Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T12:55:00.097Z Has data issue: false hasContentIssue false

Occurrence of Fibrous Chrysotile and Tremolite in the Çankiri and Ankara Regions, Central Anatolia, Turkey

Published online by Cambridge University Press:  01 January 2024

Tacit Külah
Affiliation:
Kütahya Dumlupınar University, Department of Geological Engineering, TR-43100, Kütahya, Turkey
Selahattin Kadir*
Affiliation:
Eskişehir Osmangazi University, Department of Geological Engineering, TR-26480, Eskişehir, Turkey
Hülya Erkoyun
Affiliation:
Eskişehir Osmangazi University, Department of Geological Engineering, TR-26480, Eskişehir, Turkey
Jennifer Huggett
Affiliation:
Natural History Museum, Department of Earth Sciences, London, UK
Eşref Atabey
Affiliation:
Hacettepe University, Mesothelioma and Medical Geology Research Center, Ankara, Turkey
*
*E-mail address of corresponding author: skadir.euroclay@gmail.com

Abstract

Numerous occurrences of asbestos minerals, notably chrysotile and tremolite, are to be found on fracture surfaces in thrust fault deformation zones of Cretaceous dunite-harzburgite and pyroxenite in the Çankırı and Ankara regions, central Anatolia, Turkey. Consequently, potential exists for the development of regional malignant mesothelioma. The means of serpentinization, such as reaction of seawater during accretion of the upper ophiolitic mantle crust in a subduction zone and/or following uplift of ophiolitic units and the influence of hydrothermal/meteoric fluids along fractures, were investigated. Cretaceous dunite-harzburgite and localized pyroxenite rocks are mainly composed of serpentinized olivine and pyroxene associated with opaque minerals and Fe-(oxyhydr)oxide phases. Smectite, chlorite, illite, kaolinite, hydromagnesite, goethite, quartz, and opal-CT are also present. Chrysotile and localized tremolite occur either as a mesh, a suboriented to oriented long-fiber bundle, or as fiber-filling millimetric micro-vein textures on relicts of olivine and pyroxene (enstatite, augite). The chrysotile and tremolite have non-pseudomorphic textures developed under high pressure and temperature. The textures suggest authigenic formation of chrysotile and tremolite via a dissolution and precipitation mechanism. Additionally, spherical structures of opal-CT and locally platy hydromagnesite crystals either enclose or are developed within chrysotile/tremolite fiber bundles. The leaching of MgO, Fe2O3, Al2O3, Ni, Cr, and Nb, an increase in the LREE/HREE ratio, and negative Eu anomalies in the dunite-harzburgite and pyroxenite, and asbestos samples suggest that the chrysotile and tremolite were derived from the serpentinization of olivine and pyroxene. The chrysotile and tremolite were developed along fractures by hydrothermal fluid alteration during accretion and/or following the uplift of ophiolitic units of the region under high pressure and temperature conditions. This interpretation is also supported by isotope data and the calculated formation temperature of 170–555°C for chrysotile and tremolite. The average structural formulae for chrysotile and tremolite are (NanK0.03)(Mg5.54Fe0.09Al0.05Ca0.01Mn0.001) (Si3.96Al0.03)O10(OH)8 and (Na0.17K0.07)(Ca1.59Mg0.19Mn0.002)(Mg4.72Fe0.28)(Si7.86Al0.1Fe0.06)O22(OH)2, respectively.

