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Nonlinear Responses of Sloshing Based on
the Shallow Water Wave Theory*

Takashi SHIMIZU** and Shinji HAYAMA***

Based on the shallow water wave theory, the basic equations to describe the
nonlinear responses of sloshing are derived, and a numerical method is presented to
simulate sloshing phenomena in a rectangular tank which is oscillated horizontally. As
the dispersion relation of the free surface wave plays an important role in the stable
calculation of resonant responses, it should thus be taken into consideration. In this
study, it is implicitly replaced by the dispersion relation produced by the discretization
of the basic equations. Numerical results are in good agreement with those of experi-
ments. In cases of shallow water depths, stable progressive waves are observed both
in experiments and in numerical calculations, and the various nonlinear characteristics
of sloshing, such as the hardening restoring forces and the jumping phenomena in
resonant responses are well-simulated by the basic equations and the calculation

method presented in this paper.

Key Words: Fluid Vibration, Sloshing, Nonlinear Response, Shallow Water Wave,
Dispersion Relation, Numerical Simulation

1. Introduction

Sloshing phenomena or free surface oscillations
of liquids in a tank caused by huge earthquakes are
very important problems which require clarification in
their connection with hazard prevention. Many studies
have been done on the sloshing problems in liquid
tanks. Natural frequencies of sloshing have been
obtained for various types of tanks'"®, The nonlinear
responses of the free surface elevation have also been
studied for various cases™” =,

The depth of the liquid in a large-sized tank is
considered to be small compared with its horizontal
representative length. So, sloshing phenomena in such
a tank are often in the range of the shallow water
wave theory, and show nonlinear characteristics
beyond the linear wave theory with an infinitesimal
amplitude. Tt is estimated that nonlinear waves, such
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as solitary or cnoidal waves"”"", might have occurred

in various oil-storage tanks which have experienced
an overflow of oil during earthquakes. Few studies,
however, have been done on these problems.

In this paper, the basic equations for describing
the nonlinear responses of sloshing are first derived,
and a numerical method is then presented to simulate
the nonlinear sloshing phenomena in a rectangular
tank which is forced to oscillate harmonically in the
horizontal direction.

2. Nomenclature

« > nondimensional amplitude of tank oscillation
¢ . acceleration of gravity
{1  depth of stationary liquid
kT wave number
ki o reference wave number
» - number of divisions in x-direction
o—.ryz . coordination system fixed with tank
p o opressure
G=uC 0Tt
£ 2 half of tank width in r-direction
/T time
e low velocities inoa-, v, and z-directions,
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respectively

us, Us . flow velocities in x- and y-directions on free
surface

Xe, Ye . tank displacements in x- and y-directions

d : ratio of liquid depth to half of tank width
dx . width of control volume in x-direction
: surface elevation
. damping coefficient
. density of liquid
. number of harmonically forced tank displace-
ments
. velocity potential
w . forcing angular frequency of tank displace-
ment
wn . m-th order natural angular frequency

N DN

S

3. Basic Equations of Sloshing

3.1 Derivation of basic equations

The basic equations for describing the nonlinear
responses of sloshing in a tank under horizontal oscil-
lation are derived, referring to the shallow water
wave theory"'”. The derivation in this chapter deals
with three-dimensional flow in a tank, a special case
of which represents two-dimensional flow in a rectan-
gular tank.

As shown in Fig.1, a coordinate system fixed with
the tank is set in such a way that the origin is located
in the center of the stationary liquid surface, and that
the xr-and z-axes are chosen in the horizontal and
vertical directions, respectively, and the y-axis per-
pendicular to the xz-plane.

Let H be the depth of a stationary liquid in a tank
of width 2R in the x-direction. The tank is subjected
to harmonic displacements X and Y¢ in the x-
and y- directions, respectively. For simplification of
the analysis, the following are assumed. (1) The
liquid in the tank is incompressible, inviscid and
irrotational. (2) Pressure is constant on the free
surface. ( 3) The tank wall is rigid and the stationary
liquid depth A is constant. Then, the equations of
continuity and motion are expressed, respectively, as,

Z /
o| 7| _
A X
N H
R R
Fig. 1 A liquid tank and the coordinate system adopted.
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Ehr (1)
R R R d
ﬂ+ %Jr yﬂJr ‘;Z ’13 gAva ¥,
%Z; +ua—w+v%+ %z: _%%fg

(2)

where a dot denotes the derivative with respect to
time.

