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Entrance Loss for Turbulent Flow without Swirl

between Parallel Discs™®

By Tatsuji KAWAGUCHI**-

This paper is concerned with the investigation on the entrance loss which occurs in a

radial turbulent flow between parallel discs.

Because the theoretical determination of the

entrance loss is almost impossible, the author has constituted an empirical equation by

using nondimensional quantities — the space between the discs, the radius of rounded

corner at entry boundary etc.— which have large influences on the entrance loss.
This equation will be usefull for the solution of practical problems.

1. Introduction

Radial flow of a fluid in a narrow gap
between two parallel discs can take place in a
radial diffuser, plate valve and seat, air micro-
meter and air bearing; and in such a case there
are an inlet region near the entrance and a fully
developed flow region in the downstream. The
flow in the inlet region has a great influence
upon the whole.

The theoretical study of the inlet region
almost exclusively deals with laminar flow. For
instance, the analytical solutions in which the
inlet region is taken into consideration are
Woolard’s” and Hagiwara’s®, both of them
using an approximate method of momentum
integral.  Ishizawa’s®®  gseries solution of
boundary layer equations include a separated
region as well. These researches belong to the
same category. But each of these theories
presupposes that the thickness of the boundary
layer is zero at. the entry, and the fluid flows in
along the wall, so that it is only to. the case
where the entrance form is ideal that the solution
of this sort can be applied. The calculation of
the boundary ldayer in the case of turbulent flow
is so complicated that the condition that the
fluid flows in along the wall at the entrance can
not be satisfied in practice. Namely, the influence
of the entrance form is large, so it is possible
that this influence is exerted on the outlet also.

Though the study of the turbulent flow is
very important, its study has scarcely been made

* Received 13th May, 1969.
**  Assistant Professor, Nagoya Institute of Technol-
ogy, Showa-ku, Nagoya.

hitherto, owing to the  complication of such a
flow. P.S. Moller® has been engaged in the
study of the turbulent flow in parallel discs, but
he has not dealt with the inlet region in detail.

The items concerned with the inlet region
are the range of this region, the value of
minimum pressure, the amount of hydraulic loss
near the entrance, and the :entrance form to
influence upon inlet loss. With regard to this
inlet loss there "is only Nakayéma’s‘“ study
dealing with laminar flow.

In this paper are reported the_ results of the
experimental study of above-mentioned items.

2. Notation

h: gap of the discs=2B

m: non-dimensional quantity of the gap=B/r:

P: total pressure

p: static pressure

Q: volume flow

R: roundness of inlet corner

. R.: Reynolds number based on the inlet

'~ mean velocity

r: radius from the disc center

7s: value of » at the end of the inlet region

U.: local maximum velocity in the center of
 the gap

u: time mean velocity in the radial direction

#: space mean velocity in the radial direction

z . axial co-ordinate measured perpendicular

to the disc wall
. 7o¢ wall shear stress
: kinematic viscosity of fluid
: density of fluid

L2 B~

: coefficient of the entrance losses for the
turbulent flow
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z N Subscripts
—r, - 0 : at disc center
: @~ 1: at disc channel inlet
-“— IEP. — ~—4~L_.u v (ro) : 2: at disc channel exit
) LK) Ty .
“ r ~ 3. A general consideration of turbulent
TRRTIARRY! radial flow
NLD P, , The case is considered where the fluid flows
- 8 P AT 0 ~out radially between parallel discs as in Fig. 1
b i'rf/ﬁ (a). For the case of axially symmetric‘ fluid
P ry —= motion, we express the equations of motion in
cylindrical polar co-ordinates r, #, z. Taking
shear stress at the wall as 7, the momentum
equation for radial flow, considering an annular
control volume, is™
1 d B To 1 dp
_ Er G R e b o A
..................... (1)
Assuming that the velocity profile is similar,
the following equation is applicable to the
turbulent flow
/U= (2B eererineiiniiiiiiiiiiiiiiiiinaneee, (2)
The equation for shear stress at the wall is
70=0.0225 (p/BU)V* +eeevreriiiiiiiiiiiiiiiiniine (3
de 3¢ 3% Substituting these equations into Eq. (1) the
E‘f ( (_}] g following equation is obtained,
— il tollE om 6 L1 1)
Flow % JFLow& mj_jﬁ 1/200,? 6371 \p2 e
=l & "x||lg2 0.07%6 ,./1 1
Té)}gé pressurei . “i‘ 4 + o R e (,3/4 _723“> ......... (4)
!
IS
@ H
e 1