Type
Article
Copyright
Copyright © Clay Minerals Society 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atabey, E., 2009 Türkiye’de asbest, eriyonit, kuvars ve diğer mineral tozlar ve etkileri. MTA Yer Bilimleri ve Kültür Serisi 6 191.Google Scholar
Atabey, E., 2015 Türkiye asbest haritas (çevresel asbest maruziyeti-akciğer kanseri-mezotelyoma). Tüberküloz ve Toraks Dergisi 63 199219.Google Scholar
Atabey, E. and Ünal, H., 2008.Batı Anadolu’daki Jeolojik Unsurlar ve Halk Sağlğgı Projesi Tıbbi Jeoloji Raporu, MTA Rapor No. 11067.Google Scholar
Barış, Y., 1987 Asbestos and Erionite Related Chest Diseases Ankara, Turkey Semih Ofset Matbaas..Google Scholar
Barış, Y., 1994 Bu Doktoru Rehin Alalım: Anadolu’da bir Kanser Arastırması Ankara, Turkey Ajans Türk Mat. San. A.S., Kent Matbaası.Google Scholar
Barış, Y., 2003 İğdeköy / Emet-Kütahya Araştırması, Asbest’ten Sonra Arsenik, Anadolu’nun Bitmeyen Akciğer ve Karın Zarı Kanseri Çilesi Ankara, Turkey Bilimsel Tıp Yayınevi.Google Scholar
Barış, Y., Atabey, E., 2008.Türkiye’fde asbest ve eriyonit sorunu Uluslararası Katılımlı Tıbbi Jeoloji Sempozyum KitabıGoogle Scholar
Barış, Y. and Atabey, E., 2009 Türkiye’de Mesleksel ve Çevresel Hastalıklar, Köseleciler 1933 Bursa Magic Digital Center.Google Scholar
Barnes, J.D. Eldam, R. Lee, C-TA Errico, J.C. Loewy, S. and Cisneros, M., 2013 Petrogenesis of serpentinites from the Franciscan Complex, western California, USA Lithos 178 143157.CrossRefGoogle Scholar
Bau, M. and Dulski, P., 1996 Distribution of yttrium and rareearth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa Precambrian Research 79 3755.CrossRefGoogle Scholar
Bayram, M. Döngel, I. Bakan, N.D. Yalçın, H. Cevit, R. Dumortier, P. and Nemery, B., 2013 High risk of malignant mesothelioma and pleural plaques in subjects born close to ophiolites Chest 143 164171.CrossRefGoogle ScholarPubMed
Beinlich, A. Austrheim, H. Glodny, J. Erambert, M. and Andersen, T.B., 2010 CO2 sequestration and extreme Mg depletion in serpentinized peridotite clasts from the Devonian Solund Basin, SW Norway Geochimica Cosmochimica Acta 74 69356964.CrossRefGoogle Scholar
Biondi, J.C., 2014 Neoproterozoic Cana Brava chrysotile deposit (Goiás, Brazil): Geology and geochemistry of chrysotile vein formation Lithos 184-187 132154.CrossRefGoogle Scholar
Brindley, G.W., Brindley, G.W. and Brown, G., 1980 Quantitative X-ray analysis of clays Crystal Structures of Clay Minerals and Their X-ray Identification London Mineralogical Society Monograph 5 411438.CrossRefGoogle Scholar
Brindley, G.W., Brindley, G.W. and Brown, G., 1980 Order-disorder in clay mineral structures Crystal Structures of Clay Minerals and Their X-ray Identification London Mineralogical Society Monograph 5 125196.CrossRefGoogle Scholar
Çelik, F. Marzoli, A. Marschik, R. Chiaradia, M. Neubauer, F. and Öz, I., 2011 Early-Middle Jurassic intra-oceanic subduction in the İzmir-Ankara-Erzincan Ocean, Northern Turkey Tectonophysics 509 120134.CrossRefGoogle Scholar
Çelik, F. Chiaradia, M. Marzoli, A. Billor, Z. and Marschik, R., 2013 The Eldivan Ophiolite and volcanic rocks in the İzmir-Ankara-Erzincan suture zone, Northern Turkey: Geochronology, whole-rock geochemical and Nd- Sr-Pb isotope characteristics Lithos 172-173 3146.CrossRefGoogle Scholar
