Search in Google Scholar

3. doi:10.1002/chem.200701390, R. Tonner, G. Frenking. Chem.Eur. J. 14, 3260 (2008).Search in Google Scholar

4. (a) doi:10.1002/ange.200602552, R. Tonner, F. Oxler, B. Neumuller, W. Petz, G. Frenking. Angew. Chem. 118, 8206 (2006);Search in Google Scholar

4. (b) doi:10.1002/anie.200602552, R. Tonner, F. Oxler, B. Neumuller, W. Petz, G. Frenking. Angew. Chem., Int. Ed. 45, 8038 (2006).Search in Google Scholar

5. (a) doi:10.1002/ange.200701632, R. Tonner, G. Frenking. Angew. Chem. 119, 8850 (2007);Search in Google Scholar

5. (b) doi:10.1002/anie.200701632, R. Tonner, G. Frenking. Angew. Chem., Int. Ed. 46, 8695 (2007).Search in Google Scholar

6. doi:10.1002/chem.200701392, R. Tonner, G. Frenking. Chem.Eur. J. 14, 3273 (2008).Search in Google Scholar

7. (a) doi:10.1021/ja01477a052, F. Ramirez, N. B. Desai, B. Hansen, N. McKelvie. J. Am. Chem. Soc. 83, 3539 (1961);Search in Google Scholar

7. (b) doi:10.1021/ja00493a035, G. E. Hardy, J. I. Zink, W. C. Kaska, J. C. Baldwin. J. Am. Chem. Soc. 100, 8002 (1978).Search in Google Scholar

8. (a) doi:10.1016/j.jorganchem.2005.09.024, N. D. Jones, R. G. Cavell, J. Organomet. Chem. 690, 5485 (2005);Search in Google Scholar

8. (b) O. I. Kolodiazhnyi. Phosphorous Ylides: Chemistry and Application in Organic Synthesis, Wiley-VCH, Weinheim (1999);10.1002/9783527613908Search in Google Scholar

8. (c) doi:10.1016/0040-4020(95)00433-5, O. I. Kolodiazhnyi. Tetrahedron 52, 1855 (1996);Search in Google Scholar

8. (d) A. W. Johnson (Ed.). Ylides and Imines of Phosphorus, John Wiley, New York (1993).Search in Google Scholar

9. doi:10.1016/S0022-328X(00)81750-7, W. C. Kaska, D. K. Mitchell, R. F. Reichelderfer. J. Organomet. Chem. 47, 391 (1973).Search in Google Scholar

10. doi:10.1002/cphc.200800208, R. Tonner, G. Heydenrych, G. Frenking. ChemPhysChem 9, 1474 (2008).Search in Google Scholar

11. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople. Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford, CT (2004).Search in Google Scholar

12. doi:10.1016/0009-2614(89)85118-8, R. Ahlrichs, M. Baer, M. Haeser, H. Horn, C. Koelmel. Chem. Phys. Lett. 162, 165 (1989).Search in Google Scholar

13. (a) doi:10.1103/PhysRevA.38.3098, A. D. Becke. Phys. Rev. A 38, 3098 (1988);Search in Google Scholar

13. (b) doi:10.1103/PhysRevB.33.8822, J. P. Perdew. Phys. Rev. B 33, 8822 (1986).Search in Google Scholar

14. doi:10.1063/1.463096, A. Schaefer, H. Horn, R. Ahlrichs. J. Chem. Phys 97, 2571 (1992).Search in Google Scholar

15. doi:10.1016/S0009-2614(02)01084-9, P. Deglmann, F. Furche, R. Ahlrichs. Chem. Phys. Lett. 362, 511 (2002).Search in Google Scholar

16. (a) doi:10.1002/9780470125922.ch1, F. M. Bickelhaupt, E. J. Baerends. In Reviews In Computational Chemistry, Vol. 15, p. 1, Wiley-VCH, New York (2000);Search in Google Scholar

16. (b) doi:10.1002/jcc.1056, G. Te Velde; F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. Van Gisbergen, J. G. Snijders, T. Ziegler. J. Comput. Chem. 22, 931 (2001).Search in Google Scholar

17. doi:10.1039/b508541a, F. Weigend, R. Ahlrichs. Phys. Chem. Chem. Phys. 7, 3297 (2005).Search in Google Scholar

18. doi:10.1016/0092-640X(81)90004-8, J. G. Snijders, E. J. Baerends, P. Vernooijs. At. Nucl. Data Tables 26, 483 (1982).Search in Google Scholar

19. J. Krijn, E. J. Baerends. Fit Functions in the HFS-Method, Internal Report (in Dutch), Vrije Universiteit Amsterdam, The Netherlands (1984).Search in Google Scholar

