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Abstract 
Phytophthora capsici is the most destructive pathogen of vegetables that represents a serious threat to chilli pepper 
plants. We discussed the control of P. capsici through manipulation of genetic architecture of chilli plant and 
endophytic microorganisms. The function of various genes encoding transcriptional regulatory and defense related 
putative proteins such as pathogen-related protein (PR), anti-microbial peptides (AMPs), polygalacturonase-
inhibiting proteins (PGIPs), lipid transfer protein (LTP), pectin methylesterase (PME), leucine-rich repeat proteins 
(LRRs), osmotin-like and thaumatin-like protein, in Capsicum was also analyzed. The bio-control of P. capsici 
by using various strains of Bacillus, Trichoderma, Pseudomonas, Chryseobacterium and Rhizobacteria was 
demonstrated. We also discussed the enhanced resistance to P. capsici infection by treatment with a variety of 
abiotic and biotic inducers that act on defence signalling pathways involved in disease resistance. We highlighted 
the vulnerability of chilli crop with reference to its genetic resources against Phytophthora blight. Disease control 
through chemicals is becoming problematic, so we proposed other ways to control the disease severity. This review 
highlights the economic significance of chilli pepper (Capsicum annuum L.) along with disease management 
strategies against P. capsici. This pathogen has posed a serious threat to chilli crop worldwide. 
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Introduction
Chilli pepper (Capsicum annuum spp.) is an 

essential horticultural crop grown worldwide, particularly 
in Asia (Tariq et al., 2014). This perishable vegetable is 
consumed as fresh, dry or processed spices as well as in 
medicines. Its hot taste is due to a compound capsaicinoid 
(C18H27NO3) which resides in the placental tissues, 
pericarp and internal membrane. Capsaicinoid compound 
administers its role in various ethno-pharmacological 
applications including anticancer therapy, anti-obesity 
treatment, body temperature regulation, pain therapy, 
antimicrobial agent and antioxidant (Meghvansi et al., 
2010). Moreover, chilli fruit is not only cholesterol free but 
also a precious source of folic acid, potassium, vitamins 
A, B, C, phenolics and carotenoids. It also possesses 
antimicrobial activity (Materska, Perucka, 2005). Chilli 
belongs to the 3rd most economically important and 
valuable plant family known as Solanaceae containing 
more than 3000 species (Mueller et al., 2005). New world 
tropics and subtropics are its places of origin. Capsicum 
annuum, C. pubescens, C. frutescens, C. chinense and 
C. baccatum are the major cultivated species of the genus 
Capsicum for edible purpose (Sanatombi et al., 2010). 
Several pathogens comprising viruses, bacteria, fungi and 
nematodes cause disorder in chilli’s normal metabolic 
pathways. Anthracnose, downy mildew, Phytophthora 

blight, collar rot, purple blotch, fruit and root rot are the 
most alarming diseases of Capsicum that cause severe 
yield losses in chilli production (Yin et al., 2012). Of 
these diseases the most damaging one is Phytophthora 
blight which is triggered by the infection of oomycete 
pathogens called Phytophthora capsici (Lee et al., 2008). 
These fungal diseases also make run short of the capsaicin 
contents in the chilli fruits. It has many applications as 
prospective medicinal plant like other plant species. 

Plant pathological disorders can be controlled 
through chemical, mechanical and biological ways. 
Among these, disease control through pesticides is most 
widespread and popular among the farming community 
although it has generated several environmental 
problems. Fungal diseases in chilli are usually controlled 
by fungicides such as mencozeb, metalaxyl, mefenoxam, 
phenylamides or by cultural practices like soil treatment, 
mulching and water management (Matheron, Porchas, 
2002). Disease management through fungicides and 
pesticides is also becoming difficult due to augmented 
resistance in pathogens. 

Ecological pollution and health hazards are the 
prospective threats to the healthy food chain and human 
survival. Chemicals also destroy the beneficial bacteria 
that upsurge soil fertility. Scientists strongly discourage 



420
Phytophthora capsici on chilli pepper (Capsicum annuum L.) and its management through genetic                   

and bio-control: a review

the application of pesticides and fungicides against pests. 
So, there is instant need for evolving schemes to control 
plant diseases in environment friendly way (Parra, 
Ristaino, 2001). To alleviate the trend of chemical usage, 
numerous antagonistic strains of bacteria have been used 
against various pathogens to manage disease. These 
microorganisms induce the genes of resistance against 
infection or secrete the toxic enzymes against pathogens 
to control the disease. Some plant growth promoting 
bacteria also help the plants by strengthening their defense 
mechanisms. Bacteria can control the plant disease 
either by producing different hydrolytic enzymes such 
as β-1,3-glucanase and chitinase or inducing different 
plant defense genes, resultantly plants produce different 
antifungal extracellular proteins, mycoparasitism and 
enzymes (Fester, Hause, 2005). 

Severity of the disease can be reduced or eradicated 
at the best level by the incorporation of all possible 
ways. Manipulation of disease resistant genes by genetic 
engineering or conventional plant breeding methods is 
very significant for plant improvement. The introduction of 
next-generation sequencing (NGS) and molecular markers 
are very useful in conventional plant breeding methods 
or genetic engineering to manipulate resistant genes from 
different sources (Ramchiary et al., 2014). 