Assumption (1) suggests the existence of a
velocity potential @ which satisfies the following
Laplace’s equation,

AD=0 (3)
Assuming that the velocity potential @ is expressed in
the form of @=F(x, y, t) G(z), where F and G are
arbitrary functions, and applying the boundary condi-
tion on the bottom wall of the tank, that is, w=0 at z
=—H, @ can be expressed as

O=F(x,y, t)cosh L(H +z) (4)
From this, the wvelocity components u, v, w are
obtained, as follows:

u=09F/dx cosh k(H + z)

v=20F/dy cosh k(H + z)

w=kF sinh k(H + z) (5)

us=0F/ox cosh k(H +7)

vs=0F/dy cosh kB(H + 7)
where % is a constant arising from the separation of
variables and is called the wave number, and #, and vs
are flow velocities in the x- and y-directions on the
free surface, respectively. When £ is given, the distri-
butions of the flow velocity in the z- direction are
known.

The following approximation will be employed in
the analysis to be described, for the sake of simplicity,

Yo-(38).. - 3E)

0X 0X Jz=n 0X\ 0z

=(5%)... (6)

(X=x,9,t, U=u,v,w,q)
where the symbol ( ).-, denotes that z=7 is sub-
stituted after the partial derivative of U with respect
to X or z has been calculated.

Making use of Egs.(5) and ( 6), the equations of
continuity (1) and motion (2) are integrated with
respect to z, from the bottom wall z=— H to the free
surface z=r7, respectively. The integrations eliminate
the independent variable z from the dependent vari-
ables, so we are left with a two-dimensional problem
characterized by the dependent variables 7, «s and vs.

Integration of Eq.( 1) with respect to z yields

9 gy us) Novy)
St o LG o R = (7)

where 0 and ¢ are defined as follows.
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o=tanh AH/(kH)
d(p/H)= Tu/tanh kH (8)
Tu(n/H)=tanh kH(1+n/H)
Next, integrating the third of Egs.( 2 ) with respect to
z and choosing an integration constant so that p=p, at
z=r7, the following equation is obtained.

D=bo_ o N, G’ [TOw

Substituting Eq.(9) into the first and the second of
Eqgs.( 2 ) in order to eliminate p, putting z=7, and
rearranging them with the use of Eqs.(5) and (6),
the following equations are obtained.

Otts on . 1 Jgs ow -
e vy A §Z<*) LK (10
s +g oy +i dq5 | 0n, ( 8w> -V
ot 81/ 2 Oy ot
From Egs.(1) and (5), the following is also
obtained.
w=— ,E< gf; + ay) anh £(H +z) (11)

Elimination of w from Egs.(10) by making use of Eq.
(11) finally yields the following :

Jus ay , 1— Th dut | 1+ Th ovk
ot Yot Ta ! N
za(uwb) (ﬁz > .
=T gHob 57 ) ax
= 'Xc (12)
_(9_?)_3 (777 + 1+ 7}1 ém& 1— Tﬁ i?ii
ot Yoy dy 2 oy 2 oy
2a(usUs) < a,zl K¢
BEL e T ox +gHa¢ 8y2> dy
= — YG (13)

Now, to rewrite Eqs.(7), (12), and (13) in non-
dimensional forms, the following nondimensional vari-
ables are introduced :

r¥=2z/R, y*=y/R, z¥=z/H, t*=t/h

=g/H, u*=ujc, v¥*=vlc, P*= (D/(cli’)} (14)
(&= Xc/R, Y&=Yo/R, k*=FkR
Redefining o, by a reference wave number £,

8§=HIR, cs,=tanh ki*6/(kiS) (15)
then, 4 and ¢ in Eqs.(14) are given as,

t=R/JgHo, c=/gHo (16)
Using these variables and parameters, Eqs.(7), (12),
and (13) are expressed in nondimensional forms as

an* | ou¥ | Juv¥ <£7 )(ﬁqu ] 4@)
ot ot T o T\ T\ o gy

+o{Ae-Dul Adef)y )

a1 l ox* (9}/ *
781!3" +Qﬂ J,,i” (91[ ke 4 1+ T}i al’fg
ot ox* 200 dr* 261 ox*
Ti ouded) | o ( ay* Q?zli",)ﬁzzf‘.
oy dy* Foho or™ T ayr) o
=—nAd (18)
gud 9yt AE T 0w L= T dvd”
ot oy 20 dy* 20 oyt
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2 sk
-8 L)y oo T TN
=0 Y& (19)

These three equations are the basic equations for
describing the nonlinear sloshing phenomena in liquid
tanks.From this point on, the superscripts * denoting
nondimensional variables, and s identifying the values
on the free surface are omitted for simplicity of
description.

