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Abstract 
The present paper is concerned with constitutive modeling of the compressive 
stress-strain behavior of selected polymers at strain rates from 10-3 to 103/s using a 
modified Ramberg-Osgood equation. High strain-rate compressive stress-strain 
curves within a strain range of nearly 0.08 for four different commercially available 
extruded polymers are determined on the standard split Hopkinson pressure bar. 
The low and intermediate strain-rates compressive stress-strain relations are 
measured in an Instron testing machine. The five parameters for the modified 
Ramberg-Osgood equation are determined by fitting to the experimental 
compressive stress-strain data using a least-squares fit. It is shown that the 
compressive stress-strain behavior at different strain rates up to the maximum stress 
can successfully be predicted by the modified Ramberg-Osgood equation. The 
limitations of the modified Ramberg-Osgood models are discussed. 

Key words: Compressive Stress-Strain Behavior, Constitutive Modeling, 
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1. Introduction 

Polymeric materials with low mechanical impedance have been extensively used as one 
of structural materials for aircraft, automotive and electronic components in terms of weight 
reduction. These components are often subjected to impact loading in service environments. 
Therefore, it is needed to characterize the high strain-rate mechanical behavior of polymeric 
materials. To date, the impact compressive(1)-(4), tensile(5)-(8) and torsional(7), (9) stress-strain 
properties of several polymers have been determined with the conventional(10) or modified 
split Hopkinson pressure bar (SHPB). The effects of strain rate and temperature on the 
compressive characteristics of several polymers were examined using a drop-weight 
apparatus(11)-(14). In order to accurately describe the high strain-rate stress-strain behavior of 
the polymers, it is required to develop their strain-rate dependent constitutive equations. 
Many complicated constitutive models such as nonlinear viscoelastic-plastic models(15)-(17), 
modified Johnson-Cook model(18), modified Zerilli-Armstrong model(19) and nonlinear 
power law model(20) were proposed to predict the stress-strain behavior of the polymers 
over a wide range of strain rates and temperatures. However, it is very difficult to perform 
simulations of the response of polymeric structures to dynamic loading using these models 
with a large number of parameters.  

The purpose of the present paper is to model the compressive stress-strain behavior of 
selected polymers at strain rates from 10-3 to 103/s using a simple strain-rate dependent 
constitutive equation. Four different commercially available extruded polymers or ABS 
(Acrylonitrile Butadiene Styrene), HDPE (High Density Polyethylene), PP (Polypropylene) 
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and PVC (Polyvinylchloride) were tested at room temperature. Cylindrical specimens with 
a slenderness ratio l /d (= length/diameter) of 0.5 were used in the SHPB tests, and those 
with l /d = 2.0 were used in the low and intermediate strain-rate tests. The compressive 
stress-strain loops at strain rates up to about 103/s were determined in the conventional 
SHPB. The compressive stress-strain loops at low and intermediate strain rates were 
measured with an Instron 5500R testing machine. The strain-rate dependent 
Ramberg-Osgood equation was applied to model the experimental compressive stress-strain 
loops over a wide range of strain rates.  
 

2. Experimental Procedure 

2.1 Test Polymers and Specimen Preparation 
Four different common polymers, i.e., two amorphous polymers: ABS (NAC Group 

Co., Ltd., Fukui, Japan), PVC (Takiron Co., Ltd., Osaka, Japan) and two semi-crystalline 
polymers: HDPE (Toyama Keisozai Co., Ltd., Toyama, Japan), PP (NAC Group Co., Ltd., 
Fukui, Japan) were chosen (see, Fig. 1). Cylindrical specimens were machined out of 
commercial extruded rods with a diameter of nearly 10 mm into short cylinders with a 
diameter of 9 mm. The specimen end surfaces were carefully polished with waterproof 
abrasive paper (#1500). The static specimen’s length was determined to be l/d = 2.0 (l≒18 
mm, d = 9 mm) in accordance with the ASTM Designation E9-89a(21) (see, Table 1). The 
slenderness ratio l/d of the impact specimen (see, Table 2) was taken as 0.5 (l≒4.5 mm, d = 
9 mm), falling in an appropriate slenderness ratio range between 0.5 and 1.0 suggested by 
Gray(22) in the conventional SHPB tests. All specimens of the different four polymers were 
tested in the as-received state.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.2 Low and Intermediate Strain-Rate Compression Testing 

