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Abstract

We review the tests of general relativity that will become possible with space-based gravita-
tional-wave detectors operating in the ~ 10° —1 Hz low-frequency band. The fundamental
aspects of gravitation that can be tested include the presence of additional gravitational fields
other than the metric; the number and tensorial nature of gravitational-wave polarization
states; the velocity of propagation of gravitational waves; the binding energy and gravitational-
wave radiation of binaries, and therefore the time evolution of binary inspirals; the strength
and shape of the waves emitted from binary mergers and ringdowns; the true nature of as-
trophysical black holes; and much more. The strength of this science alone calls for the swift
implementation of a space-based detector; the remarkable richness of astrophysics, astronomy,
and cosmology in the low-frequency gravitational-wave band make the case even stronger.
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1 Introduction

The first direct detection of gravitational waves (GWs), widely expected in the mid 2010s with
advanced ground-based interferometers [219, 2], will represent the culmination of a fifty-year exper-
imental quest [124]. Soon thereafter, newly plentiful GW observations will begin to shed light on
the structure, populations, and astrophysics of mostly dark, highly relativistic objects such as black
holes and neutron stars. In the low-frequency band that will be targeted by space-based detectors
(roughly 10°° to 1 Hz), GW observations will provide a census of the massive black-hole binaries
at the center of galaxies, and characterize their merger histories; probe the galactic population of
binaries that include highly evolved, degenerate stars; study the stellar-mass objects that spiral
into the central black holes in galactic nuclei; and possibly detect stochastic GW backgrounds from
the dynamical evolution of the very early universe.

Thus, there are very strong astrophysical motivations to observe the universe in GWs, especially
because the systems and phenomena that can be observed in this fashion are largely orthogonal to
those accessible to traditional electromagnetic (EM) and astroparticle astronomy. The promise of
GWs appears just as great for fundamental physics. Einstein’s theory of gravity, general relativity
(GR), has been confirmed by extensive experimental tests; but these have largely been confined to
the solar system, where gravity is well approximated by Newtonian gravity with small corrections.
A few tests, based on observations of binary compact-object systems, have confirmed the weakest
(leading-order) effects of GW generation. By contrast, observation of strong GWs will provide the
first direct observational probe of the dynamical, strong-field regime of GR, where the nature and
behavior of gravity can be significantly different from the Newtonian picture. GWs are prima facie
the perfect probe to investigate gravitation, since they originate directly from the bulk motion of
gravitating matter, relieving the need to understand and model the physics of other intermediate
messengers, typically photons from stellar surfaces or black-hole surroundings.

Already today we can rely on a very sophisticated understanding of the analytical and numerical
techniques required to model GW sources and their GW emission, including the post-Newtonian
expansion [84, 190], black-hole perturbation theory [119], numerical relativity for vacuum space-
times [368], spacetimes with gases or magnetized plasmas [184], and much more. That these
techniques should have been developed so much in the absence of a dialogue with experimental
data (except for the binary pulsar [293]) is witness to the great perceived promise of GW astron-
omy. For a bird’s-eye view of the field, see the Living Review by Sathyaprakash and Schutz [395],
who cover the physics of GWSs, the principles of operation of GW detectors, the nature of GW
sources, the data analysis of GW signals, and the science payoffs of GW observations for physics,
astrophysics, and cosmology.

This review focuses on the opportunities to challenge or confirm our understanding of gravi-
tational physics that will be offered by forthcoming space-based missions to observe GWs in the
low-frequency band between 10°° and 1 Hz. Most of the literature on this subject has focused
on one mission design, LISA (the Laser Interferometer Space Antenna [64, 252, 370]), which was
studied jointly by NASA and ESA between 2001 and 2011. In 2011, budgetary and programmatic
reasons led the two space agencies to end this partnership, and to pursue space-based GW detection
separately, studying cheaper, rescoped LISA-like missions.

ESA’s proposed eLISA/NGO [20] would be smaller than LISA, fly on orbits closer to Earth,
and operate interferometric links only along two arms. In 2012 eLISA was considered for imple-
mentation as ESA’s first large mission (“L1”) in the Cosmic Vision program. A planetary mission
was selected instead, but eLISA will be in the running for the next launch slot (“L2”), with a
decision coming as soon as 2014. NASA ran studies on a broader range of missions [215], including
several variants of LISA to be implemented by NASA alone, as well as options with a geocentric
orbit (OMEGA [229]), and without drag-free control (LAGRANGE [304]). The final study report
concludes that scientifically compelling missions can be carried out for less, but not substantially
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less, than the full LISA cost; that scientific performance decreases far more rapidly than cost; and
that no design choice or technology can make a dramatic reduction in cost without much greater
risks. The NASA study noted the possibility of participation in the ESA-led eLISA mission (if
selected by ESA) as a minority partner.