Coleman, R.G., 1977 Emplacement and metamorphism of ophiolites Rendiconti Società Italiana di Mineralogia e Petrologia 33 161190.Google Scholar
Craig, H., 1961 Isotopic variations in meteoric waters Science 133 17021703.CrossRefGoogle ScholarPubMed
Dai, S. Graham, I.T. and Ward, C.R., 2016 A review of anomalous rare earth elements and yttrium in coal International Journal of Coal Geology 159 8295.CrossRefGoogle Scholar
Dangerfield, A. Harris, R. Sarıfakıoğlu, E. Dilek, Y., Wakabayashi, J. and Dilek, Y., 2011 Tectonic evolution of the Ankara Mélange and associated Eldivan ophiolite near Hanşili, central Turkey Mélanges: Processes of Formation and Societal Significance 143169.CrossRefGoogle Scholar
Della Ventura, G. Caprilli, E. Bellatreccia, F. De Benedetti, A.A. and Mottana, A., 2014 Asbestiform tremolite within the Holocene late pyroclastic deposits of Colli Albani volcano (Latium, Italy): Occurrence and crystal chemistry Rendiconti Lincei. Scienze Fisiche e Naturali 25 229236.Google Scholar
Dilek, Y. and Thy, P., 2006 Age and petrogenesis of plagiogranite intrusions in the Ankara meélange, central Turkey Island Arc 15 4457.CrossRefGoogle Scholar
Döngel, Bayram, M. Bakan, N.D. Yalçın, H. and Gültürk, S., 2013 Is living close to ophiolites related to asbestos related diseases? Cross-sectional study Respiratory Medicine 107 870874.CrossRefGoogle ScholarPubMed
Evans, B.W. Ghiorso, M.S. and Kuehner, S.M., 2000 Thermodynamic properties of tremolite: A correction and some comments American Mineralogist 85 466472.CrossRefGoogle Scholar
Foresti, E. Fornero, E. Lesci, I.G. Rinaudo, C. Zuccheri, T. and Roveri, N., 2009 Asbestos health hazard: A spectroscopic study of synthetic geoinspired Fe-doped chrysotile Journal of Hazardous Materials 167 10701079.CrossRefGoogle Scholar
Früh-Green, G.L. Weissert, H. and Bernoulli, D., 1990 A multiple fluid history recorded in Alpine ophiolites Journal of the Geological Society 147 959970.CrossRefGoogle Scholar
Gilg, H.A. Weber, B. Kasbohm, J. and Frei, R., 2003 Isotope geochemistry and origin of illite-smectite and kaolinite from the Seilitz and Kemmlitz kaolin deposits, Saxony, Germany Clay Minerals 38 95112.CrossRefGoogle Scholar
González-Álvarez, I. Sweetapple, M. Lindley, I.D. and Kirakar, J., 2013 Hydrothermal Ni: Doriri Creek, Papua New Guinea Ore Geology Reviews 52 3757.CrossRefGoogle Scholar
Gökten, E. and Floyd, P.A., 2007 Stratigraphy and geochemistry of pillow basalts within the ophiolitic meélange of the İzmir-Ankara-Erzincan suture zone: implications for the geotectonic character of the northern branch of Neotethys International Journal of Earth Sciences 96 725741.CrossRefGoogle Scholar
Grant, J.A., 1986 The isocon diagram - A simple solution to Gresens’ equation for metasomatic alteration Economic Geology 81 19761982.CrossRefGoogle Scholar
Grant, J.A., 2005 Isocon analysis: A brief review of the method and applications Physics and Chemistry of the Earth 30 9971004.CrossRefGoogle Scholar
Hakyemez, Y. Barkurt, M.Y. Bilginer, E. Pehlivan, S. Can, B. Dağer, Z. and Sözeri, B., 1986 Yapraklı-Ilgaz-Çankırı- Çandır dolayının jeolojisi Ankara, Turkey MTA Rapor No: 7966.Google Scholar
