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Abstract 
Articular cartilage has high water content from 70 to 80% and biphasic property. 
The structures of the tissue are inhomogeneous and anisotropy. Consequently, 
cartilage tissue shows complicated viscoelastic behavior to mechanical stimuli 
because of depth-dependent and time-dependent interstitial fluid flux and 
stress-strain behaviors. Therefore it is necessary to consider not only the average 
tissue property but also the local one to explain mechanical and functional 
behaviors. The aim of this study is to consider the effect of elastic modulus 
distribution on the mechanical behavior of cartilage tissue using experiments with 
visualization and two-dimensional finite element method (FEM).  
In this study, we performed the compression test of the articular cartilage under the 
unconfined condition. First, on the basis of the distribution of Young’s modulus in 
depth direction calculated from local strain at equilibrium in experiment, the stress 
and strain behaviors in articular cartilage were analyzed by biphasic theory. 
Immediately after loading, the FEM analysis for deformed profiles of the model 
with depth-dependent Young’s modulus corresponded to actual profiles, while the 
model with average value for Young’s modulus showed inadequate deformed 
profiles. However, the total load-carrying capacity estimated in FEM for the former 
model is about one order lower than the experimental one measured by a load cell. 
Therefore, we provided time-dependence to elastic property to understand the 
complicated viscoelastic behavior during stress relaxation. Thus, the deformed 
shape profiles of the model immediately after loading and the total load-carrying 
capacity could satisfactorily correspond to measured data by considering 
depth-dependent and time-dependent variation of elastic property. 

Key words: Articular Cartilage, Compressive Deformation, Finite Element Method, 
Biphasic Analysis, Depth-Dependence, Time-Dependence 

 

1. Introduction 

The human synovial joint possesses superior load-bearing and jointing functions with 
very low friction and low wear. Articular cartilage tissue plays an important role to maintain 
this function through whole life. The arthroidal joint forms a connection between two or 
more bones, and functions by supporting and transmitting loads. Cartilage has high water *Received 3 Mar., 2008 (No. 08-0131) 
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content from 70 to 80 % and shows biphasic behaviors in which both solid and fluid 
properties should be considered.  

One of the representative diseases on the synovial joints particularly for elder persons is 
osteoarthritis. Osteoarthritis causes degeneration and destruction of articular cartilage, 
which lead to the disturbance of motility. Articular cartilage degenerated by osteoarthritis 
decreases load-buffering capacity and leads to the bone deformation, the formation of 
osteophytes, and the subchondral bone induration and thickening. Especially in joints of 
lower extremities, there are many reports linking age and obesity to the osteoarthritis, or 
external injury and career to the occurrence of osteoarthritis. Consequently, mechanical 
factors are believed to play a crucial role in the pathogenesis of osteoarthritis. 

As a new treatment method, tissue engineering has attracted attention in recent years. 
At the present stage, however, the mechanical function of tissue-engineered cartilage has 
not reached the level of native cartilage. It is noted that mechanical stimulation in culture 
process promotes extracellular matrix synthesis and leads to better function. Therefore, it is 
necessary to study the optimum conditions of mechanical stimulation. 

Gaining better understanding of the mechanical and functional environment around 
chondrocytes is crucial to the clarification of the mechanism of osteoarthritis pathogenesis, 
the assessment of mechanical properties of the regenerated cartilage, and the clarification of 
the optimum condition of mechanical stimulation on the metabolism of chondrocytes. 

The purpose of this study is to clarify the depth-dependent and time-dependent 
behaviors of local stress and strain in articular cartilage to understand the mechanical 
environment around chondrocytes in articular cartilage. For the numerical analysis based on 
biphasic finite element method to consider the coupled behavior of the solid phase and 
liquid phase (Mow et al. (1)), we investigated the depth-dependence and time-dependence of 
the elastic property in articular cartilage. As an approach, first, unconfined compression test 
of the cartilage tissue was performed and the local strain was estimated by measuring the 
changes in distance between corresponding chondrocytes stained with Calcein-AM 
(Murakami et al. (2)). Next, two-dimensional FEM based on biphasic theory was applied to 
simulate actual behaviors. 