3.2 Dispersion relation

Elimination of the nonlinear terms and the forc-

ing accelerations from Eqs.(17) through (19) yields

99 | du , v < >< Ju _@>~
o T oy T\ e Ty )70
(20)
éhz ﬁ =0 ap_+ =()
Gx ot 3&1

which 1epresent the linear, free oscillations of the
surface elevation. To obtain the dispersion relation or
the relation between a wave number k and the corre-
sponding circular frequency w, the velocity potential
is assumed to be expressed as
O=f(z,y)e" cosh kS(1+z) (21)
Assuming, again, that « and v in Egs.(20) are the
velocities at z=0, the following equation is obtained
from Eqgs.(20) and (21).
2
St G =0 (22
On the other hand, as @ satisfies the Laplace’s equa-
tion ( 3), the following is also obtained.
2 2
- —%waer 0 (23)
Comparing Egs.(22) and (23) with each other, the
dispersion relation is obtained as

2
wzk@Zkfw%kﬂ (24)

where the expanded approximation holds when £6<1.
It is seen that the dispersion of free surface waves
becomes weaker as 6 becomes smaller.
3.3 Basic equations for a rectangular tank

In the following, only a rectangular tank is dealt
with, and two-dimensional flow parallel to the xz-
plane is assumed. Letting ¢=0 in Egs.(17) through
(19), the basic equations for a rectangular tank are
expreqsed as follows.

(91{ - QZL 7” _&L’ (/55’8,77 a7
ot ox 2 oL or ox
=—-0X: (26)
The boundary conditions on the side walls of the tank
are given as « =0 on x=1 and r=—1. Solving Eq.(23)

under these boundary conditions, wave numbers are
determined as A=mx/2 (m is a positive integer). In
this study, to calculate the responses of sloshing in the

vicinity of the first order resonance, a reference wave
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number £; is chosen as k= /2.
4. Discretized Equations for a Rectangular Tank

In order to calculate the responses of sloshing in
a rectangular tank, the basic equations are discretized
into ordinary differential equations which will be
solved numerically. Equations (25) and (26) are the
equations for an arbitrary £. The free surface waves
originally have a dispersion character which depends
on k. If 4 is substituted for £ in Eq.(25), the so-called
dispersion term, that is, the third one, disappears and
the dispersion of free surface waves cannot then be
taken into consideration. It is known'?, fortunately,
that the discretization gives the dispersion character
to the waves propagating through the discretized
system. So, substituting 4 for k in the basic equations
(25) and (26), and eliminating the dispersion term, the
original dispersion of free surface waves is replaced
by that produced by the discretization. In this way, the
dispersion character is implicitly taken into considera-
tion.
4.1 Dispersion relation produced by discretiza-
tion
Eliminating the nonlinear terms and the forcing
acceleration from Egs.(25) and (26) and setting 2=k,
the following equations are obtained.

9p  du 4 Ou  dn _
ot * ox =0, ot + ox =0 @7)

The tank width of 2 is divided into n control volumes
for u, and n+1 for 7. In each control volume, the
dependent variables w.(i=1~n) or 7{i=0~n) are
arranged as shown in Fig.4. The width of a control
volume is given as follows.

Ax=2/n (28)

Integrating the first and the second of Egs.(27)
over the control volumes of 7; and u;, respectively, the
following equations are obtained.

--- éq.(zz)

20
\ — Eq.(33)

15
\
10
5 |\
0
0.0

.