Whatever specific design is eventually selected, it is likely that its architecture, technology,
and scientific reach will bear a strong resemblance to LISA’s (with the appropriate scalings in
sensitivity, mission duration, and so on). Thus, the research reviewed in this article, which was
targeted in large part to LISA, is still broadly relevant to future missions. Such LISA-like obser-
vatories are characterized by a few common elements: a set of three spacecraft in long-baseline
(Mkm) orbits, monitoring their relative displacements using laser interferometry; drag-free opera-
tion (except for LAGRANGE [304]), whereby displacement measurements are referenced to freely
falling test masses protected by the spacecraft, which hover around the masses using precise micro-
Newton thrusters; frequency correction of laser noise using a variety of means, including onboard
cavities and interferometers, arm locking, and a LISA-specific technique known as Time-Delay
Interferometry.

The predictions of GR that can be tested by space-based GW observatories include the absence
of gravitational fields other than the metric tensor; the number and character of GW polarization
states; the speed of GW propagation; the detailed progress of binary inspiral, as driven by nonlinear
gravitational dynamics and loss of energy to GWs; the strength and shape of the GWs from binary
merger and ringdown; the true nature of astrophysical black holes; and more.

Some of these tests will also be performed with ground-based GW detectors and pulsar-timing
observations [500], but space-based tests will almost always have superior accuracy and significance,
because low-frequency sources are intrinsically stronger, and will spend a larger time within the
band of good detector sensitivity. For binary systems with very asymmetric mass ratios, such
as extreme mass-ratio inspirals (EMRIs), LISA-like missions will measure hundreds of thousands
of orbital cycles; because successful detections require matching the phase of signals throughout
their evolution, it follows that these observations will be exquisitely sensitive to source parameters.
The data-analysis detection problem will be correspondingly delicate, but has been tackled both
theoretically [38], and in a practical program of mock data challenges for LISA [37, 39, 450].

The rest of this review is organized as follows. Section 2 provides the briefest overview of Ein-
stein’s GR, of the theoretical framework in which it can be tested, and of a few leading alternative
theories. It also introduces the “black-hole paradigm,” which augments Einstein’s equations with
a few assumptions of physicality that lead to the prediction that the end result of gravitational
collapse are black holes described by the Kerr metric. Section 3 reviews the “classic” LISA archi-
tecture, as well as possible options for LISA-like variants. Section 4 summarizes the main classes
of GW sources that would be observed by LISA-like detectors, and that can be used to test GR.
Section 5 examines the tests of gravitational dynamics that can be performed with these sources,
while Section 6 discusses the tests of the black-hole nature and structure. (A conspicuous omission
are possible stochastic GW backgrounds of cosmological origin [82]; indeed, in this article we do
not discuss the role of space-based detectors as probes of cosmology and early-universe physics.)
Last, Section 7 presents our conclusions and speculations.
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2 The Theory of Gravitation

Newton’s theory of gravitation provided a description of the effect of gravity through the inverse
square law without attempting to explain the origin of gravity. The inverse square law provided
an accurate description of all measured phenomena in the solar system for more than two hundred
years, but the first hints that it was not the correct description of gravitation began to appear
in the late 19th century, as a result of the improved precision in measuring phenomena such
as the perihelion precession of Mercury. Einstein’s contribution to our understanding of gravity
was not only practical but also aesthetic, providing a beautiful explanation of gravity as the
curvature of spacetime. In developing GR as a generally covariant theory based on a dynamical
spacetime metric, Einstein sought to extend the principle of relativity to gravitating systems, and
he built on the crucial 1907 insight that the equality of inertial and gravitational mass allowed the
identification of inertial systems in homogeneous gravitational fields with uniformly accelerated
frames — the principle of equivalence [339]. Einstein was also guided by his appreciation of Ricci
and Levi-Civita’s absolute differential calculus (later to become differential geometry), arguably as
much as by the requirement to reproduce Newtonian gravity in the weak-field limit. Indeed, one
could say that GR was born “of almost pure thought” [471].
Einstein’s theory of GR is described by the action

Scr = / VgRd'z, (1)

in which g is the determinant of the spacetime metric and R = g, R*" is the Ricci scalar, where
RM = R}, is the Ricci Tensor, Ry s =I'g,  —T'5, 5+ Ff{‘)\Fgé — ]."g“/\l“g,y the Riemann curvature
tensor, I'g = 9*°(9gs, + 95,3 — 9p,5) the affine connection, and a comma denotes a partial
derivative. When coupled to a matter distribution, this action yields the field equations

1 8rG
G;u/ = RMV - §guuR = 7TMV ; (2)

e
where T),, denotes the stress-energy tensor of the matter.