Iyer, K., 2007.Mechanisms of Serpentinization and Some Geochemical EffectsGoogle Scholar
Iyer, K. Jamtveit, B. Malthe-Sorenssen, A. and Feder, J., 2008 Reaction-assisted hierarchical fracturing during serpentinization Earth and Planetary Science Letters 267 503516.CrossRefGoogle Scholar
Jenkins, D.M., 1987 Synthesis and characterization of tremolite in the system H2O-CaO-MgO-SiO2 American Mineralogist 72 707715.Google Scholar
Jöns, N. Bach, W. and Klein, F., 2010 Magmatic influence on reaction paths and element transport during serpentinization Chemical Geology 274 196211.CrossRefGoogle Scholar
Kadir, S. Kolaylı, H. and Eren, M., 2012 Genesis of sedimentary- and vein-type magnesite deposits at Kop Mountain, NE Turkey Turkish Journal of Earth Sciences 21 118.Google Scholar
Kadir, S. Aydogan, M.S. Elitok, O. and Helvac, C., 2015 Composition and genesis of nickel-chrome-bearing nontronite and montmorillonite in lateritized ultramafic rocks in the Muratdagi region (Uşak, western Anatolia), Turkey Clays and Clay Minerals 63 163184.CrossRefGoogle Scholar
Kadir, S. and Erkoyun, H., 2015 Characterization and distribution of fibrous tremolite and chrysotile minerals in the Eskisehir region of western Turkey Clay Minerals 50 441458.CrossRefGoogle Scholar
Kadir, S. Külah, T. Önalgil, N. Erkoyun, H. and Elliott, W.C., 2017 Mineralogy, geochemistry, and genesis of bentonites in Miocene volcanic-sedimentary units of the Ankara-Çankırı basin centralAnatolia Turkey.Google Scholar
Karadenizli, L., 2011 Oligocene to Pliocene palaeogeographic evolution of the Çankırı-Çorum Basin, central Anatolia, Turkey Sedimentary Geology 237 129.CrossRefGoogle Scholar
Kaymakçı, N., 2000 Tectono-stratigraphical evolution of the Çankırı Basin (Central Anatolia, Turkey) Geologia Ultraiectina 190 1247.Google Scholar
Khedr, M.Z. and Arai, S., 2009 Geochemistry of metasomatized peridotites above subducting slab: A case study of hydrous metaperidotites from Happo-O’ne comple, central Japan Journal of Mineralogical and Petrological Sciences 104 313318.CrossRefGoogle Scholar
Knupp, R.L., 1999.The Origin of Brucite in Hydrothermally Altered Limestone Near Devil Peak, NevadaGoogle Scholar
Koçyiğit, A., 1987 Hasanoğlan (Ankara) yöresinin tektonostratigrafisi: Karakaya orojenik kuşağının evrimi Hacettepe University Earth Science Bulletin 14 269293.Google Scholar
Koçyiğit, A. Türkmenoğlu, A. Beyhan, A. Kaymakşı, N. and Akyol, E., 1995 Post- collisional tectonics of Eskişehir - Ankara - Çankırı Segment of İzmir - Ankara - Erzincan Suture Zone (IAESZ): Ankara orogenic phase Turkish Association of Petroleum Geologists Bulletin 6 6986.Google Scholar
Kuşçu, and Erler, A., 1998 Mineralization events in a collision-related setting: The Central Anatolian Crystalline Complex, Turkey International Geology Review 40 552565.CrossRefGoogle Scholar
Külah, T. Kadir, S. Gürel, A. Eren, M. and Önalgil, N., 2014 Mineralogy, geochemistry, and genesis of mudstones in the upper Miocene Mustafapaşa member of the Ügüp formation in the Cappadocia region, central Anatolia, Turkey Clays and Clay Minerals 62 267285.CrossRefGoogle Scholar