Persistent efforts have been made in 
understanding the functional and molecular basis to 
induce simple and polygenic resistance in plants to 
produce long-lasting protection against pathogens 
(Pflieger et al., 2001). Manipulation of resistant genes 
has become very common for producing disease resistant 
crops with better yield (Ali et al., 2014 b). A PCPME6 
gene encoding pectin methylesterase (PME) is considered 
to be responsible for the pathogenesis of P. capsici on 
pepper (Feng et al., 2010). Genetic control of disease is 
an efficient, long term, competitive, cost effective and 
environment friendly way to control pathogens. Single 
gene-mediated resistance against plant pathogens is an 
effective tool for plant breeders. 

Epidemiology and disease cycle of 
causal agent Phytophthora capsici 
“Phytophthora” is a Greek word meaning 

“destroyer of capsicums”. Phytophthora capsici L. 
belongs to class Oomycetes of kingdom Chromalveolata, 
closely related to Kingdom Fungi. These are also called 
pseudofungi and about 60 species of genus Phytophthora 
are known currently to be responsible for various diseases 
in many crop plants. The prevalence of Phytophthora 
blight has increased worldwide infecting crowns, stems, 
roots, fruits and foliar parts of plant (Oelke et al., 2003; 
Hausbeck, Lamour, 2004; Bosland, 2008; Quesada-
Ocampo et al., 2011). A PCPME6 gene encoding PME is 
responsible for pathogenesis of P. capsici on pepper (Feng 
et al., 2010). The reproductive part of P. capsici is called 
sporangium containing spores (antheridium or oogonium) 
by which further zoospores are formed (Fig. 1). 

Two mating types of Phytophthora species have 
been identified. Some are homothallic (self-fertile) while 
others are heterothallic (out-cross). A single isolate in 
homothallic is able to complete sexual stage to form bi-
motile zoospores whereas heterothallic requires mating 
types labelled as A1 and A2 to complete this stage. At 
sexual stage, each parent produces sporangia contain 
both male (antheridium) and female (oogonium) spores 
(Fig. 2). P. capsici is heterothallic, completes sexual 
stage (out-cross) regularly in the United States (Sholberg 
et al., 2007). 

Like many other species of Phytophthora, warm 
humid weather is conducive to growth of P. capsici and 
it spreads rapidly around the fields of host plants due to 
multiple spore production and infection cycles. Roots and 
crowns are its favourite targeting sites (Esfahani et al., 
2014). P. capsici grows normally between 25–30°C with 
60–80% relative humidity. In optimum environment, it 
carries potential for rapid polycyclic disease development 
from a limited amount of inoculum. Inflicted wounds 
in humid conditions, water trigger the infection that 
may happen during cultural agronomic practices. 
Water is inevitable for the dispersal and detachment 
of the sporangia, rainfall has been the most influential 
environmental factor for disease incidence (Gevens et al., 
2007; Sanogo, Ji, 2013). 

P. capsici has wide host range like Solanaceae, 
Cucurbitaceae and Fabaceae families. It infects 
watermelon, cucurbits, tomato, pumpkin, eggplant, 
cocoa, red pepper, black pepper, lima beans, snap beans, 
soya beans, common beans, squash, cucumber (Fig. 3) 
and poses a serious threat to food security. 

All plant parts, vegetative as well as reproductive, 
are highly vulnerable to P. capsici at different growth 
stages. It attacks roots during seedling stages. The disease 
results in stunted plant growth or sudden wilt. Affected 
chilli plants often show brown to black discoloration in 
roots, crown or fruits (Fig. 4). Infection of P. capsici on 
chilli usually starts at the soil line show water soaked 
areas and dark lesions on stems. These lesions spread 
around the stem and result in plant death. Small round 
or irregular leaf spots may be formed and enlarged with 
time. Crown rot that results in rapid blighting of newly 
emerged leaves or stems is also very common in pepper 
plant. Infected fruits appear dark green and further 
become brown (Fig. 5) by pathogenic attack (Roberts 
et al., 2008). 

Figure 1. Microscopic diagram of spore containing 
sporangia of Phytophthora capsici

Figure 2. Life cycle of Phytophthora capsici
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Genetic resistance in Capsicum 
annuum spp. against 
Phytophthora capsici 
Chilli pepper (Capsicum annuum L.) possesses 

various groups of valuable genes that can be transferred 
to other plant species and also keep functions. Disease 
resistant genes related to quantitative traits are more 
effective (Ortiz et al., 2010; Dang et al., 2014). We can 
overcome the shortfall of our traditional plant breeding 
by manipulating the vast variety of genes present in chilli 
plant through genetic engineering. In C. annuum, about 
292 genes related to sterility, morphology, physiology 
and resistance against numerous diseases had been 
recognized, by the year 2006 (Wang, Bosland, 2006). 

C. annuum genome comprises a rich source of genes 
against various pathogens and a locus on chromosome five 
confers resistance against oomycetes pathogens in chilli. 
Moreover, six chromosomal regions have been identified 
that have genes involved in resistance against P. capsici. 
These chromosomal regions are Phyto4.1, Phyto5.1, 
Phyto5.2, Phyto6.1, Phyto11.1 and Phyto12.1 existing on 
different chromosomes (Gurr, Rushton, 2005). 

C. annuum has hypersensitive response (HR) 
genes against P. capsici that can be induced by numerous 
environmental factors. These factors stimulate plant 
defense mechanisms in various pathways, resultantly 
different proteins are formed in plants creating immunity 
(Hong et al., 2008 b; Choi, Hwang, 2015). 

