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Abstract

In the past decade, thoracic endovascular aortic repair
(TEVAR) has become the primary treatment option in
descending aneurysm and dissection. The clinical out-
come of this minimally invasive technique is strictly
related to an appropriate patient/stent graft selection,
hemodynamic interactions, and operator skills. In this
context, a quantitative assessment of the biomechani-
cal stress induced in the aortic wall due to the stent
graft may support the planning of the procedure. Dif-
ferent techniques of medical imaging, like computed
tomography or magnetic resonance imaging, can be
used to evaluate dynamics in the thoracic aorta. Such
information can also be combined with dedicated pa-
tient-specific computer-based simulations, to provide a
further insight into the biomechanical aspects. In clinical
practice, computational analysis might show the develop-
ment of aortic disease, such as the aortic wall segments
which experience higher stress in places where rupture
and dissection may occur. In aortic dissections, the intimal
tear is usually located at the level of the sino-tubular
junction and/or at the origin of the left subclavian artery.
Besides, computational models may potentially be used
preoperatively to predict stent graft behavior, virtually
testing the optimal stent graft sizing, deployment, and
conformability, in order to provide the best endovascular
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treatment. The present study reviews the current litera-
ture regarding the use of computational tools for TEVAR
biomechanics, highlighting their potential clinical

applications. Copyright © 2013 Science International Corp.
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Introduction

In recent years, thoracic endovascular aortic repair
(TEVAR) has become a widespread treatment option
for thoracic aortic diseases. Compared to open sur-
gery, endovascular repair offers a less invasive ap-
proach and its increased availability and applicability
have changed the treatment algorithm [1,2]. More
than in open surgical repair, the outcome of the
endovascular procedure relies on the biomechanical
properties of the aortic wall and stent graft. During
the cardiac cycle, the force— expressed in Newton (N)
by the International System of Units (Sl)—acting on
the aortic wall is generated by the pulsatility of the
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Figure 1.

A. The three measured aortic levels with a central lumen line. Level A, 5 mm distal to the coronary arteries; B, 5 mm

proximal to the innominate artery; C, halfway up the ascending aorta. Figure reproduced with permission of the Journal of
Endovascular Therapy (© 2007), provided by Copyright Clearance Center. International Society of Endovascular Specialists.
Adapted from van Prehn et al [5]. B. The mean percentage of the maximum diameter change is shown at the 3 different levels.
The maximum diameter change at all levels is significant, where level A also differs significantly from levels B and C. Figure
reproduced with permission of the Journal of Endovascular Therapy (© 2007), provided by Copyright Clearance Center.
International Society of Endovascular Specialists. Adapted from van Prehn et al [5].

aorta and its side branches, and by the heartbeat
dependent on the plane of movement. The pulsatility
in the thoracic aorta varies between the different
segments, being higher in the ascending aorta com-
pared to the descending or abdominal aorta, as well
as between individual patients [3-5]. The wide range
of change in aortic diameter during the cardiac cycle
may increase the risk for complications after stent
graft placement, such as endoleak or graft migration
(Fig. 1A and 1B) [4,6]. After deployment of the stent
graft, aortic distension is preserved during the cardiac
cycle, which may play an important role because re-
peated stress— expressed in Pascal (Pa = N per m?) by
the Sl—on the stent graft can lead to stent graft
fracture or collapse [7]. To prevent these complica-
tions, it is important to better understand the forces

that contribute to the failure of TEVAR: radial, displace-
ment, and fixation forces. Radial force is achieved by
relatively oversizing the stent graft compared to the
aortic diameter. A larger radial force will be obtained
when larger oversizing is used, while excessive over-
sizing can lead to stent graft collapse [8]. Displace-
ment force (or drag force) can be defined as the net
force due to the action of different stresses that tends
to induce stent graft migration. This force is the
amount of force required to displace the stent graft,
which is determined by stent graft geometry, aortic
anatomy, and the hemodynamic condition of the pa-
tient [9]. The fixation force can be defined as the
resultant or reaction force that counters the so-called
displacement force. The combination of such forces
will balance the stent graft fixation to the aortic wall,
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Figure 2.