Since the development of the theory, GR has withstood countless experimental tests [471, 443,
444] based on measurements as different as atomic-clock precision [378], orbital dynamics (most
notably lunar laser ranging [309]), astrometry [415], and relativistic astrophysics (most exquisitely
the binary pulsar [293, 471], but not only [372]). It is therefore the correct and natural benchmark
against which to compare alternative theories using future observations and we will follow the same
approach in this article. Unlike in the case of Newtonian gravity at the time that GR was developed,
there are no current observations that GR cannot explain that can be used to guide development
of alternatives.! Nonetheless, there are crucial aspects of Einstein’s theory that have never been
probed directly, such as its strong-field dynamics and the propagation of field perturbations (GWs).
Furthermore, it is known that classical GR must ultimately fail at the Planck scale, where quantum
effects become important, and traces of the quantum nature of gravity may be accessible at lower
energies [400]. As emphasized by Will [471], GR has no adjustable constants, so every test is
potentially deadly, and a probe that could reveal new physics.

2.1 Will’s “standard model” of gravitational theories

Will’s Living Review [471] and his older monograph [469] are the fundamental references about
the experimental verification of GR. In this section, we give only a brief overview of what may

1 Some have argued that measurement of cosmological dark energy effects may be explained by long-range
modifications of Einstein’s equations. While space-based GW observations may potentially help to refine redshift-
distance measurements, we generally take the possibility of cosmological scale GR alternatives as falling outside the
scope of this review.
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be called Will’s “standard model” for alternative theories of gravity, which proceeds through four
steps: a) strong evidence for the equivalence principle supports a metric formulation for gravity;
b) metric theories are classified according to what gravitational fields (scalar, vector, tensor) they
prescribe; ¢) slow-motion, weak-field conservative dynamics are described in a unified parameterized
post-Newtonian (PPN) formalism, and constrained by experiment and observations; d) finally,
equations for the slow-motion generation and weak-field propagation of gravitational radiation are
derived separately for each metric theory, and again compared to observations. Many of the tests
of gravitational physics envisaged for LISA belong in this last sector of Will’s standard model, and
are discussed in Section 5.1 of this review. This scheme however leaves out two other important
points of contact between gravitational phenomenology and LISA’s GW observations: the strong-
field, nonlinear dynamics of black holes and their structure and excitations, especially as probed
by small orbiting bodies. We will deal with these in Sections 5 and 6, respectively; but let us first
delve into Will’s standard model.

The equivalence principle and metric theories of gravitation. Einstein’s original intu-
ition [338] placed the equivalence principle [222] as a cornerstone for the theories that describe
gravity as curved spacetime. As formulated by Newton, the principle states simply that inertial
and gravitational mass are proportional, and therefore all “test” bodies fall with the same accel-
eration (in modern usage, this is known as the weak equivalence principle, oo WEP). Dicke later
recognized that in developing GR Einstein had implicitly posited a broader principle (Einstein’s
equivalence principle, or EEP) that consists of WEP plus local Lorentz invariance and local position
invariance: that is, of the postulates that the outcome of local non-gravitational experiments is
independent of, respectively, the velocity and position of the local freely-falling reference frames in
which the experiments are performed.

Table 1: Hierarchy of formulations of the equivalence principle.

1. Weak Equivalence Principle (WEP): Gravitational and inertial masses are
equivalent (neglecting self gravity).

2. Einstein Equivalence Principle (EEP): Local position invariance and local
Lorentz invariance apply in addition to the WEP.

3. Strong Equivalence Principle (SEP): EEP applies also for self-gravitating
objects.

Turyshev [443] gives a current review of the experimental verification of WEP (shown to hold
to parts in 10'? by differential free-fall tests [399]), local Lorentz invariance (verified to parts in
10%2 by clock-anisotropy experiments [276]), and local position invariance (verified to parts in 10°
by gravitational-redshift experiments [58], and to much greater precision when looking for possible
time variations of fundamental constants [445]). Although these three parts of EEP appear distinct
in their experimental consequences, their underlying physics is necessarily related in any theory of
gravity, so Schiff conjectured (and others argued convincingly) that any complete and self-consistent
theory of gravity that embodies WEP must also realize EEP [471].