A huge number of the gene sequences and 
expressed sequenced tags are easily accessible in pepper. 
Genetic variation for several traits also exists in Capsicum 
that needs to be exploited by researchers. For the rapid 
identification of resistant genes in chilli plants, molecular 
markers may be helpful to save money and time (Ali et al., 
2014 a; Ji et al., 2014). Simple sequence repeat (SSR) 
type molecular markers are very helpful due to their co-
dominant and multi-allelic nature. Transformation of 
resistant genes in the disease susceptible varieties is the 
best tactic to control disease. Virus induced gene silencing, 
gene transformation and quantitative real time PCR have 
been used to determine gain and loss of function of the 
genes against oomycete pathogens (Ko et al., 2007). The 
identification and transformation of pathogen resistant 
genes, have led to the development of various transgenic 
chilli cultivars resistant to diseases. Categorization 
and location of quantitative trait loci (QTL) has led to 
the understanding of the functional roots of polygenic 
inherited resistance in chilli and a QTL on chromosome 
5 is considered as a major promoter of resistance against 
diseases (Liu et al., 2014). Other than constitutive 
resistance, systemic acquired resistance (SAR) or 
inducible resistance arises after the contact of plant with 
the pathogens. It offers long-term complete immunity 
to the plants and its economic status for plant disease 
control cannot be denied. Several exogenous inducers 
are available to induce defense-related gene expression 
and endogenous hormonal signalling throughout SAR 
development in pepper plants (Choi, Hwang, 2011). Anti-
microbial peptides (AMPs) having biological activities 
against pathogens are economical and reachable source. 
AMPs of 12–100 amino acids are very valuable against 
various pathogens. Genes encoding AMPs in chilli plant 
have been explored and being expressed against various 
pathogens (Fernando et al., 2014). The exploration and 
research on the promoters of defense-related genes is 
very essential for the transcriptional activation and stress 
signalling pathways, during pathogenic infection (Castro 
Rocha et al., 2012). 

Capsicum genes transferred to 
other plant species 
Various genes from genus Capsicum have been 

transferred to other plant species for different functions. 
A gene CAPOA1 was transferred in tobacco plant to 
produce transgenic tobacco. This was done to explore 
the role of antioxidant enzyme ascorbate peroxidase in 
reaction to pathogens and abiotic stresses (Sarowar et 
al., 2005). This resulted in high level of gene expression 
in tobacco plant with amplified peroxidase activity and 
plant growth. This process revealed the involvement of 
gene CAPOA1 in oxidative stress tolerance in plant and 

Figure 3. Symptoms of Phytophthora capsici attack 
on cucumbers (A), pumpkins (B), squashes (C) and 
watermelon (D) fruits

Figure 4. Chilli plants affected by Phytophthora capsici

Figure 5. Symptoms of disease caused by Phytophthora 
capsici including: leaf blight and lesions (A), fruit rot 
(B), stem rot (C) and root rot (D)
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resistance against oomycete pathogens. Overexpression 
of pepper gene CaSAR82A in transgenic Arabidopsis 
plant showed earlier plant growth and improved resistance 
against salt, drought, oxidative stresses and fungal 
pathogens (Lee, Hwang, 2006). Pepper gene CaPMEI1 
encoding pectin methylesterase (PME) was also 
transferred in A. thaliana to observe its expression level 
(An et al., 2008). Two potential pepper genes CABPR1 
and CAPOA1 encoding PR1 also gave marvellous results 
in tomato plant. Transgenic tomato plants exhibited 
improved tolerance against P. capsici (Sarowar et al., 
2006). Pepper esterase (PepEST) gene introduced in 
bentgrass confirmed resistance in plant against pathogens 
like P. capsici and Rhizoctonia solani. The PepEST gene 
stopped the development of fungal hyphae. Moreover, 
the disease severity on transgenic plants inoculated with 
P. capsici showed only 10% fungal growth while more 
than 50% fungal activity was detected in non-transgenic 
plants. More accumulation of PepEST was found in ripe 
chilli fruits. Therefore, ripe chilli fruit is testified to be a 
rich source of PepEST and finally more resistant to fungi 
as compared to unripe chilli fruits (Ko et al., 2005; Cho 
et al., 2011). 

Capsicum genes encoding lipid 
transfer protein (LTP) 
Many Capsicum genes that can be induced due 

to infection by P. capsici or Xanthomonas campestris 
were recognized in pepper tissues. These genes in chilli 
plants encode diverse putative lipid transfer protein I 
and II, osmotin (PR-5), thionin, chitinase, SAR 8.2, 
stellacyanin, leucine-rich repeat protein, auxin-repressed 
protein and β-1,3-glucanase. Furthermore, various 
fungus hindering plant proteins and peptides have been 
known recently. A lipid transfer protein (LTP) having 
size of 9 kDa, from the seeds of C. annuum is known 
as Ca-LTP1. It results in the morphological deformation 
and changes in the cells of pathogens. It usually resides 
in the dense vesicles and displays antifungal activity 
(Fernando et al., 2014). These proteins encoded by 
different genes prevent fungus growth. Osmotin is 
another important pathogenesis-related protein formed 
after the introduction of plants to the biotic and abiotic 
stress conditions (Hong et al., 2008 a). A plant peptide 
termed as CaTI was found in the seeds of C. annuum, it 
not only inhibits the trypsin and chymotrypsin but also 
the progression of Kluyveromyces marxiannus, Candida 
albicans and Saccharomyces cerevisiae by cellular, 
cytoplasmic and morphological, alterations. This peptide 
also induces the assembly of nitric oxide in plant tissues 
(Ribeiro et al., 2012). A gene CaTin2 encoding putative 
and pathogenesis related protein was isolated through 
differential screening of a cDNA library of hot peppers 
(C. annuum). It was observed that only one copy of 
gene CaTin2 amino acid sequences existed in the pepper 
genome having resemblance with the signal sequence. 
This protein accumulates in the cell wall of inoculated 
pepper plant leaves by producing a fusion protein (Shin 
et al., 2003). Storage proteins are also involved in plant 
defense mechanism because of their insecticidal and 
antimicrobial actions. It also has been observed that a 
gene PepTLP encoding thaumatin-like protein in pepper 
plants during the days of fruit ripening, increased the total 
soluble sugars along with improved resistance against 
Phytophthora blight and anthracnose (De Souza Cândido 
et al., 2011). 