A. CT scan showing an aortic dissection and aortic
rupture. B. CT scan showing an aortic dissection with involve-
ment of the left subclavian artery and an aortic aneurysm.

which depends on the aortic morphology (eg, length
of proximal and distal landing zone and the condition
of the vessel wall) and the mechanical properties of
the stent graft (eg, the radial force, presence of barbs
and hooks, and the structural rigidity) [10]. Dissection
tears or rupture may develop due to a location of high
stress in the aortic wall, which can be a result of
different parameters, such as the presence of curva-
ture, decreased wall thickness, or resistance and in-
crease in radius, longitudinal stretch, and/or blood
pressure. Aortic curvature is physiologically located at
the level of the left hemi-arch, which represents a
challenging aortic segment to treat with TEVAR. At
this level, the presence of concomitant pathological
conditions, such as plaques, thrombus, dissections, or
aneurysms may further complicate a safe endovascu-
lar treatment (Fig. 2A and 2B).

Routinely available imaging techniques, such as
computed tomography (CT) and magnetic resonance
imaging (MRI), provide detailed information about the
aortic morphology, such as angulation, diameter, and
length of sealing and fixation zones, which are all
characteristics that highly influence the stent graft
selection and sizing. However, the forces working on
the aortic wall and stent graft cannot be measured with
these imaging modalities. Computational modeling has
been developed to assess aortic hemodynamic analysis
to calculate these forces, which should be taken into
account when choosing or designing aortic stent grafts.
In this review we report the up-to-date knowledge re-
garding the contemporary role of computational mod-
eling in thoracic aortic disease, especially for TEVAR,
describing the advances in medical imaging, the differ-
ent components of computational analysis, integration
in imaging techniques, and future perspectives.

Advances in Medical Imaging

Vascular medical imaging has recently evolved
with the development of new imaging modalities,
which consider the influence of aortic hemodynamics.

Electrocardiographic (ECG) gated CT allows study of
the pulsatility of the aorta and stent graft during the
cardiac cycle. To obtain images of this kind, it is man-
datory to use a scan with an ECG synchronization from
16 to 256 slices. More detectors (slices) result in a
reduction of the temporal resolution and, at the same
time, a reduction of radiation exposure and contrast
materials administration [11,12]. Moreover, iterative
reconstruction (IR) algorithms for CT were introduced
by all major vendors. These algorithms are noise-
reducing methods, aimed at either improving image
quality using constant CT radiation dose or lowering
the radiation dose without impairing image quality
[13]. Dual-energy CT (DECT) imaging discriminates ma-
terials based on their varying interactions with pho-
tons of different X-ray energies. In the near future, this
technique could be further applied to clinical practice for
evaluation of the aorta [14]. Actually, a robust computa-
tional model can be built using 256 multi-detector CT
with a spatial resolution =1 mm and a minimum tem-
poral resolution of 8 phases per cardiac cycle.

ECG gated MRI is a technique commonly used in
cardiac examination and could be used to evaluate
the aortic motion with steady-state free precession
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Figure 3.
Native mesh (right panel).

sequences, also called bright-blood cine, in several
spatial planes. A second dynamic application of MRl is
the flow study with phase contrast sequence to eval-
uate with thought-plane sequences the peak velocity,
the forward and reverse flow, and to visualize flow
with in-plane sequences. Today, to study aortic dis-
eases, the standard of care is a 1.5-Tesla (T) scan, and
the new scanners will probably increase the quality of
images obtained by MRI [15]. Several new applications
will be ready in the next few years with new se-
quences and new scans. An example of a new se-
quence is four-dimensional phase contrast MRI (4D
PC-MRI), an emerging tool for the comprehensive
evaluation of cardiovascular hemodynamics with full
volumetric coverage [16]. The requisite for building an
advanced computational model should minimally in-
clude a 1.5- to 3-T MRI with a gradient amplitude of 80
mT/m and a slew rate gradient of 200 mT/m/ms.