E(;“}_ [~Plate gauge I

400¢
Fig. 2 Schematic diagram of test apparatus for parallel discs

NII-Electronic Library Service



Vol. 14, No. 70, 1971

Entrance Loss for Turbulent Flow without Swirl between Parallel Discs

357

In practice, as in the case of Fig. 1 (b), a
fluid flows round an axis A at the corner of the
entry, and the main flow runs in a quite different
way from that of Fig. 1 (a). But this flow
satisfies Eqs. (2) and (3) when it passes
through the inlet region, and the pressure
distribution satisfies Eq. (4). The first term
in the right hand side of Eq. (4) shows the
pressure rise due to inertia flow; and the second
term shows the loss of pressure through wall
friction. The difference between the total
pressure at the center P, and total pressure at
the exit P, consists of various losses at the
entry and in the inlet region, and of the loss
caused by wall friction. Wall shear stress in
the inlet region does not satisfy Eq. (3), but
for the convenience of calculation, assuming the
existance of friction loss in the total region of
the discs as shown in Eq. (4), and expressing
the losses in the inlet region as £(1/2)pa,? it is

given as
1
3 EP@Z12=(P0—P2)
0.076 r?4N1
" mRM* ( o 728/4)5 o
Taking the velocity distribution at »; as in Eq.

64 1
(2) and putting P:=p.+ rey (rifr2) > 0#:®, the
following relation is obtained.
Po—ps ﬁ(g)z 0.076
(1/2)pa,? 63 \rp

7-13/4

)+e

(5)
Where ¢ is the coefficient of the inlet loss for
turbulent flow. The factors that exert influence
upon the value of & are the losses caused by
the abnormal velocity distribution just before
the entrance, contracted flow, separation, back

1,23/4

1.2
o ]
N
=
1.0
0.8
/ Re=5380
:’*ig(z £ =1.206
06 - (8) I
,’ M mm
o 20
e 225
0.4 ® 25 —
o 30
4 e 55
° 15
0.2 —3 AT
0 02 0.4 0.6 0.8 1.0
2/B

(a) Velocity distribution of R=0, A=10mm

Fig.

3

flow on the wall surface. Supposing the inlet
region to end at r;, the flow from », to r:
satisfies Eq. (4 ), and the factor that exerts
influence upon £ does not exist. Accordingly at
the downstream from 7;, £ takes a constant value.

4. Experimental apparatus and

methods

The details of parallel discs used in the
experiments are shown in Fig. 2. The water
flows in from (1) and flows out in the direction
of (2). The surfaces of discs are smoothly
finished by lapping, and gap width between the
discs is varied by spacer plates of different
thicknesses (1, 2, 3, 5, 7 and 10 mm respectively).
Tap (3) for the measurement of static pressure

1.2
- |
2
=
1.0
0.8
Re = 6000
5 =0.535
0.6 r mm
o 20
e 225
0.4 ® 25 H—
o 30
e 55
® 15
0.2 ® 95 -
0 0.2 0.4 0.6 0.8 2, 1.0
B

(b) Velocity distribution of R=2mm. A=10mm

0.8}

0.6

0.4

0.2

0 . 0.2 0.4 0.6 0.8

Z/8
(c¢) Velocity distribution of R=5mm, A=10mm

1.0

NII-Electronic Library Service



E¥ 358 o ) ' _ T. KawacucHI - : : Bulletin of the JSME

was bored at intervals of 5 mm along the radius, . ) . :

and the hole (4-) for velocity measurement was - 5. Experimental results

bored at the intervals of 20 mm. The Pitot total 51 On the velocity distribution and
pressure tube a and the static pressure tube b as separation

shown in the figure were used. The distance of The results of the velocity measurement at
the pressure measuring orifice of the Pitot tube the gap are shown in Fig. 3. Here the discs

z is varied (20, 17.5, 15, 10 and 5mm respectively).
The total pressure at the center, Po, is obtained
from the piezometer opening of the tube (5).
“The roundness of the corner .of the entrance R
was varied by an inserted liner as shown in Fig.
'2; and the values of R, are made 0, 0.3, 1, 2,
and 5mm. For the discs with the roundness R
=0, 1, 2 and 5mm respectively the ratio of
radii #2/¥1=6, and for the disc with R=0.3 mm,
ra/r1=0.784.