Pathogen-related proteins 
(PR), polygalacturonase-
inhibiting proteins (PGIPs) 
and extracellular peroxidase-2 
(CaPO2) encoding genes 
In plants genes encoding PR proteins or 

anti-microbial peptides (AMPs) are very important to 
develop resistance against fungi and bacteria (Khaliluev, 
Shpakovskii, 2013). About 17 families of pathogen-related 
protein (PR) from PR-1 to PR-17 have been reported in 
plants that are controlled by several genes (Soh et al., 
2012). These PRs genes can be induced through biotic and 
abiotic stresses such as signalling compounds ethylene, 
jasmonic acids, salicylic acids, or non-pathogenic bacteria 
(Van der Ent et al., 2009). Genes encoding transcriptional 
regulatory and pathogen-related (PR) proteins, also play 
a vital role in plants. The expression pattern of gene 
encoding a protein PR-1 involved in defense mechanism 
was examined against P. capsici, in three cultivars of 
pepper exhibiting different levels of resistance. The results 
revealed that PR-1 up-regulated all the genes present in 
susceptible and resistant cultivars. Difference was observed 
in the duration and level of defense response (Silvar et al., 
2008). Pepper plants inoculated with Fusarium oxysporum 
against P. capsici were examined. Pathogen biomass was 
found in the stems and roots of infected plants but not in 
the leaves of plants. The results showed that PR-1 protein 
is related to five different genes (Silvar et al., 2009). 
Polygalacturonase-inhibiting proteins (PGIPs) are proteins 
present in the cell walls of plant cells and also act as fungal 
endopolygalacturonases inhibitors (Wang et al., 2013 b). 

CaPO2 for extracellular peroxidase-2 in C.annuum 
plays an efficient role during biotic and abiotic stresses. 
Transgenic Arabidopsis plants having CaPO2 gene showed 
drought, salt and oxidative stress tolerance along with fungal 
resistance. This pleiotropic effect of CaPO2 gene showed 
resistance against biotic and abiotic stresses in plants (Choi, 
Hwang, 2012). In resistant pepper plants, pathogenic stress 
generally increases the quantity of hydrogen peroxide 
(H2O2) and phenylalanine ammonia-lyase (PAL) that act 
against pathogens (Zheng et al., 2005). 

Genes induced by chemicals         
or other abiotic stress 
Various chemical compounds such as abscisic 

acid, methyl jasmonate, indole-3-acetic acid (IAA), 
hydrogen peroxide (H2O2), salicylic acid, ethylene, or 
abiotic stress like drought and high salinity also induce 
resistant genes in chilli plants before pathogenic attack. 
Plants either produce these compounds under stress 
response or by manual treatment that activates the 
promoter regions of genes. 

The CaPMEI1 pepper gene promoter region 
was functionally analysed in the transformed tobacco 
plants. Through the treatment of ethylene and methyl 
jasmonate, 958 bp promoter was regulated functionally 
and CaPMEI1 promoter region from 754 to 958 bp was 
found liable for the expression of stress-response (An 
et al., 2009). Another gene CALRR1 encoding leucine-
rich repeat proteins (LRRs) always expressed in plants 
affected by Colletotrichum coccodes, P. capsici and 
X. campestris but never expressed in healthy plants. It was 
also identified in the leaves of pepper plant treated with 
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ethylene, methyl jasmonate, salicylic acid, IAA, abscisic 
acid, H2O2, drought and high salinity stresses (Jung, 
Hwang, 2007). Among plants, pepper (C. annuum) has the 
highest quantity of ascorbate that is a natural anti-oxidant. 
The gene expression and activity of the pepper ascorbate 
oxidase (pAO) enzyme was studied through Northern 
and Southern blotting that confirmed its existence after 
araquidonic acid (AA) application (Garcı́a-Pineda et al., 
2004). Moreover, the systematic acquired resistance 
(SAR) can be created with the systematic generation 
and accumulation of H2O2 in oxidative burst, as well as 
through the induction of defense-related genes in pepper 
plants (Lee, Hwang, 2005). 

Genes induced by microorganisms 
or other biotic stress 
Plants also activate defense related mechanisms 

in response to biotic stress. Aphid attack stimulates the 
plant resistance mechanisms to cope with pathogens 
(Hong, Kim, 2005). 