-
- -

Fig. 2 The relations between 8 and »n.
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%zﬁ(L{[AMHI)
s 1‘(’]1‘—1 D,
dt dx
Eliminating #; from Eqs.(29) and substituting a gen-
eral solution expressed in Eq.(30) into the resultant

(29)

equation,
7:="(a sin kx;+ B cos kx:)sin{wt +7)
(@, 8, v are constants.) (30)
the following is obtained :
0 klz_ ke, 1,
w=—rsin—5==nsin- = ank (31)

where the expanded approximation holds when A< #.
This is the dispersion relation produced by the discret-
ization. It is seen that the dispersion becomes weaker
as n becomes larger.

Now, it would be reasonable to determine the
number of divisions, #, so that the dispersion relation
of Eq.(31) can approximate that of Eq.(24). For this
purpose, the following two methods are considered.

(1) In the case of kS5<K1, the approximated
expression of Eq.(31) is equated to that of Eq.(24).
Then, the following relation is obtained.

n=1/8 (32)

(2) The ratio of the first order natural angular
frequency wi(fi=r/2) to the second order one wx(f:=
r), calculated from Eq.(31), is equated to that from
Eq.(24). Then, the following relation is obtained.

_ tanh 70
n—;r/{Z are cos,/m} (33)

In Fig.2 the relations between & and n calculated
from Eqgs.(32) and (33) are plotted. It is seen that
while Eq.(32) does not yield reasonable values of n for
larger 8, Eq.(33) yields the limiting value of n=2.

In Fig. 3, the dispersion relations of Eq.(24) and

4.0

3.0

3
S2.0

1.0

0.0

0.0 1.6 2.0 3.0 4.0
K/ki
Fig. 3 The dispersion relations.

1987, Vol. 30, No. 263

NII-Electronic Library Service



810

Eq.(31) are plotted, where, rounding off the values
obtained by Eq.(33) to integers, the numbers of divi-
sions are chosen as n=10, 5, and 4 for §=0.1, 0.2 and
0.3, respectively. It is seen that for larger values of &/
b or 8, the differences between Egs.(24) and (31)
become larger.
4.2 Discretization

Substituting A for %4 in Eqgs.(25) and (26), they

can be rewritten as,

on . INpu) _

5’L‘+ e =0 (34)
Oy h w3 Op .

(%+8x 2 ox ¥(“8‘r dxr 0Xo (35)

Now, omitting the subscript 1 to denote the values for
k=1Fk;, the following constants and functions are
redefined.

k= 7T/2 o=tanh kla/(kla)

#(p)=tanh k6(1+7)/tanh £

W(n)={1—(¢ tanh £6)*} /o (36)

C(n)=o0¢é*

K(u)=u?/2, 1(n)=(d7/dx)*/2
Discretizing the tank width of 2, as shown in Fig.4,
and integrating Eqgs.(34) and (35) over the control
volumes of 7; and u,, respectively (in this case, the
boundary conditions are applied for 7 and 7.), the
following equations are obtained.

%:%x(cﬁgui”tﬁfﬂuiu)
(i=1~n—1)
(177(1“ _ 2 . d777! — Z,,
di T Ar g = g O (37)

du: 1

7d/‘ = E{ﬁifk—771'+/21'<Ki~1;[<{)
+C<]z l_[1>}—UXG
(7=1~n)

where ¢, h:, C., K, and [; are determined, assuming
linear distributions of 7, and u; over each control
volume, as

¢.=tanh £ S{1+(n:.1+7.)/2}/tanh &

ho={1—(¢, tanh £6)*} /o

Ci=0¢.:6*

(i=1~n)
Ko={(u:+u0)/2)/2

[i:{(7/i+l"‘775 1)/(241)}1/2
(i=1l~n—1)

Ko=Kp=0

Lo={(—3n0+4n— )/ (2420)}*/2

[n:{(%z 2_‘17}/%1“'"37/n)/(2;/]-17)}@/2

For given initial conditions of #; and «; and a
forcing tank displacement X, the simultaneous ordi-
nary differential equations (37) are solved numeri-
cally, and the transient and steady responses of slosh-

ing in a rectangular tank are obtained.

