Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-26T13:47:15.076Z Has data issue: false hasContentIssue false

Uptake of Lanthanides by Vermiculite

Published online by Cambridge University Press:  02 April 2024

Pascual Olivera Pastor
Affiliation:
Departemento de Química Inorgánica, Cristalografia y Mineralogía, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
Enrique RodríGuez-Castellon
Affiliation:
Departemento de Química Inorgánica, Cristalografia y Mineralogía, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
Aurora Rodríguez García
Affiliation:
Departemento de Química Inorgánica, Cristalografia y Mineralogía, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain

Abstract

The uptake of Ce3+, Nd3+, Gd3+, Er3+, and Lu3+ on vermiculite was studied using cation-exchange measurements, infrared spectroscopy (IR), and X-ray powder diffraction (XRD). The reaction was followed by measuring the amount of lanthanide ions (Ln3+) taken up by n-butylammonium-ex-changed vermiculite in relation to amount of Ln3+ salt added and the pH of the equilibrium solution. The amount of Ln3+ taken up in excess of the CEC value increased with the hydration energy of the lanthanide ion and with the pH of the n-butylammonium-exchanged vermiculite suspension. At equilibrium solution pHs of 3–4.5, the uptake of Ln3+ ions was only slightly greater than the CEC, whereas at pHs >4.5 the amount taken up by the vermiculite increased sharply. The uptake of Ln3+ ions beyond the CEC of the vermiculite is probably related to the hydrolysis of Ln3+ ions on the vermiculite interlayer surface. The appearance of a band at 1715–1720 cm−1 in the IR spectra of the Ln3+-exchanged vermiculite suggests a strongly acidic medium in the interlayer space. The Ln3+-exchanged vermiculites gave XRD patterns having 002/001 intensity ratios greater than that of Mg-exchanged vermiculite.

Type
Research Article
Copyright
Copyright © 1988, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aagaard, P., 1974 Rare earth elements adsorption on clay minerals Bull. Groupe Franc. Argiles 26 193199.CrossRefGoogle Scholar
Baes, C. F. and Mesmer, R. E., 1976 The Hydrolysis of Cations New York Wiley-Interscience 1290.Google Scholar
Bassett, W. A., 1958 Copper vermiculites from Northern Rhodesia Amer. Mineral. 43 11121133.Google Scholar
Bonnot-Courtois, C. and Jaffrezic-Renault, N., 1982 Etude de échanges entre terres rares et cations interfoliaires de deux argiles Clay Miner. 17 409420.CrossRefGoogle Scholar
Bruque, S., Mozas, T. and Rodriguez, A., 1980 Factors influencing retention of lanthanide ions by montmorillon-ite Clay Miner. 15 413420.CrossRefGoogle Scholar
Gillard, R. D. and Wilkinson, G., 1964 Adduct of protonic acids with coordination compounds J. Chem. Soc. 2 16401646.CrossRefGoogle Scholar
Goryushina, V. G., Savvin, S. B. and Romanova, E. V., 1963 Photometric determination of rare earths in ores with Ar-senazo III Zhur. Anal. Khim. 18 13401344.Google Scholar
Habenschuss, A. and Spedding, F. H., 1979 The coordination of rare earth ions in aqueous chloride solutions from X-ray diffraction J. Chem. Phys. 70 27972806.CrossRefGoogle Scholar
Laufer, F., Yariv, S. and Steinberg, M., 1984 The adsorption of quadrivalent cerium by kaolinite Clay Miner. 19 137149.CrossRefGoogle Scholar
McBride, M. B., Pinnavaia, T. J. and Mortland, M. M., 1975 Electron spin resonance studies of cation orientation in restricted water layer on phyllosilicate (smectite) surfaces J. Phys. Chem. 79 24302435.CrossRefGoogle Scholar
Miller, S. E., Heat, G. R. and Gonzalez, R. D., 1982 Effects of temperature on the sorption of lanthanides by mont-morillonite Clays & Clay Minerals 30 111122.CrossRefGoogle Scholar
Mortland, M. M. and Raman, K. W., 1968 Surface acidity of smectites in relation to hydration, exchangeable cation, and structure Clays & Clay Minerals 16 393398.CrossRefGoogle Scholar
Olivera, P., 1986 Cambio ionico de lantanides en vermic-ulita y sorcion de sustancias organicas por vermiculitas lantanidas Malaga, Spain Universidad de Malaga.Google Scholar
Olivera, P., Rodriguez-Castellón, E. and Rodriguez, A., 1987 Ionic exchange and characterization of lanthanide vermiculites Bol. Soc. Esp. Mineral. 9 170173.Google Scholar
Serratosa, J. M., Johns, W. D. and Shimoyama, A., 1970 Infrared study of alkylammonium vermiculite complexes Clays & Clay Minerals 18 107113.CrossRefGoogle Scholar