Plant pathogens Tobacco mosaic virus (TMV) 
or treatment with X. campestris and rhizospheres induced 
different genes in pepper plants that can be isolated (Hong, 
Kim, 2005). A pepper gene CAPIP2 was induced by the 
infection of X. campestris in pepper plants and analysis 
exposed that the elements that induced gene expression 
are mainly located in the promoter regions of that gene 
(Lee et al., 2007). Another gene CADEF1 encoding a 
putative protein was identified from the pepper leaves 
inoculated by a virulent strain Bv5-4a of X. campestris. A 
cDNA clone named as basic-1,3-glucanase (CABGLU) 
was also isolated from the wounds of infected pepper 
leaves. The transcriptional factors of CABGLU gene 
were induced less in compatible interactions and more in 
incompatible interactions. Its mRNAs were particularly 
expressed only in the roots. It was assumed that this gene 
may be prompted due to pathogenic attack (Mee Do et 
al., 2004). Many other genes have been identified in 
chilli pepper plants that were induced by various biotic 
or abiotic stresses and acted against P. capsici as given 
in Table 1. 

Table 1. Capsicum genes related to resistance against Phytophthora capsici 

Gene Accession 
No. Gene size Induced by Gene product 

(protein)
Phenotype 
(resistance) References

CaRGA2 GU116570.1 3,018 bp P. capsici 108.6 kDa blight resistance 
protein P. capsici

Castro Rocha et al., 
2012; 
Zhang et al., 2013 

CaHIR1 DI139028.1 1,052 bp Pseudomonas syringae 
infection

hypersensitive induced 
reaction (HIR) protein P. capsici Jung, Hwang, 2007; 

Jung et al., 2008
CaPGIP1 JN180922.1 798 bp methyl jasmonate, 

salicylic acid and wounds
polygalacturonase-inhibiting 
proteins (PGIPs) P. capsici Wang et al., 2013 b

CAPR-10 JF345171.1 1500 bp compost water extracts β-1,3-glucanase, chitinase 
and peroxidase (PO) P. capsici Sang et al., 2010

CaPGIP2 JN180923.1 1038 bp methyl jasmonate, 
salicylic acid and wounds

polygalacturonase-inhibiting 
proteins (PGIPs) P. capsici Wang et al., 2013 b

CAChi2 AY775335.1 2,619 bp compost water extracts β-1,3-glucanase, chitinase 
and peroxidase (PO) P. capsici Hong, Hwang, 2006; 

Sang et al., 2010
CaPGIP3 JN180921.1 843 bp methyl jasmonate, 

salicylic acid and wounds
polygalacturonase-inhibiting 
proteins (PGIPs) P. capsici Wang et al., 2013 b

CanPOD FJ596178 1353 bp pathogen, abiotic stresses 
and salicylic acid peroxidise (POD) P. capsici Wang et al., 2013 a

CAPO1 AF442386.1 1222 bp compost water extracts β-1,3-glucanase, chitinase 
and peroxidase (PO) P. capsici Sang et al., 2010

CaBGLU AF227953.1 1332 bp Fy-11 Bacillus 
amyloliquefaciens β-1,3-glucanase P. capsici Yang et al., 2014

CaPO2 DQ632587.1 1,121 bp
abscisic acid, high salt, 
drought and oxidative 
stress

extracellular peroxidase 2 biotic and 
abiotic stress Choi, Hwang, 2012

CaPR4 JX030397.1 686 bp Fy-11 Bacillus 
amyloliquefaciens

Capsicum annuum 
pathogenesis-protein 4 P. capsici Yang et al., 2014

CASAR82A DI023421.1 258 bp biotic and abiotic stresses SAR8.2 protein phytopathogenic fungi 
and P. capsici Lee, Hwang, 2006

CaMsrB2 EF144172.1 952 bp compatible or 
incompatible pathogens

methionine-R-sulfoxide 
reductase B2 protein

P. capsici and 
P. infestans Oh et al., 2010

CaPMEI1 DQ640309.1 834 bp
pathogen infection, 
methyl jasmonate 
and ethylene

pectin methylesterase 
inhibitor

bacterial and 
oomycete pathogens An et al., 2009 

CATHION1 AF112869.1 548 bp bacterial infection gamma-thionin 1 precursor 
P. capsici and 
Xanthomonas campestris 
pv. vesicatoria

Lee et al., 2000 

CABPR1 AF053343.2 805 bp ethylene and P. syringae 
pv. tabaci basic PR protein 1 pathogen, environmental 

and abiotic stresses Hong et al., 2005 

CABGLU AF227953.1 1332 bp ethephon and methyl 
jasmonate β-1,3-glucanase P. capsici and 

X. campestris Jung, Hwang, 2000 

CAOSM1 AY262059.1 985 bp Bv5-4a of Xanthomonas 
and P. capsici osmotin-like protein P. capsici and 

Colletotrichum coccodes Hong et al., 2004 

CAPOA1 AF442387.1 1138 bp oxidative stress 
and pathogens ascorbate peroxidase (PO) P. capsici Sarowar et al., 2005 

CALRR1 AY237117.1 888 bp P. capsici, abscisic acid 
(ABA) and wounding leucine-rich repeat protein P. capsici and 

X. campestris Kim et al., 2014 a 

pAO KC176709.1 1,838 bp wounding or cellulose pheophorbide A oxygenase pathogen and resistance Garcı́a-Pineda et al., 
2004

CaERFLP1 AY529642.1 1032 bp biotic and abiotic stress ethylene-responsive factor 
like protein 1

salt stress and 
P. syringae Lee et al., 2004
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Biocontrol of Phytophthora 
capsici 
Biological control of plant pathogens through 

other microorganisms has emerged during recent years. 
For this purpose, several bacterial strains have been 
widely used as biological agents for the management of 
soil borne diseases. It is the best alternative to the chemical 
fungicides because it is harmless to environment and 
human health (Chung et al., 2008; Cimen et al., 2009). 
Microbial metabolites such as validamycins, blasticidin 
spolyoxins and kasugamycin with antifungal activity as 
microbial fungicides have an impact on crop protection 
worldwide. The recent advancement in microbial 
fungicides such as fludioxonil, fenpiclonil and syntheic 
derivatives of strobilurins is very important (Guetsky 
et al., 2002). 