20. (a) doi:10.1016/0009-2614(95)00838-U, K. Eichkorn, O. Treutler, H. Ohm, M. Haser, R. Ahlrichs. Chem. Phys. Lett. 242, 652 (1995);Search in Google Scholar

20. (b) doi:10.1039/b515623h, F. Weigend. Phys. Chem. Chem. Phys. 8, 1057 (2006).Search in Google Scholar

21. doi:10.1021/cr00088a005, A. E. Reed, L. A. Curtiss, F. Weinhold. Chem. Rev. 88, 899 (1988).Search in Google Scholar

22. (a) doi:10.1002/cber.190603901103, O. Diels, B. Wolf. Ber. Dtsch. Chem. Ges. 39, 689 (1906);Search in Google Scholar

22. (b) doi:10.1002/anie.197305661, H. G. Viehe, Z. Janousek, R. Gompper, D. Lach. Angew. Chem., Int. Ed. Engl. 12, 566 (1973).Search in Google Scholar

23. (a) doi:10.1002/ange.19730851304, H. G. Viehe, Z. Janousek, R. Gompper, D. Lach. Angew. Chem. 85, 581 (1973);Search in Google Scholar

23. (b) doi:10.1002/anie.197305661, H. G. Viehe, Z. Janousek, R. Gompper, D. Lach. Angew. Chem., Int. Ed. Engl. 12, 566 (1973).Search in Google Scholar

24. doi:10.1021/ja9527075, C. Boehme, G. Frenking. J. Am. Chem. Soc. 118, 2039 (1996).Search in Google Scholar

25. (a) doi:10.1002/(SICI)1521-3757(19990816)111:16<2573::AID-ANGE2573>3.0.CO;2-A, T. Weskamp, F. J. Kohl, W. Hieringer, D. Gleich, W. A. Herrmann. Angew. Chem. 111, 2573 (1999);Search in Google Scholar

25. (b) doi:10.1002/(SICI)1521-3773(19990816)38:16<2416::AID-ANIE2416>3.0.CO;2-#, T. Weskamp, F. J. Kohl, W. Hieringer, D. Gleich, W. A. Herrmann. Angew. Chem., Int. Ed. 38, 2416 (1999);Search in Google Scholar

25. (c) doi:10.1021/om960752v, N. Frohlich, U. Pidun, M. Stahl, G. Frenking. Organometallics 16, 442 (1997);Search in Google Scholar

25. (d) doi:10.1021/om980394r, C. Boehme, G. Frenking. Organometallics 17, 5801 (1998);Search in Google Scholar

25. (e) doi:10.1021/om0341451, M.-T. Lee, C.-H. Hu. Organometallics 23, 976 (2004).Search in Google Scholar

26. (a) doi:10.1021/ja043249f, N. M. Scott, R. Dorta, E. D. Stevens, A. Correa, L. Cavallo, S. P. Nolan. J. Am. Chem. Soc. 127, 3516 (2005);Search in Google Scholar

26. (b) doi:10.1016/j.jorganchem.2005.07.112, H. Jacobsen. J. Organomet. Chem. 690, 6068 (2005);Search in Google Scholar

26. (c) doi:10.1016/j.ccr.2006.10.004, S. Diez-Gonzalez, S. P. Nolan. Coord. Chem. Rev. 251, 874 (2007);Search in Google Scholar

26. (d) doi:10.1002/asia.200700235, R. Tonner, G. Heydenrych, G. Frenking. Chem. Asian J. 2, 1555 (2007);Search in Google Scholar

26. (e) doi:10.1016/j.ccr.2008.05.020, U. Radius, F. M. Bickelhaupt. Coord. Chem. Rev. 253, 678 (2009).Search in Google Scholar

27. (a) doi:10.1021/ja01477a052, F. Ramirez, N. B. Desai, B. Hansen, N. McKelvie. J. Am. Chem. Soc. 83, 3539 (1961);Search in Google Scholar

27. (b) doi:10.1021/ja00493a035, G. E. Hardy, J. I. Zink, W. C. Kaska, J. C. Baldwin. J. Am. Chem. Soc. 100, 8002 (1978).Search in Google Scholar

28. (a) doi:10.1016/j.jorganchem.2005.09.024, N. D. Jones, R. G. Cavell. J. Organomet. Chem. 690, 5485 (2005);Search in Google Scholar

28. (b) O. I. Kolodiazhnyi. Phosphorous Ylides: Chemistry and Application in Organic Synthesis, Wiley-VCH, Weinheim (1999);10.1002/9783527613908Search in Google Scholar

28. (c) doi:10.1016/0040-4020(95)00433-5, O. I. Kolodiazhnyi. Tetrahedron 52, 1855 (1996);Search in Google Scholar