Lafay, R. Montes-Hernandez, G. Janots, E. Chiriac, R. Findling, N. and Toche, F., 2012 Mineral replacement rate of olivine by chrysotile and brucite under high alkaline conditions Journal of Crystal Growth 347 6272.CrossRefGoogle Scholar
Lamadrid, H.M. Rimstidt, J.D. Schwarzenbach, E.M. Klein, F. Ulrich, S. Dolocan, A. and Bodnar, R.J., 2017 Effect of water activity on rates of serpentinization of olivine Nature Communications 8 16107.CrossRefGoogle ScholarPubMed
Lescano, L. Gandini, N.A. Marfil, S.A. and Maiza, P.J., 2015 Biological effects of Argentine asbestos: Mineralogical and morphological characterisation Environmental Earth Sciences 73 34333444.CrossRefGoogle Scholar
Liu, Y. Deng, J. Shi, G. Yui, T-Fu Zhang, G. Abuduwayiti, M. Yang, L. and Sun, X., 2011 Geochemistry and petrology of nephrite from Alamas, Xinjiang, NW China Journal of Asian Earth Sciences 42 440451.CrossRefGoogle Scholar
López-Moro, F.J., 2012 EASYGRESGRANT - A Microsoft Excel spreadsheet to quantify volume changes and to perform mass-balance modeling in metasomatic systems Computers and Geosciences 39 191196.CrossRefGoogle Scholar
Malvoisin, B. and Brunet, F., 2014 Water diffusion-transport in a synthetic dunite: Consequences for oceanic peridotite serpentinization Earth and Planetary Science Letters 403 263272.CrossRefGoogle Scholar
Marsh, J.S., 1991 REE fractionation and Ce anomalies in weathered Karoo dolerite Chemical Geology 90 189194.CrossRefGoogle Scholar
Metintaş, M. Özdemir, N. Hillerdal, G. Uçgun, I. Metintaş, S. Baykul, C. Elbek, O. Mutlu, S. and Kolsuz, M., 1999 Environmental asbestos exposure and malignant pleural mesothelioma Respiratory Medicine 93 349355.CrossRefGoogle ScholarPubMed
Metintaş, S. Metintaş, M. Ucgun, I. and Oner, U., 2002a Malignant mesothelioma due to environmental exposure to asbestos Chest 122 22242229.CrossRefGoogle ScholarPubMed
Metintas, M. Metintas, S. Ucgun, I. and Baykul, C., 2002.Eskisehir İli kırsal alanında çevresel asbest teması ile ilgili solunum sistemi sorunlarıGoogle Scholar
Metintas, M. Metintas, S. Ak, G. Erginel, S. Alatas, F. Kurt, E. Ucgun, I. and Yildirim, H., 2008 Epidemiology of pleural mesothelioma in a population with non-occupational asbestos exposure Respirology 13 117121.CrossRefGoogle Scholar
Metintaş, Selma Batırel, Hasan Fevzi Bayram, Hasan Yılmaz, Ülkü Karadağ, Mehmet Ak, Güntülü and Metintaş, Muzaffer, 2017 Turkey National Mesothelioma Surveillance and Environmental Asbestos Exposure Control Program International Journal of Environmental Research and Public Health 14 11 1293.CrossRefGoogle ScholarPubMed
Mével, C., 2003 Serpentinization of abyssal peridotites at mid-ocean ridges Comptes Rendus Geoscience 335 825852.CrossRefGoogle Scholar
Montes-Hernandez, G. Renard, F. Chiriac, R. Findling, N. and Toche, F., 2012 Rapid precipitation of magnesite micro-crystals from Mg(OH)2-H2O-CO2 slurry enhanced by NaOH and a heat-ageing step (from 20 to 90°C) Crystal Growth and Design 12 52335240.CrossRefGoogle Scholar
Moody, J.B., 1976 Serpentinization: A review Lithos 9 125138.CrossRefGoogle Scholar
Moore, D.M. Reynolds, R.C. Jr., 1989 X-ray Diffraction and the Identification and Analysis of Clay Minerals New York Oxford University Press.Google Scholar