Computational Analysis

The introduction of new technologies for treating
aortic diseases with endovascular management has
resulted in a number of specific issues, ranging from
the preoperative phase (ie, a proper patient and stent
graft selection), to the postoperative phase (ie, quan-
titative evaluation of the stent graft performance).
Moreover, the significant deviation of pathological
aortic anatomy from the healthy (standard) condition
calls for patient tailoring of both stent graft design
and procedural approach. A successful approach to
this complex scenario should consider a real integra-

I Thrombus M True Lumen EEEFalse Lumen |
Aortic morphology reconstruction before and after TEVAR as a treatment for chronic type B dissection (left panel).

|Calcium FT1Graft

tion of knowledge from different scientific fields, ie,
mechanical engineering, informatics, medicine, and
more. In this context, computational biomechanics
can play a significant role as support to the preoper-
ative planning, through its dedicated computer-based
simulations. These might be represented by the ap-
proximate resolution of a set of differential equations
(eg, incompressible Navier-Stokes), modeling physical
phenomena (eg, blood fluid dynamics), in a specific
discretized domain, called mesh (eg, a vessel-like ge-
ometry). In addition, this approach is aimed at assess-
ing the variation in space and time of primary physi-
ological variables (eg, blood pressure and velocity).
Thanks to the impressive technological developments
in medical imaging and parallel computing, it is pos-
sible to perform complex simulations, embedding pa-
tient-specific modeling, potentially compatible with
the clinical decision-making process [17]. Such a
method consists of three main steps of simulation: 1)
preprocessing, 2) solution, and 3) postprocessing.

Preprocessing: From Medical Images to Patient-Specific
Vascular Model

The first step of the simulation set-up involves the
creation of mesh, resembling the real physical domain
(Fig. 3) [18]. In the specific case of the thoracic aorta,
the mesh generation process is not trivial because of
its geometrical complexity (aortic arch curvature,
branch splitting, etc.). Many dedicated tools (ITK-
SNAP, 3D Slicer, Osirix, VMTK) are currently available to
semi-automatically segment medical images datasets,
acquired by CT or MR, and create 3D vascular models,
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Figure 4. Finite element analysis, after TEVAR for treatment of ascending pseudoaneurysm. Adapted from Auricchio et al [26].

which can be further elaborated for the specific analysis
purposes [19]. Besides the geometrical modeling, the
preprocessing has the goal to extract preoperative phys-
iological data to be used as analysis for boundary con-
ditions. For instance, cine phase contrast MRl is adopted
to compute inlet/outlet blood velocity profiles [18].
Doppler ultrasonography may obtain such information,
although this technique cannot provide a velocity map
because of arbitrarily oriented anatomic information.

Solution

The geometrical model and the boundary conditions
should be consistent with the adopted solver technique,
which computes the desired variables. Different numer-
ical techniques are available: the selection of the com-
putational methodology and of the related solver strictly
depends on the type of problem under investigation. In
cases involving the thoracic aorta, the following meth-
odologies are currently under evaluation.