Vol 30, No. 2063, {087

5. Experiments and Numerical Simulations

5.1 Experiments

The tank used in experiments was a rectangular
open tank made of 1 cm-thick acrylic plate. Based on
inside measurements, the tank was 100 cm wide, 35 cm
high and 10 cim in the direction perpendicular to the
xz- plane in Fig.l. It was placed on a vibrator-base
for horizontal movement in the longitudinal direction.
The liquid used was water, and the experiments were
carried out at relatively shallow water depths. The
tank was set in harmonic movement from a stationary
liquid state, and the surface elevation was measured
on a side wall. Transient responses of the surface
elevation were measured with an electrostatic-capac-
ity-type level gauge and recorded by a linear recorder.
After the oscillations of the surface elevation had
reached the steady state, their maximum and mini-
mum values were measured by a scale attached on the
side wall. The measurements were made in the vicin-
ity of the first order resonance point with a constant
amplitude of tank displacement, and the resonant
responses of the surface elevation were thus obtained.

5.2 Numerical simulations

Numerical simulations were then carried out to
predict the results obtained in the experiment. Adding
the damping term —Au; to the equation of u;, Eqgs.(37)
are integrated by the Runge-Kutta-Gill Method. The
values of the damping coefficient A were chosen as A==
0.06, 0.02 and 0.01 for §=0.1,0.2 and 0.3, respectively.
The number of divisions, », was determined for each
& by rounding off the value calculated from Eq.(33) to
an integer. The time step used was 1/60 of one period
of tank oscillation. The nondimensional tank displace-
ment is expressed as

X¢=a sin ot (39)
where @ is a nondimensional forcing angular fre-
quency. A non-dimensional forcing amplitude, «, was
chosen as @=0.005 for all cases. Finally, the number of

X=-1 A Cox=l
C ! §cuc_cm ' Cn
ST it his haH , hn
@ JORE <75.: ol - Pn

L . S U Ui C U
e e
7201 o U= ; n 1 N ‘ T(rwgnn
K,o Ko Kot Ki KH'! ‘ an\EKn
ot 111 : 51:: [ [ Laila
g B x
: 2

The discretization with respect to .
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1. experlment (6 0 1, w/wl l 05)

811

_gsruw; = '—j :l;- i

4, calculatlon (8=0.1, w/wl 1. OO)

0.5
e 0.0 ~eAAAS W O 1L
10 20 30
-0.5 T
5. experlment (8=0.3, w/wl 1. 02)

0.81 - BT

£ 0.0

Vvyvvvwvuuvuuvuu
I LT R R SN ST N O EOO
6. calculatlon (8=0.3,w/wl=1. 02)
0.8
= 0.0 AVAVAVAVAVAVAVAUAUAUAUI\UA UAUAUAUAUAUnUAUAUAUAUAUA\MU[\ A Aul\unuﬂuﬂvnuhuﬂuﬂvﬂ\}ﬂuﬁv ﬁUﬂUAUNUAUﬂUﬂUﬂUM\U
-0.8 10 20 30 T 40 50 60

Fig. 5 The typical examples of the transient responses of

surface elevation.

1. 6=0.1,w/wl=1.05 2. 6=0.1,w/wl=1.00

T=90.28

T=90.35 T=90.35
T =90.42 T=90.42 ]
0.5 — W
0.0 ==
jo
! T=90.%52 T=90.48
-1.0 — -
-1.0 1.0
X
Fig. 6 The changes of the wave forms of free surface by

calculation.
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harmonically forced tank oscillations 7 is defined as,
r=wt/(2r) (40)
5.3 Results and review

The results obtained by experiments and calcula-
tions are expressed with nondimensional variables.
The values of w; used to plot the experimental results
are calculated from Eq.(24), and those for the numeri-
cal results are calculated from Eq.(31).

Typical examples of the transient responses of
surface elevation are shown in Fig.5. In the case of &
=0.1 and w/w,;=1.05, it is observed that the amplitude
of the oscillation of the first mode is growing. The
upward amplitudes are larger than the downward
ones, and the wave forms are sharp in the upward
direction. In the case of §=0.1 and w/w\=1.00, the
oscillation of the second mode is generated in addition
to the first mode. This phenomenon is observed in the
vicinity of the forcing angular frequency which is half
the second order natural angular frequency. Further-
more, the same can be observed in the vicinities of a
third of the third order natural angular frequency and
a quarter of the fourth order one. In the case of §=0.3
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and w/w,=1.02, beats are observed in the transient
responses. It is seen that the peak of the first beat is
the largest. This shows that the calculations of the
transient responses are very important in estimating
the maximum surface elevation. It is also seen that
the calculations can simulate experiments very pre-
cisely.