The low and intermediate strain rate compression tests were conducted on the 

Polymer
Length
l (mm)

Diameter
d (mm)

Slenderness ratio
l / d

ABS 4.44±0.01 8.98 0.5

HDPE 4.43±0.03 8.98 0.5

PP 4.50±0.07 8.97 0.5

PVC 4.44±0.03 8.97 0.5

Polymer
Length
l (mm)

Diameter
d (mm)

Slenderness ratio
l / d

ABS 4.44±0.01 8.98 0.5

HDPE 4.43±0.03 8.98 0.5

PP 4.50±0.07 8.97 0.5

PVC 4.44±0.03 8.97 0.5

d

l

d

l

Polymer
Length
l (mm)

Diameter
d (mm)

Slenderness ratio
l / d

ABS 17.97±0.03 8.97 2.0

HDPE 17.97±0.02 8.98 2.0

PP 17.97±0.04 8.96 2.0

PVC 17.94±0.04 8.96 2.0

Polymer
Length
l (mm)

Diameter
d (mm)

Slenderness ratio
l / d

ABS 17.97±0.03 8.97 2.0

HDPE 17.97±0.02 8.98 2.0

PP 17.97±0.04 8.96 2.0

PVC 17.94±0.04 8.96 2.0

d

l

d

l

Table 1 Geometry and nominal dimensions of 
static compression specimen  

Table 2 Geometry and nominal dimensions of 
impact compression specimen  

ABS

PVC

HDPE

PP

ABS

PVC

HDPE

PP

Abbreviation Full name for polymers

ABS Acrylonitrile-butadiene-styrene

HDPE High Density Polyethylene

PP Polypropylene

PVC Polyvinylchloride

Abbreviation Full name for polymers

ABS Acrylonitrile-butadiene-styrene

HDPE High Density Polyethylene

PP Polypropylene

PVC Polyvinylchloride

Fig.1 Picture of four different polymers tested 

Chemical name 
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cylindrical specimens with l/d = 2 using the Instron 5500R testing machine at crosshead 
speeds of 1.3 and 130 mm/min, respectively. The specimens were loaded up to a given 
strain and unloaded at the same crosshead speed. Both ends of the specimen were lubricated 
with petroleum jelly (white Vaseline) to minimize frictional restraints between the specimen 
and both loading anvils.  
 
2.3 Split Hopkinson Bar Testing 

The general arrangement of the SHPB set-up is given in Fig. 2. The SHPB set-up 
consists of two 2024-T4 Al alloy bars of 2000 mm in length and 10.1 mm in diameter, 
which remain elastic during the tests. A striker bar made of the same material was 350 mm 
in length and 10.1 mm in diameter. The mechanical properties of the 2024-T4 Al alloy are 
as follows: Young’s modulus E = 73 GPa; longitudinal elastic wave velocity co = 5130 m/s; 
mechanical impedance Z = ρ co = 14.2x106 kg/(m2 s); yield strength σY = 450 MPa. The Al 
alloy bars with low mechanical impedance were used to reduce a drastic impedance 
mismatch between the polymer specimen [Z≒1~2x106 kg/(m2 s)] and the conventional steel 
bars [Z≒40x106 kg/(m2 s)], which resulted in a transmitted strain signal with a very low 
signal-to-noise ratio. The specimen was sandwiched between the input and output bars by 
applying a very small pre-compression load with turning of the head of a support block. As 
in the static tests, lubricant (or petroleum jelly) was applied to the bar/specimen interfaces 
to reduce the frictional effects. A pulse shaping technique(23) was used to generate 
well-defined compressive strain pulses without higher frequency components in the input 
bar. Namely, a 0.2 mm thick 1050 Al disk of nearly 10 mm in diameter was attached onto 
the impact (left) end of the input bar using a thin layer of petroleum jelly. Details of the test 
procedure can be found elsewhere(24).  
 