Structural finite element analysis (FEA). FEA is a nu-
merical technique usually adopted in cardiovascular
biomechanics to perform a virtual mechanical test for
stent graft design or to evaluate the mechanics of
implant performance with respect to the hosting bio-
logical environment (Fig. 4). Although structural FEA
has been used extensively to investigate different as-
pects of coronary stenting or peripheral stenting [20-
25], very few studies address the structural behavior of
aorta/graft interaction [9,26,27]. In particular, De Bock

et al. [27] virtually deployed a bifurcated stent graft in
an abdominal aortic aneurysm (AAA) model, using
FEA, validating the simulation outcomes with respect
to in vitro placement of the device in a silicone mock
aneurysm, while in a more recent work, Auricchio et al.
[26] compared the results of patient-specific FEA of
ascending aorta endografting with postoperative im-
ages. Actually, only Figueroa et al. [9] have addressed
the 3D pulsatile displacement forces acting on tho-
racic stent grafts using 3D computational techniques,
combining computational fluid dynamics (CFD) and
structural modeling. Nevertheless, the rapid extension
of endovascular treatment of the thoracic aorta might
increase FEA studies in this field, supporting the de-
sign of novel dedicated stent grafts or even support-
ing preoperative planning. The main limitation of
these studies is that they rely on the assumptions
regarding the arterial wall. The easiest choice is to
assume the vessel wall as a rigid surface, which is
reasonable for specific purposes and conditions; how-
ever, it is a strong simplification of a complex problem.
In fact, modeling of the aortic wall, especially regard-
ing pathological conditions like aortic aneurysm or
dissection, is extremely challenging because the wall
is inhomogeneous (healthy tissue plus diseased tissue
plus thrombus). The standard approaches to calculate
prestress are not so straightforward; neither is the
assessment and assignment of material parameters
related to phenomenological constitutive models [28-
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Figure 5. TEVAR for an aneurysm rupture at the isthmic region. A. Intraoperative angiography. B. Postoperative CTA with stent

grafting of the aortic arch. C. Computational Fluid Dynamics. D. Vector-field analysis. Figure reproduced with permission of
Springer, provided by Copyright Clearance Center. Adapted from Midulla et al [18].

30]. A new input toward the identification of patient-
specific modeling of the aortic wall is the mechanical
response, which can be derived from the analysis of
4D images, where the spatial information is coupled
with the changes induced by the cardiac cycle, as
proposed by Tierney et al. [31] in a recent study.
CFD. Computational Fluid Dynamics (CFD) is a nu-
merical technique usually adopted in cardiovascular
biomechanics to assess the hemodynamic conditions
of a vessel segment (Fig. 5) [18]. An increasing number
of studies regarding postoperative TEVAR hemody-
namics are available in the literature [10,32-37]. Lam
and colleagues [32,34,35] in 2008 computed through
CFD the drag force acting on a stent graft. Using the
information obtained from CT imaging, they tailored
an idealized model of the aorta and the implanted
graft to a specific patient case, in order to investigate

the impact of the stent graft apposition on the dis-
placement force acting on the stent graft. Figueroa et
al. [9], in 2009, assessed the displacement forces act-
ing on thoracic stent grafts using CFD, proving that
computational methods can enhance the understand-
ing of the magnitude and orientation of the loads
experienced in vivo by thoracic aortic stent grafts and
therefore improve their design and performance (Fig.
6). In a similar manner, in 2011, Prasad et al. [36]
evaluated through computer-based simulations the
biomechanical and hemodynamic forces acting on the
intermodular junctions of a multi-component thoracic
stent graft, focusing on the development of type llI
endoleak due to disconnection of stent graft segments.
Although the vessel wall displacement, calculated from
the analysis of 4D images, can be imposed as a time-
dependent boundary condition, in CFD the vessel wall is
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Figure 6. Mid-descending thoracic aortic endograft in anterior, lateral, and axial views showing the vector (arrow) of the
displacement force (DF). Mean value of the DF vector, its sideways and axial components, and temporal variation over the cardiac
cycle are given below. Note that the axial DF vector is in the cranial rather than the caudal direction. The DF magnitude changes
over the cardiac cycle, varying from 16.7 N in diastole and 27.8 N at peak systole. Figure reproduced with permission of the

Journal of Endovascular Therapy (© 2009), provided by Copyright Clearance Center. International Society of Endovascular

Specialists. Adapted from Figueroa et al [9].

basically assumed to be rigid, neglecting the mutual
interaction between the vascular wall and the pulsatile
action of the blood [38].