 

1.1 Articular cartilage tissue 

Articular cartilage is composed of chondrocytes and an extracellular matrix. 
Extracellular matrix is mainly composed of proteoglycan and collagen, and produced by 
chondrocytes to provide scaffold to chondrocytes and support load to cartilage.  
Proteoglycan is highly hydrophilic and therefore can store a large amount of water and 
contribute to viscoelasticity. The hydrated proteoglycan is distended but confined by 
collagen network, and thus it supports the compressive load, while the collagen is given 
under pulling coercively. 

The uppermost superficial layer of about 200 to 500 nm in cartilage tissue is called 
lamina splendens, and there are no chondrocyte and no collagen fibril within this layer. The 
uppermost superficial zone is covered with the adsorbed film consisting of phospholipids, 
protein, and glycoprotein complex. The proteoglycan-derived gel layer is located 
underneath adsorbed film in lamina splendens (Gardner et al. (3), Higaki et al. (4)) and 
preserve low shearing resistance and protect the bulk body of cartilage (Murakami et al. (5)). 
A collagen layer resides at approximately 200 to 500 nm under this film and chondrocytes 
exist under this collagen layer. 

Cartilage is categorized into the surface, middle and deep zones, and calcified zone by 
the gradient direction of collagen fibrosis, the morphology of the cells, and the presence or 
absence of calcareous deposits (Fig.1). Consequently, mechanical properties are different in 
the location.   
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 Alexopoulos et al.(6) investigated an influence of Young’s modulus distribution in 
extracellular matrix on pericellular matrix. They calculated Young’s modulus about each 
position on depth direction from the unconfined compression test and derived the far field 
strain using inverse relationship between Young’s modulus and strain. As a result, it became 
clear that the strain which occurred in cartilage tissue is decreased with the depth. 

The upper 10 to 20 % of cartilage tissue is called surface zone. Collagen fibers in 
surface is finer (30 to 32 nm) and denser than lower layer. The fiber placement is parallel to 
the articular surface and the surface has high tensile property. The morphology of the cell is 
flat or fuseau and the orientation of the long axis of the cell is parallel to the articular 
surface.  

The middle zone is the thickest of all layers and accounts for 50 to 70 % of cartilage 
tissue. The collagen fibers in the middle zone have a diameter of 30 to 80 nm and form a 
network in a three-dimensional arrangement. The shape of the cell is round or fuseau. 
Chondrocytes in this zone are larger than those in surface and are arranged perpendicularly 
or radially to the articular surface.  

The deep zone comprises the lowest 20 to 30 % of the cartilage tissue. The 
chondrocytes are spherical and larger than those of the middle zone. The cells are assembled 
as columnar structure perpendicular to the articular surface. Collagen fibers also are 
arranged perpendicular to the articular surface.  

The calcification layer is the layer in which caustic lime is deposited in the matrix. 
Between the deep zone and calcified zone, there is a thin wavelike band called tidemark. 
The glycosaminoglycan content is higher here and possibly contributes to cartilage 
reconfiguration. 

As described above, the composition of cartilage is inhomogeneous and extremely 
complex. Therefore, it is necessary to consider not only whole tissue but also local behavior 
to explain the functional environment. 

 
 
 
 
 
 
 

1.2 The behavior of cartilage tissue to mechanical stimuli 

The structure and property of articular cartilage have depth-dependence. If the load acts 
on the tissue rapidly, the tissue does not have enough time to exude the interstitial fluid and 
thus presents similar behavior to the elastic body. While the load acts on the tissue slowly, 
the interstitial fluid is gradually exuded through the tissue. In compression, the permeability 
of cartilage becomes lower with an increase in compression strain (Jurvelin et al. (7)). When 
cartilage is compressed at high rate and kept at the definite position, the occurrence of peak 
stress and following stress relaxation behavior are observed as shown in Fig.2. In our 
unconfined compression test of 10~15% strain at 1000μm/s, peak stress ranged from 0.71 
MPa to 3.76 MPa. To understand the mechanotransduction in chondrocytes in cartilage, the 
actual time-dependent and depth-dependent stress and strain around chondrocytes should be 
clarified. 

The chondrocytes recognize their own deformation by the force to the cell membrane. 
We can estimate that the mechanical stimuli are transmitted by deforming chondrocytes 
with the deformation of extracellular matrix. It is believed that cytoskeleton, extracellular 
matrix receptor, and ionic change respond to the mechanical stimuli. In tissue engineering, 
it is noted that Young’s modulus of regenerated cartilage increases by culturing under the 

Fig.1 Cross-section diagram of cartilage tissue 
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Fig. 2 Compressive behavior of articular cartilage to definite compressive deflection 

periodic load condition or undergoing rehabilitation after transplantation. It is believed that 
the production is enhanced by mechanical stimuli to chondrocytes (Chowdhury et al. (8)).  