 
 
 
 
 
 
 
 
 

Fig.2 Schematic diagram of conventional split Hopkinson pressure bar set-up 
(associated recording system not shown) 

 
From the elementary one-dimensional theory of elastic wave propagation, we can 

determine the nominal strain )(tε , strain rate )(tε  and stress )(tσ  in the specimen from 
the SHPB test records as(25)  
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Here u and P are the displacement and the axial force on both ends of the specimen, 
respectively, (where subscripts 1 and 2 denote the left and right interfaces, respectively; see 
the inset in Fig. 2); A, E and co are the cross-sectional area, Young’s modulus and the 
longitudinal elastic wave velocity of the Hopkinson (2024-T4 Al alloy) bars; AS is the 
cross-sectional area of the specimen. Equations (1) to (3) are derived under the assumption 
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of dynamic force equilibrium across the specimen, which can be expressed as 
)()()(or)()( 21 ttttPtP tri εεε =+=      (4) 

where 
)()()],()([)( 21 tAEtPttAEtP tri εεε =+=     (5) 

In the above derivations, the incident and reflected strain pulses are time-shifted to the 
specimen-input bar interface, and the transmitted strain pulse is time-shifted to the 
specimen-output bar interface. Eliminating time t through Eqs. (1) to (3) yields the nominal 
(or engineering) compressive stress-strain and strain rate-strain relations. In this work, the 
compressive stress and strain are taken as positive.  
 

3. Results and Discussion 

A number of the SHPB tests were conducted on the four different polymers at room 
temperature. Figure 3 indicates typical oscilloscope records from the SHPB test on PP. The 
top trace gives the incident and reflected strain pulses ( iε  and rε ), and the bottom trace 
gives the strain pulse ( tε ) transmitted through the specimen. The recorded signal data are 
neither smoothed nor averaged electronically. Note that the duration (≒340 µs) of the 
reflected and transmitted strain pulses is much longer than that (≒210 µs) of the incident 
strain pulse. This is due to a very long retardation time(26) of the polymers. Figure 4 gives 
the resulting axial stress histories at the front and back ends of the specimen. The nearly 
overlapping histories clearly indicate that dynamic stress equilibrium is achieved in the 
specimen over the entire loading duration. Figure 5 presents the resulting dynamic 
stress-strain loop and strain rate-strain relation in compression. The strain rate does not 
remain constant during loading as well as unloading, and hence the strain rate ε = 650/s 
given denotes the average one during loading process, which is calculated by dividing the 
area under the strain rate-strain curve up to the maximum strain (≒0.08) by the value of its 
strain. As in the low and intermediate strain rate tests, the dynamic stress-strain loop is not 
closed, and, consequently, a residual strain of about 0.024 is gradually recovered to zero in 
time (i.e., elastic aftereffect (27)). Figure 6 shows the compressive stress-strain loops for PP 
at three different strain rates. The initial slope (or initial modulus E), the flow stress and the 
area within the loop increase greatly with increasing strain rate. In order to evaluate the 
effect of strain rate on the compressive properties of the four different polymers, the 
measured values for the initial modulus (defined as the secant modulus at 0.002 strain) and 
flow stress at a given strain of 0.05 are plotted in Figs. 7 and 8, respectively, against the 
average strain rate ε  during loading process. The initial modulus and flow stress increase 
significantly with increasing strain rate for all polymers. All polymers are found to exhibit 
inherent dynamic viscoelastic characteristics.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Oscilloscope traces from SHPB test on PP (VS = 9.6 m/s) 
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Fig. 4 Time histories of applied stresses on each face of PP specimen 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 Dynamic stress-strain loop and strain rate-strain relation for PP in compression 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 Compressive stress-strain loops for PP at three different strain rates 
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Fig. 7 Effect of strain rate on initial modulus for four different polymers 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8 Effect of strain rate on flow stress at 0.05 strain for four different polymers 
 
In an attempt to quantitatively evaluate the rate dependence of the flow stress at 0.05 strain, 
two different strain-rate sensitivity parameters β and m(28) were introduced. The two 
parameters estimated for all four polymers are summarized in Table 3, where σ1 and σ2 are 
stresses at the average strain rates 1ε  and 2ε , respectively, for a fixed strain of 0.05. The 
choice of 0.05 strain was made between the common strains at strain rates corresponding 
approximately to the respective average strain rates during loading. PVC displays the 
highest strain-rate dependence with respect to β, and PP exhibits the highest strain-rate 
dependence with respect to m. A good correlation is observed in the strain-rate sensitivity 
parameter β between this work and Ref. [4].  
 