About 0.3 million plant species exist on the 
Earth; each individual plant is host to one or more 
endophytes (Massart, Jijakli, 2007). In red pepper, 
Pseudomonas and Bacillus species of rhizospheres have 
been used to diminish P. capsici. Various bacterial strains 
are responsible for the production of a large number 
of antibiotics that show antifungal activity and are 
antagonistic to different fungal diseases such as sheath 
blight, root rot and stem rot (Chatterton et al., 2004). 

Various species and strains of bacteria are useful 
in controlling fungus related diseases in chilli plants. 

Bacillus strain
Bacillus strains have widespread marvelous bio-

control activity against fungal pathogens in chilli plants. 
B. vallismortis strain BS07 was found to be a potential 
bio-control agent particularly against Phytophthora blight 
and anthracnose disease of chilli plants. Plants treated 
with this rhizobacterium also showed significant increase 
in chlorophyll contents of leaves and increased fruit 
yield. SB10 also has showed 72.2% ability to decelerate 
disease incidence in chilli plants (Rajkumar et al., 2005; 
Jiang et al., 2006). 

Trichoderma harzianum bacterial strains also 
have antagonistic effect on P. capsici of chilli plants. 
The seed and root treatment of chilli with the spores of T. 
harzianum has a positive effect on the P. capsici. It has 
been observed by various researchers that necrosis caused 
by P. capsici was reduced in plants that were treated with 
different doses (Ezziyyani et al., 2007). 

Pseudomonas strains. A single strain of 
Pseudomonas can produce several different antibiotics. 
A similar spectrum of antibiotic production has been 
described in different strains. P. fluorescens strain Pf-5 has 
been demonstrated to synthesize different antibiotics such 
as 2,4-diacetylphloroglucinol, phenazines, pyoluteorin, 
pyrrolnitrin, rhamnolipids, cepaciamide A, ecomycins, 
cepaciamide A and hydrogen cyanide  (Aravind et al., 
2009; Anand et al., 2010). It has been observed that 
P. corrugata strains CCR04 and CCR80 residing in 
chilli roots suppressed Phytophthora blight disease more 
effectively as compared to Escherichia coli DH5α and 
MgSO4 solutions (Lee et al., 2003 a). Pf1 of fluorescent 
P. aeruginosa strain GC-B26 exhibited increased plant 
growth and maximum check to the growth of fungi as 
observed by Lee et al. (2003 c). The ability of Pf1 isolate 
against fungal pathogens was further investigated. It also 
triggers the production of defense-related enzymes and 
chemicals that increase the activity of defense-related 
genes and accumulation of phenolics in plants. 

Chryseobacterium strains. Chryseobacterium 
sp. (R98) was also found to be a bio-control agent against 
P. capsici. This was the first strain of  Chryseobacterium 
species reported to act as endophytic against fungal 
diseases (Ristaino, Johnston, 1999). 

Antagonistic rhizobacteria. Rhizobacterium 
species also revealed huge scale antifungal features 
especially against Phytophthora blight. Rhizobacteria 
is mostly effective in the growth of the plants but some 
bacterial strains like ISE14, CCR80, R13 and R33 
proved antagonistic to fungal attack in chilli plants 
(Emmert, Handelsman, 1999). Plant growth-promoting 
rhizobacteria (PGPR) not only increased the production 
of pepper (Kim et al., 2008; Reddy et al., 2016), but 
Bacillus vallismortis strain BS07 and B. subtilis CAS15 
were found as a potential bio-control agent particularly 
against Phytophathora blight, Fusarium wilt and 
anthracnose disease of chilli plants. Plants treated with 
this rhizobacterium also showed significant boost in 
chlorophyll contents of leaves and increased fruit yield 
(Rajkumar et al., 2005). 

Some strains of Actinomycetes and Streptomyces 
were also found to act as bio-control agents that effectively 
inhibited P. capsici on chilli plants. Table 2 shows various 
bacterial strains identified that induce resistance in chilli 
plants against P. capsici. 