MTA, , 2002.1/500,000 scale geological map of Turkey - Zonguldak, Sinop, Kayseri, Ankara, General Directorate of Mineral Research and Exploration of TurkeyGoogle Scholar
Mumpton, F.A. and Thompton, C.S., 1975 Mineralogy and origin of the Coalinga asbestos deposit Clays and Clay Minerals 23 131144.CrossRefGoogle Scholar
Niu, Y., 2004 Bulk-rock major and trace element compositions of abyssal peridotites: Implications for mantle melting, melt extraction and post-melting processes beneath midocean ridges Journal of Petrology 45 24232458.CrossRefGoogle Scholar
Nuriel, P. Katzir, Y. Abelson, M. Valley, J.W. Matthews, A. Spicuzza, M.J. and Ayalon, A., 2009 Fault-related oceanic serpentinization in the Troodos ophiolite, Cyprus: Implications for a fossil oceanic core complex Earth and Planetary Science Letters 282 3446.CrossRefGoogle Scholar
O’Hanley, D.S., 1996 Serpentinites: Records of Tectonic and Petrological History New York Oxford University Press.Google Scholar
Okay, A.I. Tüysüz, O., Durand, B. Jolivet, L. Horváth, F. and Séranne, M., 1999 Tethyan sutures of northern Turkey The Mediterranean Basins: Tertiary Extension Within the Alpine Orogen London Geological Society 475515.Google Scholar
Pacella, A. Andreozzi, G.B. and Fournier, J., 2010 Detailed crystal chemistry and iron topochemistry of asbestos occurring in its natural setting: A first step to understanding its chemical reactivity Chemical Geology 277 197206.CrossRefGoogle Scholar
Page, N.J., 1968 Chemical differences among the serpentine polymorphs American Mineralogist 53 201215.Google Scholar
Paulick, H. Bach, W. Godard, M. De Hoog, J.C.M. Suhr, G. and Harvey, J., 2006 Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15°20′N, ODP Leg 209): Implications for fluid/rock interaction in slow spreading environments Chemical Geology 234 179210.CrossRefGoogle Scholar
Rojay, B., 2013 Tectonic evolution of the Cretaceous Ankara Ophiolitic Mélange during the Late Cretaceous to pre- Miocene interval in Central Anatolia, Turkey Journal of Geodynamics 65 6681.CrossRefGoogle Scholar
Ross, M. Nolan, R.P., Dilek, Y. and Newcomb, S., 2003 History of asbestos discovery and use and asbestos-related disease in context with the occurrence of asbestos within ophiolite complexes Ophiolite Concept and the Evolution of Geological Thought: Boulder, Colorado 447470.CrossRefGoogle Scholar
Saccocia, P.J. Seewald, J.S. Shanks, W.C. III, 2009 Oxygen and hydrogen isotope fractionation in serpentine—water and talc-water systems from 250 to 450°C, 50 MPa Geochimica et Cosmochimica Acta 73 67896804.CrossRefGoogle Scholar
Sarıfakıoğlu, E. Sevin, M. Esirtgen, E. Bilgiç, T. Duran, S. Parlak, O. Karabalık, N. Alemdar, S. Dilek, Y. and Uysal, I., 2011.The Geology of Ophiolitic Rocks around Çankırı-Çorum Basin: Petrogenesis, Tectonics and Ore Deposits: Ankara, TurkeyGoogle Scholar
Sarıfakıoğlu, E. Dilek, Y. and Sevin, M., 2014 Jurassic-Paleogene intra-oceanic magmatic evolution of the Ankara mélange, north-central Anatolia, Turkey Solid Earth 5 77108.CrossRefGoogle Scholar