0, h=1.0mm, Re=2000, 71=405.7 cm/sec, ¢=19.8°C

R=
(2)
: R=0, h=7.0mm, Re=800( .0 cm/se .3°C
(b)
1.0 20 - 30 4.0 5.0 6.0
7y
Fig. 4 Comparison between measured value -
of velocity in the center of gap U/#a,
and calculated value-of Eq: (2)
o) ° : 5
8 ¥ R=5.0mm, A=1.0mm, Re=2000, ©%1=396.8cm/sec, £=20°C
(e A
- h=10mm
0.4 R mm B
d o 0
. » o 9
® 5
0.2 - o
% __
c; 10 20 30 4.0 5.0 6.0 R=5.0mm, h=7.0mm, R¢%8000, #1=221.7 cm/sec, ¢=20°C
cro - Y ' (d)
Fig. 5 Relation of #/U to 7/r1 [ Fig. 6 Trace of flow near the entrance of discs
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have in common the gap distance, 10 mm, and
the inlet Reynolds number, R,=6000. Figures 3
(a), (b) and (c¢) show the comparison of the
velocity profiles with various inlet roundness.
The velocity profile at the inlet of the channel
(r;y=20 mm) shows a peculiar form, and the
maximum velocity takes place near the wall, the
velocity profile becoming concave towards the
centéer. By decreasing the roundness of the
inlet corner, the position of the maximum velocity
shifts to the wall, and the concavity increases
at the same time. i

This phenomenon is caused by the influence
of the flow turning around the corner of the
entrance. As is shown in the velocity distribution
at »r=22.5 and 25 mm, the flow velocity near the
wall retards rapidly within the distance of several
mm, causing remarkable resistance or separation.

Moreover, when 7 is increased, the flow
velocity rises again near the wall, and within
the range of »>55mm, the velocity distribution

[— § —

becomes almost similar.

In Fig. 4, the measured value of the velocity
U at the center of the gap is compared with the
value calculated by Eq. (2). The smaller is R,
the larger becomes the measured value of U
near the entrance, and the measured value
coincides with the calculated value as 7r/»:
increases.

Figure 5 shows the coefficient of contraction
for varied shaped entry boundary when the width
of gap is 10 mm. Now, assuming the width of
vena contracta is B’ and also the fluid flows
though here with the uniform velocity U, the
coefficient of contraction is calculated to be C.=
B'/B=#/U. In Fig. 5 the minimum value of #/U
is found to be 0.564 when R=0, and 0.660 when
R=2mm. These values agree with the contrac-
tion coefficient, 0.62 of an orifice. On the other
hand, when R=5mm, the coefficient becomes
0.728, and if the velocity distribution is assumed
as Eq. (2), the ratio #/U is calculated to be
0.875. This value is shown by the dotted line,
and at the downstream of the inlet region it
coincides almost with measured value.

In order to make the flow phenomena clearer,
PbsOs was dissolved in oil and spread on the
disc surface to observe the separation growth.
Plates (2) and (b)), in Fig. 6 show the case in
which R=0, and (¢ ) and (d), show the case in
which R=5mm. and in both cases, the discharge,
gap-size and diameter at the entry are the

same. The white ring-like parts

; appearing at the entrance are

the separation region which
occurs owing to the strong back
flow as sketched in Fig. 7. On

the other hand,in (¢ ) and (d),

such separation does not occur,

and herein also the paint
remains in a thin stratum, and

separation can be discerned by
_ the shade of colour. In the

case of (c), as the flow velocity
is high on this surface, small
parts of thin stratun are seen
to be dispersed. »

5:2 The relation between
Reynolds number and the pres-

sure difference between entry

S _
w5 Rmm
Q—z <o 0
itj e 03
<10 e 10
< = o 20

5: @ 50

2

1.0 |=

51

2

10|

5

2

Vol RN Lol i N EREY

and exit

The differential pressure A4p

10 2 5 10 2 5 10 2

Fig. 8

between P, and p., takes differ-
ent values according to the
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gap-size, the roundness of corner, discharge, etc.
The value of 4p/(1/2)pa,% in the turbulent flow
is represented by Eq. (5), and in the laminar
flow is represented as follows™®,
L 3 (g)z 6 T2
Ap/zpul—gs + logethE