Table 2. Endophytic microorganisms used against Phytophthora capsici in chilli pepper 

Endophytic bacteria Pathogenic fungi Enzymes produced References
1 2 3 4

Bacillus tequilensis (CNU082075) Alternaria panax, Fusarium oxysporum, 
Colletotrichum acutatum and P. capsici 

Abeysinghe, 2009; 
Paul et al., 2013

Actinomycete isolate 9p Alternaria brassiceae, Rhizoctonia 
solani and P. capsici

β-1,3-glucanase, lipase, 
cellulose and chitinase

Sakure et al., 2015; 
Ali et al., 2014 a

Streptomyces isolates 
P8, P39, P115 and P42

Colletotrichum truncatum, 
C. gloeosporioides and C. acutatum

Jung et al., 2004; 
Shahbazi et al., 2013

Bacillus isolates SB10 P. capsici fengycins, iturins and surfactins Zheng et al., 2004
ISE14, CCR04 and CCR80 P. capsici 2,4-di-tert-butylphenol Kamoun et al., 1999
GSE09 P. capsici 2,4-di-tert-butylphenol Kamoun et al., 1999
Pseudomonas corrugate CCR80 and 
Chryseobacterium indologenes ISE14 P. capsici 2,4-di-tert-butylphenol Emmert, Handelsman, 

1999
Bacillus subtilis 
R13 and R33 P. capsici hydrolytic enzymes and 

hydrogen cyanide (HCN) 
Emmert, Handelsman, 
1999; Lee et al., 2008

Burkholderia cepacia CNU082111 A. panax, Fusarium oxysporum, 
C. acutatum and P. capsici Abeysinghe, 2009

Pseudomonas aeruginosa 
CNU082137 and CNU082142

A. panax, F. oxysporum, 
C. acutatum and P. capsici Abeysinghe, 2009



ISSN 1392-3196         Zemdirbyste-Agriculture          	   Vol. 103, No. 4 (2016) 425

1 2 3 4

Pseudomonas fluorescens Pf1 Pythium aphanidermatum
polyphenol oxidase (PPO), 
phenylalanine ammonia lyase 
(PAL) and peroxidase (PO) 

Lee et al., 2003 c

Trichoderma harzianum spores P. capsici capsidiol Ma et al., 2008

OA-B36 and GK-B15 P. capsici radicle assay and 
plant assessments

Yánez-Mendizábal  
et al., 2012

Bacterial strains KJ1R5, KJ2C12
and KJ9C8 P. capsici radicle assay and 

plant assessments
Bloemberg, Lugtenberg, 
2001

Bacillus luciferensis strain KJ2C12 P. capsici Lee et al., 1999
Chryseobacterium wanjuense strain KJ9C8 P. capsici Shen et al., 2002
Pseudomonas strains YJR27, YJR92, 
YJR102 and YJR107 P. capsici Chang et al., 2001

Streptomyces halstedii AJ-7 P. capsici 10 kDa Chatterton et al., 2004 
Bacilli PGPR strains SE52, SE76, INR7, 
IN937a and IN937b P. capsici Jiang et al., 2006

Bacilli strains BB11 
and FH17 P. capsici Sang et al., 2007

Bacillus amyloliquefaciens Fy11 
and Zy44 P. capsici crude lipopeptides Shen et al., 2007

Chryseobacterium strain KJ9C8 P. capsici protease and hydrogen cyanide 
(HCN) Anith et al., 2003

Strains GSE09 and ISE14 P. capsici and C. capsici 2,4-di-tert-butylphenol Rajkumar et al., 2005
Flavobacterium johnsoniae strain GSE09 P. capsici 2,4-di-tert-butylphenol Compant et al., 2005
Bacillus vallismortis strain BS07 P. capsici and C. capsici salicylic acid (SA) Rajkumar et al., 2005
Pseudomonas corrugate CCR04 
and CCR80 P. capsici hydrogen peroxide (H2O2) and 

2,4-di-tert-butylphenol Rajkumar et al., 2005

Serratia plymuthica strain C-1 P. capsici Cordier et al., 1998

Bacterium burkholderia sp. H-6 P. capsici and Fusarium
graminearum Howell, 2003

B1301, R98 and PX35 P. capsici chitinase, cellulose, of 
siderophores and protease Ristaino, Johnston, 1999

Pseudomonas fluorescens isolate PS119 P. capsici Sid Ahmed et al., 1999

Bacillus subtilis (CBE4) and Pseudomonas 
chlororaphis (BCA + ) P. aphanidermatum (damping off)

phenylalanine ammonia lyase 
(PAL), peroxidase (PO), 
polyphenol oxidase (PPO) and 
β-1,3-glucanase

Chen et al., 2003

Pseudomonas fluorescens C. capsici
peroxidase (PO), polyphenol 
oxidase (PPO), phenylalanine 
ammonia lyase (PAL), β-1,3-
glucanase, chitinase

Drider et al., 2006

GK-B15 and GK-B25 P. capsici Benítez et al., 2010
OA-B26 and OA-B36 P. capsici Benítez et al., 2010
PK-B09 and VK-B14 P. capsici Benítez et al., 2010
Strain A1022 SC C. gloeosporioides and P. capsici Candela et al., 1995
Bacillus amyloliquefaciens 
Fy11 and Zy44 P. capsici Khan et al., 2004

Bacillus subtilis CAS15 Fusarium wilt Yin et al., 2012
Bacillus subtilis CA32 and 
T. harzianum RU01 R. solani Yang et al., 2012

Streptomyces sp. AMG-P1 P. capsici aminoglycoside antibiotics Akgül, Mirik, 2008
Paenibacillus polymyxa E681 P. capsici fusaricidin Akgül, Mirik, 2008
Serratia plymuthica strain C-1 P. capsici Roberts et al., 2010
Pseudomonas fluorescens strain 
IISR-6 P. capsici pyoluteorin and 

pyrrolnitrin Howell, 2003

Lysobacter antibioticus strain HS124 P. capsici chitinase and 
β-1,3-glucanase Fester, Hause, 2005