Sarıfakıoğlu, E. Dilek, Y. Sevin, M., Sorkhabi, R., 2017.New synthesis of the Izmir-Ankara-Erzincan suture zone and the Ankara mélange in northern Anatolia based on new geochemical and geochronological constraints Tectonic Evolution, Collision, and Seismicity of Southwest Asia: In Honor of Manuel Berberian’s Forty-Five Years of Research ContributionsGoogle Scholar
Savin, S.M. and Epstein, S., 1970 The oxygen and hydrogen isotope geochemistry of clay minerals Geochimica et Cosmochimica Acta 34 2542.CrossRefGoogle Scholar
Sevin, M. and Uğuz, M.F., 2011 Geological Map of Çankırı G 30 Quadrangle, Scale 1:100.000 Ankara, Turkey General Directorate of Mineral Research and Exploration (MTA) Publications.Google Scholar
Sheppard, S.M.F. and Gilg, H.A., 1996 Stable isotope geochemistry of clay minerals Clay Minerals 31 124.CrossRefGoogle Scholar
Sheppard, S.M.F. Nielsen, R.L. and Taylor, H.P., 1969 Oxygen and hydrogen isotope ratios of clay minerals from porphyry copper deposits Economic Geology 64 755777.CrossRefGoogle Scholar
Sonzogni, Y. Treiman, A.H. and Schwenzer, S.P., 2017 Serpentinite with and without brucite: A reaction pathway analysis of a natural serpentinite in the Josephine ophiolite, California Journal of Mineralogical and Petrological Sciences 112 5976.CrossRefGoogle Scholar
Sun, S.-s. McDonough, W.F., Saunders, A.D. and Norry, M.J., 1989 Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes Magmatism in the Ocean Basins London Geological Society 313345.Google Scholar
Şengör, A.M.C. and Yımaz, Y., 1981 Tethyan evolution of Turkey: A plate tectonic approach Tectonophysics 75 181241.CrossRefGoogle Scholar
Turkish Mesothelioma Working Group, 2015 Turkey asbestos control strategic plan final report Turkish Thoracic Journal 16 S1S26.Google Scholar
Üner, T. Çakır, , 2011 Mineralogical, petrographical and geochemical characteristics of Eldivan Ophiolite (Çankırı) harzburgitic tectonites Mineral Research and Exploration Bulletin 143 7594.Google Scholar
Van Gosen, B.S., 2007 The geology of asbestos in the United States and its practical applications Environmental and Engineering Geoscience XIII 5568.CrossRefGoogle Scholar
Wenner, D.B. and Taylor, H.P., 1973 Oxygen and hydrogen isotopic studies of the serpentinization of the ultramafic rocks in oceanic environments and continental ophiolitic complexes American Journal of Science 273 207239.CrossRefGoogle Scholar
Whitney, D.L. and Evans, B.W., 2010 Abbreviations for names of rock-forming minerals American Mineralogist 95 185187.CrossRefGoogle Scholar
Wicks, F.J. and Whittaker, E.J.W., 1977 Serpentine textures and serpentinization Canadian Mineralogist 15 459488.Google Scholar
Yılmaz, Y. Genç, S.C. Gürer, F. Bozcu, M. Yılmaz, K. Karacık, Z. Altunkaynak, S. Elmas, A., Bozkurt, E. Winchester, J.A. and Piper, J.D.A., 2000 When did the western Anatolian grabens begin to develop? Tectonics and Magmatism in Turkey and the Surrounding Area 353384.CrossRefGoogle Scholar
Zaremba, T. Krzakała, A. Piotrowski, J. and Garczorz, D., 2010 Study on the thermal decomposition of chrysotile asbestos Journal of Thermal Analysis and Calorimetry 101 479485.CrossRefGoogle Scholar
Zheng, Y.-F., 1993 Calculation of oxygen isotope fractionation in hydroxyl-bearing silicates Earth and Planetary Science Letters 120 247263.CrossRefGoogle Scholar