72

These contain mR,/* and mR. in the friction
term respectively. The values of Ap/(1/2)pi,®
against mR, are plotted in Fig. 8. Using the
same symbol points, the - results with the gap
sizes, 1, 2,3,5,7 and 10 mm are shown to simplify
the figure. When mR, is below 1.0, the differential
pressure Jp nearly coincides with the value
calculated by Eq. (6). Accordingly within this
range, the approximate calculations, with
simplified inlet conditions, tried by many resear-
chers hitherto are nearly cerrect. When mR,=
1.0~10, 4p deviates from the calculated value,
but the effect of the roundness of entry boundary
R does not appear distinctly. When mR.=10,
points of R=0 branch off from the group of
points distributed in a straight line. When mR,
=50, points of R=0.3mm diverge in the same
way. These phenomena show that the influence
of the entry loss has begun to appear. According
to these experimental results, it is concluded
that the transition from laminar to turbulent flow
first occurs near the entrance, and the turbulent
state spreads outward in the downstream direction
with increase of discharge, covering the total
range of the discs at last. Figure 9 shows plots
of Ap/(1/2)pa,® against R, to clarify this critical
Reynolds number. As the difference of the gap-

size becomes distinct in this figure, the dimen-
sion of the gap has been written at the
experimental points of R=0. It is the same
with other Rs. In the case where R=0, the point
branching off towards the turbulent flow line is
R..=200 when the gap size is large; and with
the decrease of the gap size, R,. increases, and
when the dimension of gap 1 mm, R,.=500. From
the comparison of the flow in the rectangular
tube with the flow in the circular tube, the
critical Reynolds number 500 in this experiment
corresponds with 2000 of the circular tube®4®;
but when the gap is large, owing to the contrac-
tion, etc. the transition occurs at a Reynolds
number lower than that.

5+3 The pressure distribution for the tur-
bulent flow and the radius »; of the inlet region

In the case of ry/r;=6, if the Reynolds
number at the entrance is over 3000, the flow
is turbulent throughout the entire disc channel,
and under this condition the pressure distribution
may be calculated in accordance with Eq. (4).
In practice, as there is a disturbunce near the
entrance, the pressure distribution becomes
different from that given by Eq. (4).

Figure 10 shows the comparison of the
calculated value with the measured value. The
measured pressure falls below the calculated
value, but this is due to the contraction etc.
Accordingly, as the flow region becomes more
distant from the entrance, the measured value
approaches the calculated value. When the
minimum pressure measured at the entrance
(the measured position, »r=25mm) is plotted in

relation to R, it becomes

8 N, | | as is shown in Fig. 11.
e \\ B lem L ] The larger gap and the
| (o] H

QLQ‘ \ ° 1.% smaller R give the lower

o) - o 2.0 h=10m pressure.
£ \ e 50 0 0005000 00 0° 9° Next, it is tried to
% 00 HPO® decide the value of 7
2 Ke by T from the measured re-
: m2P__ 8, o 3 sult of the pressure
PE R BTy 5@, distribution. Now, taking
1:0 e the total pressure at
08 " the center P, as a basis
0.6 o | of the pressure, & is
considered as a function
0.4 of r in the same sense

as in Eq. (5).
02 f=—-Twp__ 0.076
(1/2)pu,® mR,
% [1_ (L) 3/4}
72
10 2 4 s 8 10° 6 8 10* ﬁ(_’l)z ..... (7
Re 63 re
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This &, which as one example is shown in Fig.
12-A, approarches gradually the constant Eo.
Then taking the radius which has become 1.05
Eb, for convenience’s sake, to be 7, the value of

7s/r1 can be found as a function of m and R.-

These are shown in Fig. 12-B. The ratio /7
increases with the increase of m, and R.

5.4 The coefficient of entry loss in turbulent
flow

In the case of 7:>#;, & can be calculated
from the experimental value, using Eq. (5).
Figure 13 gives the relationship between values
& and m for the various-shaped-entry boundary.
When the radius R of the roundness becomes

LOfﬁ
=
a.
L
a- —
<
0 ; vw«xr@w—oam
1.0 ! i h=1.0mm J
. {I' \E% (4) R Re
ey Y &/ 50 17999
o[ ® 1.0[3013
- e 203009
o |- % 50]3011
& |
-0 10 20 30 40 50 rj 60
0 v .
1.0 N ’{1=202m
e
= 7 S NN
= - / e 2.0 4993
0 15346
= ~N {w ® 50153
=10
J 10 2.0 3.0 4.0 5.0 rpn 60
0 | @
N A‘é h=5.0mm
B 7/ R Re
1.0f~ g" . 003 gggé i
~N £ - js
- ! £y ©1.0 5098
e ©72.0|5103
a &oL ©5.014844]]
e / .
} - 5
S L ¢
1.0 2.0 3.0 4.0 50 pp, 60
0 PO >-P
/,‘ ;
z -
7
P | h=10.Omm
/e e o R | Re |
1 ‘/ Eg.(4) o 0_|13200]
f © 03 ]12960
-1.0 ® 1.0 [12100
’ / © 2.0 (12840
\/ © 5.0 | 127004
1.0 2.0 3.0 4.0 5.0 6.0

r
Fig. 10 Pressure distribution
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Fig. 11 Relation of minimum pressure to

corner radius
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TFig. 13 Coefficient of entrance loss for

turbulent flow &

NII-Electronic Library Service



362 ' ' T. KawacucHr

Bulletin of the JSME

sma}ler, & becomes a straight line of almost the
same inclination as m. When R is large, and m
becomes smaller, £ deviates from the straight