Table 3 Strain-rate sensitivity parameters for four different polymers within a range  
of strain rates from 1ε =1.2x10-3/s to 2ε ≒600/s  
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4. Constitutive Equations  

In an effort to model the compressive stress-strain behavior of the four different 
polymers, the Ramberg-Osgood equation(29) is used, i.e.,  

n

HE

1

)( 





+=
σσσε        (5) 

where E is the initial (or Young’s) modulus, H the strength coefficient and n the strain 
hardening exponent. The first and second terms on the right hand side of Eq. (5) correspond 
to the elastic strain εe and the plastic strain εp, respectively. We can obtain the following 
relation from Eq.(5):  

n
n

E
HH 






 −==

σεεεσ pp )(       (6) 

Taking logarithms of both sides of Eq. (6) gives  
plogloglog εσ nH +=       (7) 

Figure 9 shows typical log-log plots of the stress σ - plastic strain εp data for PP at three 
different strain rates obtained from Fig. 6. The constants H and n were determined by fitting 
Eq. (7) to the data points on the σ -εp curves using a least-squares fit. The constant H 
corresponds to the value of σ at εp = 1. The constant n was determined from the slope of the 
linear fit line. As can be seen from Fig.9, n is independent of strain rate up to 650/s, whereas 
H depends on the strain rate. Both E and H are assumed to be represented by simple power 
law functions of strain rate ε  as  

baE εε =)( ; dcH εε =)(      (8) 
where a, b, c and d are material parameters to be determined later. Again taking logarithms 
of both sides of Eq. (8) leads to  

εlogloglog baE += ; εlogloglog dcH +=    (9) 
Substituting Eq. (8) into Eq. (5), we have the strain-rate dependent Ramberg-Osgood 
equation (modified Ramberg-Osgood equation)(30) as  
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The measured values for the initial modulus E and the strength coefficient H for PP are 
plotted in Figs. 10 and 11, respectively, against the average strain rate ε  during loading 
process.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.9 Determination of constants H and n in Eq. (6) 
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Fig.10 Initial modulus E as function of strain rate ε  for PP. Determination of parameters a 

and b in modified Ramberg-Osgood equation  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.11 Strength coefficient H as function of strain rate ε  for PP. Determination of 

parameters c and d in modified Ramberg-Osgood equation 
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stress-strain data for four different polymers 
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the experimental compressive stress-strain curves and the modified Ramberg-Osgood 
relations at three different strain rates for the four different polymers. The compressive 
stress-strain behavior during loading process is accurately predicted by the modified 
Ramberg-Osgood equations for semi-crystalline polymers (HDPE and PP). In contrast, for 
the amorphous polymers (ABS and PVC), there are slight discrepancies between measured 
and predicted compressive stress-strain curves beyond the yield point at low and 
intermediate strain rates. This is because the amorphous polymers exhibit intrinsic 
strain-softening phenomena(17) after yielding. The strain-softening behavior cannot 
accurately be described by the modified Ramberg-Osgood equation. Mulliken and Boyce(17) 
predicted successfully the strain-softening behavior after yielding seen in the compressive 
stress-strain curves at strain rates from 10-4 to 104/s for the amorphous polymers (PC and 
PMMA) using nonlinear viscoelastic models. They suggested that it is possible to describe 
their strain-softening behavior using the nonlinear models with sixteen parameters. 
Nevertheless, it is very difficult to apply these complicated models to numerical simulations 
of the mechanical behavior of polymers at various strain rates.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12 Comparisons between measured compressive stress-strain curves and modified 
Ramberg-Osgood relations at three different strain rates for four different polymers  
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(3) For the semi-crystalline polymers (HDPE and PP), the compressive stress-strain 
curves during loading process at strain rates from 10-3 to 103/s can successfully be 
predicted by the modified Ramberg-Osgood equations.  

(4) For the amorphous polymers (ABS and PVC), the modified Ramberg-Osgood 
equation cannot accurately capture the strain softening phenomena after yielding at 
low and intermediate strain rates.  

(5) The modified Ramberg-Osgood equation cannot be applied to model the unloading 
stress-strain behavior at low or high strain rates.  
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