Paenibacillus ehimensis KWN38 P. capsici β -1,3-glucanase Hwang et al., 1997
Bacillus amyloliquefaciens Bg-C31 P. capsici fusion protein Selvaraj, Chellappan, 2006
Bacillus subtilis HS93 P. capsicia and A. alternate chitinase Veloso, Díaz, 2012; 

Ahmed et al., 2003
Bacillus licheniformis LS234, LS523 
and LS674 P. capsici and A. alternate chitinase Ahmed et al., 2003

Bacillus strains BB11 and FH17 P. capsici Ahmed et al., 2003
Bacillus amyloliquefaciens FZB42 P. capsici lipopeptides and polyketides Ahmed et al., 2003
Pseudomonas aeruginosa strain B5 P. capsici rhamn olipid B Zhang et al., 2010

Chryseobacterium wanjuense strain KJ9C8 P. capsici protease and hydrogen cyanide 
(HCN) Ryan et al., 2008

Paenibacillus polymyxa GBR-462 P. capsici Akgül, Mirik, 2008
Bacillus amyloliquefaciens 
strain BS211 P. capsici Chung et al., 2008

Trichoderma asperellum strains 
T2 and T31 P. capsici Lee et al., 1999

Table 2 continued
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Other management strategies 
for Phytophthora capsici 
P. capsici is a soil born disease and it 

predominantly spreads through water. Effective irrigation 
management is crucial to control P. capsici inside a 
field. Development of disease resistant varieties is also a 
good strategy to control P. capsici. Several experiments 
conducted by grafting the bell pepper shoot on the 
resistant rootstock showed significant disease decline on 
P. capsici infected  plants (Gilardi et al., 2013). Crop 
rotation with non-susceptible crops can minimize the 
chances of sporulation residing in the field. Infected 
chilli plants and fruits should be properly dumped in un-
cultivated areas because pathogen can survive in the soil 
for several years. Fungicide application in the drenches 
is more effective as compared to foliar application. 
Combined fungicides with diverse mode of actions should 
be applied at dissimilar intervals to break the resistance 
in P. capsici. Essential oils such as myrtaceae, red thyme, 
oregano and palmarosa also suppress the influence of 
P. capsici. Cultural practices such as mulching, raised 
beds, drip irrigation and the use of resistant varieties 
can minimize the P. capsici spreading in field (Sanogo, 
Ji, 2013). Application of dung and rice straws also can 
efficiently reduce the severity of Phytophthora fruit rot 
in chilli. Incorporation of bio-fumigation along with 
endophytic microorganism is also beneficial. 

Future prospects and directions 
Phytophthora blight disease is one of the main 

economic limitations to the vegetable crops worldwide. 
Integrated disease management strategies like host 
resistance, chemical control, cultural practices, and 
biological control should be combined to control diseases. 
Although the management and control of P. capsici 
are being comprehensively researched, all taxonomic 
facts about the pathogenic races of P. capsici and their 
whole biology must be known. We tried to focus on all 
recommended strategies that might be effective against 
this pathogen but there is still a need to discover more 
genes and antagonistic microorganisms against P. capsici. 
As chilli plant is a rich source of resistant genes that can 
be manipulated against P. capsici in other related plants. 
Many genes have been identified by researchers that 
confer resistance against P. capsici. These genes may help 
successfully for the development of resistant and more 
productive cultivars in the future. Use of antagonistic 
microorganisms against fungal pathogens is also a cheap 
and environment friendly way to manage the diseases. 
Research on physiology and pathogenesis of fungi can 
generate new targets specific to plant pathogens. Diverse 
approaches are also required for different pathogens 
having complementary activities. 
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Santrauka 
Phytophthora capsici yra pats žalingiausias daržovių patogenas, keliantis grėsmę aitriųjų paprikų augalams. 
Straipsnyje aptariama P. capsici kontrolė atsižvelgiant į aitriosios paprikos genetinę struktūrą ir endofitinius 
mikroorganizmus. Analizuota įvairių genų transkripciją reguliuojančių ir atsparumą lemiančių proteinų funkcija. 
Aptarti su patogenu susiję baltymai, antimikrobiniai peptidai, poligalakturonazę slopinantys ir lipidus pernešantys 
baltymai, pektino metilesterasės, leucino turintys baltymai, panašūs į osmotiną ir taumatiną baltymai. Aprašyta 
P. capsici biologinė kontrolė naudojant įvairias Bacillus, Trichoderma, Pseudomonas, Chryseobacterium ir 
Rhizobacteria padermes. Aptartas atsparumo P. capsici infekcijai padidėjimas panaudojus įvairius abiotinius ir 
biotinius induktorius, kurie veikia gynybą sąlygojančius signalinius kelius. Išryškintas aitriųjų paprikų genetinių 
išteklių pažeidžiamumas sergant fitoftoroze. Cheminė ligų kontrolė tampa probleminė, todėl pasiūlyti kiti ligos 
intensyvumo kontrolės būdai. Apžvalgoje išryškinta aitriųjų paprikų ir P. capsici išplitimo valdymo strategijų 
ekonominė reikšmė. Nurodoma, kad patogenas kelia didelę grėsmę aitriųjų paprikų augalams visame pasaulyje. 

Reikšminiai žodžiai: baltymai, biotiniai ir abiotiniai induktoriai/sužadintojai, genetiniai ištekliai, transkripcijos 
reguliatorius. 
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