0.3

R/r,

0 01 0.2
S m ,

Fig. 14 Relation between optimum
value of R/r1 which makes
£ minimum and m

»

e R i
< °
) /
~/
1.4 /
— [ ]
o
up ®
1.2 |- )
W\Q\Q\. D @
: 9:9/
1.0

g R mm R/p,
o 0 0
08 | =T A e 03] 0010 |~
Y ® 1.0 | 0.025
: e 2.0 | 0.050
0.6 [—~8— ® 50 | 0125 |—
~

N ! 1 i
B 8 +212(Rp )= 3.0m+0.48
. !

0.4 ‘ ’ '

0- Q-1 0.2 0.3 0.4
. m
Fig. 15 Relation of m to £ and R
03— :
. .
£ 13.8 B 4048
. m..=13.8 2 +0. o )
| ) cr r\] \\ Lo
P 0.2 /
o ,
i 0.1 //
R ] 1

0 0.04 0.08 012
. R/r\,

Fig. 16 Relation of R/7r1 to mer

line and changes into concave shape, taking the
minimum value at a certain value of m.

The reason why & changes linearly is that

the contraction and separation which are generated
near the entrance grow larger with the increase
of m. On the other hand, when R becomes larger,
the contraction and separation are diminished,
and the influence of m becomes smaller. But,
in this case, the boundary layer is generated in
the round parts of the corner. When the thick-
ness ¢ of this boundary layer is larger than B,
this becomes the inlet resistance at the entrance
and increases the loss. In other words, as the
gap h=2B becomes smaller (m also becoming
smaller), £ increases. But if the gap becomes
larger, though a small roundness may exist at
the entry, the contraction and separation occur
in the inlet region, and increase the value of &.
Accordingly the optimum value of R which makes
the value £ minimum always exists in the gap of
certain size. In this experiment, it is when R=
2 and 5 mm that the minimum value of & appears.
The relation between m and R at this point
becomes a straight line passing through the
origin as is shown in Fig. 14, and from this can
be obtained the dimension of the gap and R.
The empirical equation of &, can be expressed as

E=3.0m—2.12(R/r1)V2+40.48 «-eveeeeeerearnnen (8)
By using the above equation, Fig. 13 can be
plotted as one branched-out curve like Fig. 15.
If the roundness exists at the corner, & branches
off from this straight line corresponding to its
size R. If the value m at the point branched
off from the curve of £ is expressed by me.,, the
relation between m., and R/r: becomes a straight
line as shown in Fig. 16 and from this the
following equation can be obtained.

Mer=13.8(R/71)+0.48 evevvrveiiniiiiiiiiiiin, (9)
Namely, for a given value of R/ry, m., is calculated
by Eq. (9), and then comparing m., with m, if
m is larger than m.,, £ becomes larger than this
value.

6. Conclusions

On the entrance loss in the inlet region of
the turbulent flow between parallel discs, the
following have been clarified;

1. In the case where the flow is laminar,
and Reynolds number is low, the effect of inlet
region upon the total flow resistance can scarcely
by disceyned. . Accordingly, it is possible to
calculateg the pressure difference at the entry

and outlet only by consideration of the viscous
term, neglecting the influence of entry boundary
shape.
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2. The difference between the pressure at
the center and that at the outlet, changes
suddenly when Reynolds number B# /v is 200~
500. This is the transition from laminar to
turbulent flow at entry.

3. As the gap increases and R decreases,
the minimum pressure is generated near the
entrance. . . .

4. The coefficient of entry loss for turbulent
flow depends remarkably on m and R, but the
influence of R, is small. There is the range in
which & varies linearly to m, when a strong
contraction and separation occur at the inlet.
In the region in which & varies not linearly to
m, there exists the value of m which gives
minimum &. The reason why this phenomenon
occurs can be explained by examining the boundary
layer which is generated at the curved surface
of the corner before the fluid flows into the
parallel discs.

The author wishes to thank heartily Prof.

Yoshimasa Furuya and Prof. Mitsukiyo Murakami
of the Nagoya University for their consistent
kind guidance, and Mr. Michihiko Kawaguchi for
his cooperation in this experiment.
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