 
 
 
 
 
 
 
 
 
 

 

1.3 Composition of cartilage and biphasic theory 

Cartilage tissue is composed of chondrocytes and extracellular matrix with high water 
content and thus has biphasic properties. Biphasic theory is developed by Mow et al(1). In 
this theory, cartilage tissue is modeled by acquiring the macroscopic characteristic of the 
tissue, and assumes that the soft tissue with high water content is composed of two types of 
phases, i.e., solid phase and fluid phase. Then, the fluid phase is able to flow at some level 
through the solid phase composed of porous material. Because this fluid flux makes 
resistance to compressive load in cartilage, the whole tissue presents viscoelastic behavior. 
This biphasic theory is appropriate to the expression of the stress relaxation behavior and 
the creep phenomenon. Thus, in this study, we conducted biphasic finite element analysis. 

 

2. Experimental methods for compression tests 

2.1 Materials for compression tests 

Osteochondral explants were harvested from distal end of femur in porcine knee (6 to 7 
months old). A 3 mm cylindrical core was punched from each osteochondral explant and 
then cut in half perpendicular to the articular surface with a scalpel blade(Fig.3). The 
samples were washed by PBS (Phosphate Buffered Saline;pH7.4, Invitrogen Corporation). 
Then, living cells as markers were stained with Calcein-AM 1 μL (Molecular Probes) in 
1000 μL PBS. The samples were incubated for 30 min at 37 ℃ and washed by PBS. 

 

2.2 Compression tester and experimental method 

In these unconfined compression tests on semi-cylindrical cartilage specimens, the 
changes in local strain were observed. The compression tester(2) shown in Fig.4 is located on 
the stage of the confocal laser scanning microscope (CLSM, BIO-RAD，Radiance2000). 
The tester is constructed by impermeable alumina ceramic compressing plates, load cell, 
gap sensor for measuring the displacement of compressing plate, and linear actuator. 
Compression test is performed on the cover glass. The compressive behavior can be 
observed by object lens of CLSM. The position accuracy of 0.2 µm and the maximum speed 
of 4000 µm/s are controlled by feed back system for the displacement of compressing plate 
correcting the changes in deformation of the load cell during stress relaxation. 

First, a sample was set up on the cover glass, and soaked with PBS to keep it from 
drying out. The initial position was the position that the sample has contact with the 
impermeable compression plate and detective load of about 0.1 N. The thickness of the 
tissue was estimated from cartilage surface to tidemark.  

Under unconfined condition, the cartilage specimen was compressed to the defined total 
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deformation at a constant velocity. After that, the position was kept during stress relaxation 
phase for 20 min. Peak stress is maximum stress observed immediately after compression as 
shown in Fig.2. During compression tests, the compressive load was monitored and 
fluorescence images were continuously acquired. Changes in local strain were estimated 
from the changes in distances between corresponding cells. 

 In this study, we assume that semi-cylindrical specimen is nearly uni-axially 
compressed at equilibrium after stress relaxation in unconfined compression test and discuss 
mainly about the case of compression velocity of 1000 µm/s and the total compression rate 
of 10 %. 

 
 
 
 
 
 
 
 

3. Experimental results in compression tests 

3.1 Changes in specimen profiles under compression 

The transmission images of the edge of the semi-cylindrical specimen before and after 
compression are shown in Fig.5. The lateral strain in surface zone is lager than those in deep 
zone. To estimate depth-dependent Young’s modulus, we took notice of the fact that the 
pore pressure decreases little by little during stress relaxation process, and then the load is 
supported only by the solid phase in equilibrium. Thus, Young’s modulus distribution was 
calculated based on the local strain in equilibrium. 

 
 
 
 
 
 

3.2 Estimation of local strain depending on depth 

The local compression strain is calculated from the change in distance between the 
corresponding cells in the fluorescence images before and after compression. The 
fluorescence images before compression and at equilibrium observed by CLSM are shown 
in Fig.6. We could identify quite clearly the same cells, and measured the distance of the 
cell-to-cell. The cells in articular cartilage except surface zone moved mainly in the same 
direction as loading under unconfined compressive loading. At equilibrium without fluid 
pressure after stress relaxation, the lateral strain in surface zone was reduced to the lateral 
deformation to be defined by Poisson’s ratio. The local compressive strain at equilibrium 
was calculated using Eq. (1), where a and b are the distance of the cell-to-cell before 
compression and one at equilibrium, respectively. 