It is worth noting that, as already reported, the
simulation outcomes are strictly related to the as-
sumed boundary conditions, with flow area at the
inlet and pressure at the outlets [39,40].

Most cardiovascular phenomena and mechanisms
rely on a close and mutual interaction between the
blood and the vessel; for instance, the dissection flap
floating due to the action of blood flow. Conse-
quently, many biomechanical analyses regarding the
cardiovascular biomechanics are based on fluid-
structure interaction (FSI), which is the generic name
referring to a family of numerical techniques aimed at
solving the coupled problem given by interaction be-
tween a deformable solid body (eg, the vessel wall)
and a fluid (eg, blood). FSI has been widely used to
investigate the aortic biomechanics; however, due to
the involved modeling complexity, no studies have
previously addressed the thoracic stent grafting
[41,42]. Some authors idealized the mechanical re-
sponse of the stent graft deployed in an abdominal
aneurysm, reconstructed from CTA, within FSI [43,44].

Postprocessing: From Numerical Outputs to Clinical
Relevant Information

Numerical simulations produce a huge amount of
data, which should be properly elaborated to provide
few significant indices, resuming clinical relevant in-
formation. Although stress distribution along the ves-
sel wall is usually obtained from FEA or FSI analyses,
many sophisticated hemodynamic indices are cur-
rently available with different purposes: for example,
the calculation of the helicity coefficient of the aortic
flow, computed from 4D MRI, suggests that aortic
helical flow might be caused by natural optimization
of fluid transport processes in the cardiovascular sys-
tem, aimed at obtaining efficient perfusion [45,46].
Morbiducci et al. [46] studied the hemodynamics in
the aorta in 5 healthy volunteers. They used 4D PC-
MRI in combination with computational analysis of
advanced fluid dynamics. These algorithms enabled
construction of a 4D representation to visualize the
aortic helical flow, which is a result of the alignment of
velocity and vorticity (Fig. 7) [46]. The main findings in
the literature of the three different numerical techniques
(FEA, CFD, and FSI) are demonstrated in Table 1.
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Evolution of the helical flow in the 5 different aortas
(two different views). The flow in A and E has a helical structure
and the flow in B, C, and D has a bihelical structure. Figure
reproduced with permission of Springer, provided by Copy-
right Clearance Center. Adapted from Morbiducci et al [46].

Figure 7.

Computational Analysis Integrated in Imaging
Modalities

Different computational analysis models have been
used for hemodynamic aortic analysis; they have been
used especially to create simulations of the blood flow in
the abdominal aorta before and after stent graft place-
ment [47,48]. Frydrychowicz et al. [49] stated the poten-

tial of 4D PC-MRI, in which computational analysis can be
easily integrated using the steps of simulation of prepro-
cessing, solution, and postprocessing. 4D PC-MRI in-
cludes velocity in 3 directions encoding in 3D imaging
over time, with the potential to extensively analyze hu-
man physiologic hemodynamics in vivo. 4D PC-MRI is
used especially in organ hemodynamics where complex
flows are present, as in cardiovascular disease and neu-
rovascular imaging. Because of the lack of ionizing radi-
ation, MRI can be widely used, although at present it is
only available in some specialized centers. Due to the
relatively short acquisition time of this new imaging
modality, it can be adopted in the clinical practice to
evaluate most patients and disease-related questions
[49]. 4D PC-MRI offers a large amount of information,
enabling the measurement of different parameters,
such as pulse wave velocity (PWV), the speed at
which the pulse wave travels through the vessel or
particular system, and estimates of wall shear stress
(WSS), which is the frictional force created by the
circulating blood (Fig. 8) [49]. Another recent study
reported the combined information of CFD and MRI
for functional analysis of the thoracic aorta after
stent graft implantation, showing the usefulness of
the technique by visualization of patient-specific
aortic hemodynamics with the blood flow pattern
and local pathologic changes [18].