28. (d) A. W. Johnson (Ed.). Ylides and Imines of Phosphorus, John Wiley, New York (1993).Search in Google Scholar

29. doi:10.1021/ic048397l, W. Petz, C. Kutschera, M. Heitbaum, G. Frenking, R. Tonner, B. Neumuller. Inorg. Chem. 44, 1263 (2005).Search in Google Scholar

30. doi:10.1021/om020753p, J. Vicente, A. R. Singhal, P. G. Jones. Organometallics 21, 5887 (2002).Search in Google Scholar

31. doi:10.1021/om9804632, W. Petz, F. Weller, J. Uddin, G. Frenking. Organometallics 18, 619 (1999).Search in Google Scholar

32. W. Petz, F. Oxler, B. Neumuller, G. Frenking, R. Tonner. Manuscript in preparation.Search in Google Scholar

33. We calculated the second PE of 8 where one nitrogen atom is protonated instead of carbon. The calculated value is 11.6 kcal/mol smaller than the value for the carbon-diprotonated species.Search in Google Scholar

34. (a) doi:10.1002/cber.19741070232, E. Oeser. Chem. Ber. 107, 627 (1974);Search in Google Scholar

34. (b) doi:10.1039/c39940002517, M. J. Taylor, P. W. J. Surman, G. R. Clark. J. Chem. Soc., Chem. Commun. 2517 (1994).Search in Google Scholar

35. N. Kuhn, G. Henkel, T. Kratz, J. Kreutzberg, R. Boese, A. H. Maulitz. Chem. Ber. 126, 204 (1993).Search in Google Scholar

36. doi:10.1016/0022-328X(94)80182-7, N. Kuhn, T. Kratz, R. Boese, D. Blaser. J. Organomet. Chem. 470, C8 (1994).Search in Google Scholar

37. doi:10.1021/ja0438821, R. Dorta, E. D. Stevens, N. M. Scott, C. Costabile, L. Cavallo, C. D. Hoff, S. P. Nolan. J. Am. Chem. Soc. 127, 2485 (2005).Search in Google Scholar

38. doi:10.1021/ja00326a004, K. E. Lewis, D. M. Golden, G. P. Smith. J. Am. Chem. Soc. 106, 3905 (1984).Search in Google Scholar

39. (a) doi:10.1021/ic50130a036, S. Z. Goldberg, K. N. Raymond. Inorg. Chem. 12, 2923 (1973);Search in Google Scholar

39. (b) W. Petz. Personal communication.Search in Google Scholar

40. (a) doi:10.1002/ange.19740861502, T. Kappe, E. Ziegler. Angew. Chem. 86, 529 (1974);Search in Google Scholar

40. (b) doi:10.1002/anie.197404911, T. Kappe, E. Ziegler. Angew. Chem., Int. Ed. Engl. 13, 491 (1974);Search in Google Scholar

40. (c) doi:10.1080/02603599108053475, G. Paiaro, L. Pandolfo. Comments Inorg. Chem. 12, 213 (1991).Search in Google Scholar

41. J. J. Daly, P. Wheatley. J. Chem. Soc. 1703 (1966).10.1039/j19660001703Search in Google Scholar

42. doi:10.1002/1521-3749(200101)627:1<73::AID-ZAAC73>3.0.CO;2-A, A. Ellern, T. Drews, K. Seppelt. Z. Anorg. Allg. Chem. 627, 73 (2001).Search in Google Scholar

43. doi:10.1246/bcsj.43.2776, M. Tanimoto, K. Kuchitsu, Y. Morino. Bull. Chem. Soc. Jpn. 43, 2776 (1970).Search in Google Scholar

44. N. Kuhn, M. Steimann, G. Weyers. Z. Naturforsch., B 54, 427 (1999).Search in Google Scholar

45. doi:10.1002/zaac.200300048, W. Petz, C. Kutschera, S. Tschan, F. Weller, B. Neumuller. Z. Anorg. Allg. Chem. 629, 1235 (2003).Search in Google Scholar

46. doi:10.1016/S0277-5387(00)86526-2, J. D. Walker, R. Poli. Polyhedron 8, 1293 (1989).Search in Google Scholar

47. doi:10.1002/jlac.1993199301184, N. Kuhn, H. Bohnen, T. Kratz, G. Henkel. Liebigs Ann. Chem. 1149 (1993).Search in Google Scholar

48. doi:10.1107/S0567740875008990, H. C. Freeman, F. Huq, J. M. Rosalky, I. F. Taylor Jr. Acta Crystallogr., Sect. B 31, 2833 (1975).Search in Google Scholar

Published Online: 2009-01-01
Published in Print: 2009-01-01

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 20.4.2024 from https://www.degruyter.com/document/doi/10.1351/PAC-CON-08-11-03/html
Scroll to top button