100a b
a

ε −
= ×  (1) 

We normalized the local compressive strain and plotted those against relative position x 
in depth direction in Fig.7.The surface side is depicted as 0, and the deep zone end side is 1. 

 
 
 

Fig. 3 Test specimen in compressive device. Fig.4 Compression tester located on microscope stage. 
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Fig. 5 Photograph of the edge of specimen. (a)Before compression. (b)Immediately after compression. 
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Fig. 6 Displacement of chondrocytes in cartilage. (a)Before compression. (b)At equilibrium. 
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3.3 Derivation of formula for depth-depending local strain distribution and 
Young’s modulus distribution 

The approximate curve ε(x) was fitted to the plot of local strain in Fig.7, where ε0 is the 
average strain of the solid phase and f(x) is the local strain distribution function. 
Immediately after compression, surface zone of sample swells in lateral direction due to 
fluid pressure. Then the intrinsic fluid flow gradually occurs, the fluid pressure relaxes and 
lateral strain is reduced. Although the final lateral strain becomes smaller, the lateral strain 
defined by Poisson’s ratio of solid phase near surface increases according to an increase in 
compressive strain because Young’s modulus of surface is lower than that of deep zone. 
After enough stress relaxation, fluid pressure becomes 0 MPa. At equilibrium, it is thought 
that the lateral bulge corresponds to the lateral deformation due to Poisson's ratio. 

)()( 0 xfx εε =   (2) 

We integrated Eq. (2) about overall range of cartilage tissue to calculate the average 
strain of the solid. Thus, the local strain distribution function is shown as Eq. (3). 

0

)()(
ε
ε xxf =   (3) 

We derived Young's modulus distribution function g(x) using inverse relationship 
between strain and Young's modulus for nearly uni-axial compression. At equilibrium, fluid 
pressure is 0. Consequently, the local stress at x of cartilage at equilibrium is equal to 
average stress. Thus, We obtain Eq. (4). 

1( )
( )

g x
f x

=  (4) 

Therefore, Young’s modulus depending on depth is defined by 

0
0( ) ( )

( )
EE x E g x

f x
= =  (5) 

In this study, we applied the compression velocity of 1000 µm/s and the compression 
strain of 10 %. The average strain of the solid phase ε0 is 9.90 % in this experiment. Mean 
value of the average Young’s modulus E0 of solid phase at equilibrium is 0.74 MPa. The 
local strain distribution function, and Young’s modulus depending on the depth are Eq. (6) 
and (7), respectively. 

6.5346.2 2.84( )
9.90

xef x
− +

=  (6) 

6.53

7.36( )
46.2 2.84xE x

e−=
+

 (7) 

 
 
 
 
 
 
 
 
 
 

4. Finite element analysis of articular cartilage model and boundary conditions 

4.1 Finite element model 

General-purpose finite element analysis software (ABAQUS v.6.5) was used to analyze 

Fig.7 Local strain distribution. Fig.8 Young's modulus distribution. 
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the biphasic model (Wu et. al. (9)). 
The shape of articular cartilage model is rectangle that has 2 mm height and 3 mm 

width. We use two-dimensional model as the first step to future plan on multi-scale analyses 
to include chondrocyte. Characteristic behaviors in deformed profile, Mises stress and pore 
pressure obtained from two-dimensional model except small difference in stress and 
pressure values was verified by our related study using three-dimensional one. We modeled 
using biphasic fluid element (CPE8RP) that corresponds to quadrangle, 8-node, bilinear 
pore pressure and biquadratic displacement. The size of the each element corresponds to 10 
µm x 10 µm and total number of element is 60,000. 

In this model, the upper 10 % of cartilage tissue is surface zone, the lower 20 % of the 
tissue is deep zone and middle zone is located between surface and deep zones. And the 
upper 10 %of surface zone is defined superficial zone. 

In this study, we created a homogeneous Young’s modulus model (ModelⅠ) and a 
depth-dependent Young’s modulus model (ModelⅡ). Young’s modulus of ModelⅠwas 
0.74 MPa as homogeneous value at equilibrium. In the case of ModelⅡ, Young’s modulus 
is described as equation(7). Articular cartilage model was divided as 100 layers to depth 
direction and the corresponding Young’s modulus was provided for each layer. 