Through computational modeling, complications
after stent graft placement might be detected, as has
already been shown for endovascular abdominal an-
eurysm repair (EVAR) [47,48].

Future Perspectives and Conclusions

Currently, stent graft sizing is performed using static
CT or MRI imaging. In order to improve endovascular
treatment decision-making and outcome, three-dimen-
sional volumetric analysis during the cardiac cycle is
needed. Computational modeling is still in the experi-
mental phase, but it gradually provides insight into the
causative mechanisms of stent graft complications and
the forces experienced in vivo by thoracic aortic stent
grafts. A better understanding of this process may lead
to change in stent graft design, with the aim to increase
performance. In the future, 3D computational models,
simulating the in vivo environment, may be used in daily
practice to test endovascular stent graft behavior, both
preoperatively, and during follow-up [50].

Computational analysis for thoracic aortic disease is a
promising method to study the hemodynamics, with dif-
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Table 1. Main findings and references for the three numerical techniques: FEA, CFD, and FSI

Main findings References
FEA Validation of bifurcated stent graft deployment in AAA De Bock et al. 2012 [27]
with an in vitro model
Comparison of patient-specific FEA with post-operative Auricchio et al. 2013 [26]

images after TEVAR
Assessment of 3D pulsatile displacement forces acting on  Figueroa et al. 2009 [9]
thoracic stent grafts
CFD Assessment of the hemodynamic conditions of a vessel Midulla et al. 2012 [18]
segment
Assessment of the hemodynamics of the aorta after TEVAR Figueroa et al. 2011 [10]; Fung et al. 2008 [32]; Gallo et al.
2012 [33]; Lam et al. 2007 [34]; Lam et al. 2008 [35];
Prasad et al. 2011 [36]; Tse et al. 2011 [37]
Estimation of the displacement forces acting on thoracic Figueroa et al. 2009 [9]; Fung et al. 2008 [32]; Lam et al.

stent graft (measured using CTA) 2007 [34]; Lam et al. 2008 [35]; Prasad et al. 2011 [36]
4D representation to visualize the aortic helical flow Morbiducci et al. 2011 [46]
FSI  Aortic blood flow simulations Bazilevs et al. 2006 [41]; Crosetto et al. 2011 [42]

Assessment of the mechanical response of the stent graft  Li et al. 2006 [43]; Molony et al. 2010 [44]
in AAA reconstructed from CTA

AAA indicates abdominal aortic aneurysm; CFD, computational fluid dynamics; CTA, computed tomography angiography; FEA, finite element analysis; FSI, fluid structure
interaction; TEVAR, thoracic endovascular aortic repair.

Velocity [cm/s]
100 c

Figure 8. Wall shear stress (WSS) is calculated from the 4D PC-MRI data. Figure reproduced with permission of Elsevier, provided
by Copyright Clearance Center. Adapted from Frydrychowicz et al [49].

ferent possible clinical applications. Preoperative measure-  outcome of TEVAR. The computational models need to be
ments regarding the inflow rate and flow split along the validated and more refined before they can be fully imple-
aortic branches can be retrieved from echocardiographic  mented in clinical practice, but the outlook is promising.
images or echo-Doppler measurements. Such measure-

ments can be used as boundary conditions for the fluid Acknowledgments

dynamics analysis. Similarly, the postoperative and fol-

low-up flow rate and flow split can be used for validation Michele Conti, PhD, acknowledges The ERC Starting

purposes. Computational analysis can complement MRl or  Grant Project ISOBIO: Isogeometric Methods for Bio-
CT imaging, providing hemodynamic parameters and me-  myechanics (No. 259229).

chanical forces that are not available in routine clinical
imaging. In addition, computational analysis might simulate | Comment on this Article or Ask a Question
virtual treatment preoperatively in order to predict the
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