Figure 6 shows the change of the wave forms of
the free surface which were calculated at specific
times during one period of the steady oscillation. In
the case of w/w,=1.05, it is observed that one progres-
sive wave reflects on the side wall. It appears that the
wave stood up at the wall and reached its maximum
elevation (r=90.42) during the reflection process. In
the case of w/w1=1.00, two progressive waves are
observed. They collide with each other (r=90.42) and
produce the single largest peak of surface elevation.
Thereafter, they are again separated into two waves
as before, and each wave behaves very stably, without
the effects of collision. The same phenomena are also
observed in the experiments.

Figures 7 through 9 show the resonant responses
of surface elevation measured on the side wall, in

0.6
§=0.1 ]
0.4 O experiment . ]
@® calculation %93
0@
= 0.2

o
g00°° ooy

%08, 84@’@6%@60?@90‘*

0.90 0.95 1.00 1.05 1.10
w/wl

0.0

-0.2

Fig.7 The resonant responses of free surface elevation in
case of 6=0.1.

0.9
§=0.2
0.6 O experiment ﬁ
@ calculation %o
1 O=
= 0.3 5 g@
99
@ O® oo o
O@CE 830 @ QQQ‘@% @
-0.3 - T -
0 0.90 0.95 1.00 1.05 1.10
w/wl
Fig. 8 The resonant responses of free surface elevatios in
case of §=0.2.

Vo
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which several peaks are observed in all figures. The
largest peaks correspond to the first mode sloshing.
They clearly show the nonlinear characteristics of ths
hardening restoring forces and of the jumping
phenomena. The smaller peaks show the resonances
of higher order sloshing. For example, at the peak of
the m-th order resonance, the forcing angular fre-
quency coincides with the m-th order natural fre-
quency divided by m. The forcing angular frequencies
w/w, at which the higher mode resonances occur are
tabulated in the columns of wn/w:/m in Table 1, where
the experimental values are calculated from Eq.(24)
and the calculated values from Eq.(33), respectively.
The values of 8-m. listed in Table 1 represent the
values proportional to the ratio of the liquid depth to
wavelength. It is said that the nonlinear characteris-
tics of the hardening restoring force become stronger
for smaller values of §-m.

In conclusion, the results of the calculations are in
good agreement with those of the experiments.

6. Conclusions

Based on the shallow water wave theory, the
basic equations for describing the nonlinear responses
of sloshing in a liquid tank are first derived. Next, a

Table 1 The angularfrequencies causing the higher order
resonances.

experiment |calculation
§ n m {Wn/wY/m | (wn/w)/m §-m
0.988 0.988 0.2
0.1 |10 3 0.969 0.967 0.3
4 | 0.945 | 0.939 |0.4
0.2 5 2 0.957 0.951 0.4
0.3 4 2 0.916 0.924 0.6

0.9
§=0.3
0.6 O experiment (93
® calculation o®
o%
- 0.3 p OQ@ 5
&
08 ®
NP Yo i 4 I o®ocy
C% C®0e0, @} 0% O O
@)
Poesd]
-0.3 ; -
0.90 0.95 1.00 1.05 1.10
w/wl
Fig. 9 The resonant responses of free surface elevation in
case of &+ 0.8
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numerical calculation method is developed to simulate
the nonlinear sloshing phenomena in a rectangular
tank which is oscillated horizontally. The results of
the calculations are compared with those of the exper-
iments. The following results are found.

The linear theory is applicable to simulate the
sloshing phenomena with small amplitudes far from
resonance. In the vicinity of resonance, however, it is
necessary to take the nonlinear characteristics of
surface waves into consideration. As the dispersion
relation plays an important role for the stable calcula-
tions of the nonlinear responses, it should also be
taken into consideration. In this study, the dispersion
relation is successfully replaced by that produced
implicitly by the discretization of the system. Numeri-
cal results are in good agreement with those of the
experiments. It is confirmed from these facts that, in
the cases of shallow liquid depth, the oscillations of
the liquid surface are subjected to stable progressive
waves, and that the various nonlinear sloshing phe-
nomena observed in a tank with relatively shallow
liquid depths are simulated by the basic equations and
the calculation method presented in this paper.
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