The void ratio e is provided for ABAQUS by the following equation. 

v

g t

dVe
dV dV

=
+

 (8) 

Where dVv is a volume of voids, dVg is volume of grains of solid material, and dVt is a 
volume of trapped wetting liquid. 

In this study, we assumed that water content of 80 % included in cartilage tissue is a 
volume of voids and other 20 % is sum of the volume of grains of solid material and a 
volume of trapped wetting liquid. Thus, void ratio is 4. 

Poisson's ratio and permeability of solid phase were assumed as constant and used 
literature data shown in Table.1 (Guilak et al. (10)). The analysis was conducted for test 
duration of 1200 s. 

 
 
 
 
 

4.2 Boundary conditions 

To compare experimental result with finite element analysis, the boundary condition for 
FEM was given to correspond to the compression test. FEM simulation of compression test 
was performed under compression velocity of 1000 µm/s and compression ratio of 10 %. 
Thus, amount of compression, compression velocity and compression time to definite 
deflection were 0.2 mm as 10 % of thickness, 1000 µm/s and 0.2 s, respectively. 

The node of lower surface was confined and the displacements of the node in both x 
and y directions were 0. The node of top surface was compressed at displacement of 0.2 mm 
and the transform in y direction (parallel to surface) was unconfined. To simulate 
impermeable compressing plates in compression tester, water was assumed to seep only 
through right and left side of rectangle model. 

  

5. Result of FEM analysis  

5.1 Comparison of experimental result with FEM analysis  

The transmission images of the specimen immediately after compression and its 

Table.1 Material properties. 

2.0×10-15 0.1250.74

Permeability 
k [m4/N・s] 

Poisson’s ratio 
of solid phase,ν  

Young’s modulus 
of solid phase,E0 [MPa]
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deformed profile immediately after compression of FEM simulation on homogeneous 
Young’s modulus model and depth-dependent Young’s modulus model are shown in Fig.9 
(Murakami et al. (11)). Immediately after compression, the deformed profile of the 
depth-dependent Young’s modulus model corresponded to actual profiles, while the 
homogeneous Young’s modulus model showed barreled profile. From this result, the 
importance of the depth-dependence of Young’s modulus was confirmed by compression 
test under unconfined condition. 

Then, the total load capacity of ModelⅡ was compared with measured value by a load 
cell in experiment. The total load capacity estimated by FEM analysis is the sum of 
compression stress in vertical direction and pore pressure. 

About all nodes, the stress at center of each element was averaged by area. In cases 
where average Young’s modulus of solid phase is 0.74 MPa obtained by compression test at 
equilibrium, the load carrying average stress by FEM analysis immediately after 
compression is about 0.17 MPa. On the other hand, experimental value of the average 
loading stress immediately after compression is about 2 MPa. Consequently, the total load 
capacity in FEM is about one order lower than the experimental one. 

Therefore, we examined the effect provided by parameter such as permeability, void 
ratio and Young’s modulus on the total load capacity immediately after compression. In this 
biphasic model, we changed the values in permeability from one-tenth to one thousandth 
and void ratio from 4 to 2.33, but these changes had little effect on stress level. In contrast, 
an increase as 1 order in Young’s modulus had a large effect on stress enhancement.  
 
 
 
 
 
 
 
 
 
 

5.2 Effects of variation in Young’s modulus on total load carrying capacity 

In Model Ⅱ, it is thought that Young’s modulus has a remarkable effect on stress 
enhancement immediately after compression. To conform the total load capacity 
immediately after compression to experimental value, it is necessary to increase as 12.74 
times average Young’s modulus at equilibrium (0.74 MPa). Therefore, we created a model 
with average Young’s modulus for solid phase of 9.47 MPa, and named Model III. The 
parameters except for Young’s modulus are the same to those of ModelⅡ. 

Compression stress, pore pressure for whole model and the total load capacity of Model
Ⅱ and Model III for half a minute after compression are shown in Fig.10. If average 
Young’s modulus was increased, compression stress and pore pressure immediately after 
compression increased approximately 12.5 times and 10 times, respectively. 

Thus, the loading average stress immediately after compression of Model III became 2 
MPa and corresponded to experimental value. Deformed profiles and Mises stress 
distribution immediately after compression are shown in Fig.11. When average Young’s 
modulus of solid phase was increased, not only stress of solid phase but also pressure of 
fluid one increased. Deformed profile of Model III immediately after compression was 
almost similar to that of ModelⅡ. Thus, the change in value of average Young’s modulus of 
solid phase has little effect on deformed profile, because deformation profiles are controlled 
with relative distribution of elastic modulus under definite deflection. During stress 

Fig.9 Profile of compressed cartilage. (a)Cartilage specimen.(b)ModelⅠ.(c)ModelⅡ. 
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relaxation, however, the total load capacity was maintained at higher level than 
experimental value. Therefore, we need to control the average Young’s modulus. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.3 Cartilage tissue model considering the depth-dependence and 
time-dependence of elastic property 

To conform the total load capacity of FEM simulation based on biphasic theory to the 
experimental value, it is necessary to control elastic property in this FEM model. 

Immediately after compression, because it has not enough time to flow intrinsic fluid in 
cartilage, whole tissue including intrinsic fluid shows the behavior like elastic body. 
Furthermore, the polymeric materials increase their stiffness at higher strain rate. Therefore, 
apparent Young’s modulus is assumed to be larger than the equilibrium Young’s modulus. 
During total deflection is maintained after compression, the intrinsic fluid flow gradually 
occurs, and the stress relaxes with decrease of apparent Young’s modulus. After enough 
stress relaxation, an apparent Young’s modulus becomes an equilibrium Young’s modulus. 

Consequently, we adopted instantaneous elastic modulus as an instantaneous ratio of 
stress to strain, created the model with gradual decrease in instantaneous elastic modulus, 
and named Model IV. 

In unconfined compression test of articular cartilage at 1000 µm/s, it was found that the 
total load capacity decreased close to that at equilibrium condition within 30 s after 
compression. Therefore, we changed elastic property from immediately after compression 
until about 30 s to conform FEM value to experimental value. When instantaneous elastic 
modulus of solid phase increases, we could increase the total load capacity without affecting 
deformed profiles. Therefore, we defined correction factor as function of time Tf and 
considered time dependence of instantaneous elastic modulus. The equilibrium elastic 
modulus, i.e., Young’s modulus of 0.74 MPa is denoted by Eeq. Thus, instantaneous average 
elastic modulus can be written as equation (9). 

(b)

(c) 

(a) 

(a) (b)
Fig.11 Profiles and Mises stresses of the models immediately after compression. (a)Model Ⅱ
(E0=0.74MPa). (b)Model III(E0=9.47 MPa). 

Fig.10 Comparison of stress and pressure. 

(b)Pore pressure. 
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(c)Mean stress. 
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eqfinst ETE ×=  (9) 

Therefore, instantaneous elastic modulus is calculated by equation (10). 

84.22.46
90.9

),( 53.6 +
×

= − x
inst

e
E

txE  (10) 

First Tf was assumed and then Einst and E (x,t) were calculated. FEM model was created 
using calculated E (x,t) and the total load capacity was analyzed for a few seconds. During 
relaxation process, Tf was modified if the difference of the total load capacity between FEM 
value and experimental one is more than 2 %. This method was repeated for approximately 
30 s from immediately after compression. 

The changes in instantaneous elastic modulus derived from FEM model in solid phase 
is shown in Fig.12. Between plotted values, the instantaneous elastic modulus was 
calculated by linear interpolation. The mean stress (total load capacity) and deformed 
profiles immediately after compression and Mises stress distribution of FEM simulation on 
ModelⅡ and Ⅳ are shown in Fig.13 and Fig.14, respectively. FEM value of the total load 
capacity corresponded to experimental one by providing time dependence to elastic 
property of solid phase. Though elastic property of solid phase changes, the deformed 
profile immediately after compression kept effect of depth-dependence and corresponded to 
experimental result. 

 
 
 
 
 
 
 
 
 
 
 
 
 
ｚｚｚ 
 
 
 
 
 
 
 

6. Discussion and conclusions 

In this study, we performed unconfined compression test of articular cartilage at 
definite total deformation in compression tester located on the stage of CLSM and evaluated 
the changes in local strain by observing the changes in cell-to-cell distance in fluorescent 
images of stained chondrocytes. After stress relaxation, it was shown that Young’s modulus 
of solid phase has depth-dependent distribution. For the compression velocity of 1000 µm/s 
and average compression of 10 %, most of the strain occurred in surface at equilibrium after 
stress relaxation. The superficial layer was strained to 50 % after stress relaxation, while the 
deep zone was strained at about only 3 % (Fig.7). 

Next, to simulate the depth-dependent and time-dependent compression behaviors of 
articular cartilage in experiment, we applied a finite element analysis based on biphasic 

Fig.13 Mean stress 

Fig.14 Profiles and Mises stresses of the models immediately after compression. (a)ModelⅡ(E0=0.74 
MPa).(b)Model IV(E0:Time-dependent). 

(a) (b)

Fig.12 Time-dependent elastic modulus of modelⅣ.
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theory by using a model considering Young’s modulus distribution depending on the depth. 
Then, we compared FEM result with experimental one. In this time, we focus on deformed 
profile immediately after compression, peak stress, and stress relaxation curve.  

If solid phase of the model was provided as depth-dependent Young’s modulus 
estimated from local strain distribution at equilibrium in compression test, the deformed 
profile of depth-dependent Young’s modulus model immediately after compression 
corresponded to actual profiles. Consequently, we confirmed that Young’s modulus has a 
distribution in the depth direction. In contrast, the total load capacity in FEM analysis was 
about one order lower than the experimental one. Then, we considered about the 
effectiveness of changes in permeability, void ratio, and Young’s modulus to explain what is 
the most important factor about stress development. 

First, we decreased permeability, but a decrease in permeability had no direct effect on 
stress development. Next, we decreased void ratio, but both the total load capacity and 
deformed profiles little changed. 

In contrast, an increase of one order in Young’s modulus had a remarkable effect on 
peak stress at full compression. To conform FEM result of the total load capacity to 
experimental one, we need to use 12.74 times increase of equilibrium Young’s modulus of 
the solid phase. In this case, not only the stress of solid phase but also the pressure of fluid 
phase increased, and the load-carrying average stress of the model became 2 MPa and 
corresponded to experimental value. Deformation profiles immediately after compression 
was almost similar to those in the previous model with depth-dependent equilibrium 
Young’s modulus. Thus, it is thought that an increase in Young’s modulus have no direct 
effect on deformed profile at full compression.  

To correspond the load relaxation in FEM analysis to the behavior in experiment, 
time-dependent control of instantaneous elastic property was required. It is supposed that 
time-dependent decrease in instantaneous elastic modulus is partly derived from the gradual 
exudation of fluid from proteoglycan units surrounded collagen networks. However, as 
pointed out by Li et al.(12), the nonlinear fibril reinforced poroelastic model is capable of 
describing the strong relaxation behavior and stiffening of cartilage in unconfined 
compression, although the compression rate at their condition is low as 1 µm/s. Therefore, 
the tensile property of collagen networks is likely to play an important role in organization 
of stress-strain state in articular cartilage. We are evaluating the influence of addition of 
collagen spring element to biphasic element in FEM analysis and plan to report a detailed 
result in next paper. 

In this study, we compared experimental results to FEM analysis and found the 
following facts. 
(1) At high compression speed such as 1000 µm/s, the high peak stress and the following 
stress relaxation was observed. The local strain showed depth-dependent and 
time-dependent behaviors. During stress relaxation, the superficial layer was largely 
strained, but the local strain in deep zone was recovered to lower level. 
(2) If we provide depth-dependent Young’s modulus distribution estimated from local strain 
at equilibrium to FEM analysis, the deformed profile of depth-dependent Young’s modulus 
model corresponded to actual profiles. Consequently, we confirmed that Young’s modulus 
has depth-dependent distribution. In contrast, the total load capacity estimated from FEM 
analysis is about one order lower than the experimental one. 
(3) In this biphasic model, changes in permeability and void ratio had little effect on stress 
level. On the contrary, an increase in Young’s modulus had a large effect on stress 
enhancement at definite compression. To conform FEM result of the total load capacity to 
experimental one, we needed to use 1 order higher value than equilibrium Young’s modulus 
of the solid phase for the condition shown above. The deformed profile of edge part 
corresponded to experiment. 
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(4) To conform the total load capacity of FEM simulation based on biphasic theory to load 
relaxation in compression test, it was necessary to decrease instantaneous elastic modulus as 
depending on the time. 

At next stage, the role of spring elements of collagen should be discussed in 
compression test for consideration of actual anisotropy and inhomogeneity in cartilage.  
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