EEP leads to metric theories of gravity in which spacetime is represented as a pseudo-Rieman-
nian manifold, freely-falling test bodies move along the geodesics of its metric, and non-gravitational
physics is obtained by applying special-relativistic laws in local freely-falling frames. GR is, of
course, a metric theory of gravity; so are scalar-vector-tensor theories such as Brans—Dicke theory,

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2013-7


http://www.livingreviews.org/lrr-2013-7

Testing General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors 9

which include other gravitational fields in addition to the metric. By contrast, theories with dy-
namically varying fundamental constants and theories (such as superstring theory) that introduce
additional WEP-violating gravitational fields [471, Section 2.3] are not metric. Neither are most
theories that provide short-range and long-range modifications to Newton’s inverse-square law [3].

The scalar and vector fields in scalar-vector-tensor theories cannot directly affect the motion
of matter and other non-gravitational fields (which would violate WEP), but they can intervene
in the generation of gravity and modify its dynamics. These extra fields can be dynamical (i.e.,
determined only in the context of solving for the evolution of everything else) or absolute (i.e.,
assigned a priori to fixed values). The Minkowski metric of special relativity is the classic example
of absolute field; such fields may be regarded as philosophically unpleasant by those who dislike
feigning hypotheses, but they have a right of citizenship in modern physics as “frozen in” solutions
from higher energy scales or from earlier cosmological evolution.

The additional fields can potentially alter the outcome of local gravitational experiments: while
the local gravitational effects of different metrics far away can always be erased by describing physics
in a freely-falling reference frame (which is to say, the local boundary conditions for the metric
can be arranged to be flat spacetime), the same is not true for scalar and vector fields, which can
then affect local gravitational dynamics by their interaction with the metric. This amounts to a
violation not of EEP, but of the strong equivalence principle (SEP), which states that EEP is also
valid for self-gravitating bodies and gravitational experiments. SEP is verified to parts in 10* by
combined lunar laser-ranging and laboratory experiments [476]. So far, GR appears to be the only
viable metric theory that fully realizes SEP.

The PPN formalism. Because the experimental consequences of different metric theories fol-
low from the specific metric that is generated by matter (possibly with the help of the extra
gravitational fields), and because all these theories must realize Newtonian dynamics in appro-
priate limiting conditions, it is possible to parameterize them in terms of the coefficients of a
slow-motion, weak-field expansion of the metric. These coefficients appear in front of gravitational
potentials similar to the Newtonian potential, but involving also matter velocity, internal energy,
and pressure. This scheme is the parameterized post-Newtonian formalism, pioneered by Nordtvedt
and extended by Will (see [469] for details).

Of the ten PPN parameters in the current version of the formalism, two are the celebrated ~
and g (already introduced by Eddington, Robertson, and Schiff for the “classical” tests of GR) that
rule, respectively, the amount of space curvature produced by unit rest mass and the nonlinearity
in the superposition of gravitational fields. In GR, v and [ each have the value 1. The other
eight parameters, if not zero, give origin to violations of position invariance (£), Lorentz invariance
(a1 —3), or even of the conservation of total momentum (s, ¢1—4) and total angular momentum
(13, C1-4)-

The PPN formalism is sufficiently accurate to describe the tests of gravitation performed in the
solar system, as well as many tests using binary-pulsar observations. The parameter - is currently
constrained to 1 + a few 107° by tests of light delay around massive bodies using the Cassini
spacecraft [81]; 8 to 1 & a few 10 * by lunar laser ranging [476].> The other PPN parameters have
comparable bounds around zero from solar-system and pulsar measurements, except for a, which
is known exceedingly well from pulsar observations [471].

2 Tn this context, laser ranging constrains the Nordtvedt effect (the dependence of free fall for massive bodies
on gravitational self-energy), which is also a violation of SEP. The 3 constraint given in [476] assumes the Cassini
result [81] for .
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2.2 Alternative theories

Tests in the PPN framework have tightly constrained the field of viable alternatives to GR, largely
excluding theories with absolute elements that give rise to preferred-frame effects [471]. The
(indirect) observation of GW emission from the binary pulsar and the accurate prediction of its
P by Einstein’s quadrupole formula have definitively excluded other theories [471, 422]. Yet more
GR alternatives were conceived to illuminate points of principle, but they are not well motivated
physically and therefore are hardly candidates for experimental verification. Some of the theories
that are still “alive” are described in the following. More details can be found in [469].

2.2.1 Scalar-tensor theories

The addition of a single scalar field ¢ to GR produces a theory described by the Finstein-frame
action (see, e.g., [471]),

I =(167G)~" / (R — 23" 8,00, — V(©)|(—3)*? 4% + Lnatter (Vm> A2(0)Fp) (3)

where g,,,, is the metric, the Ricci curvature scalar R yields the general-relativistic Einstein—Hilbert
action, and the two adjacent terms are kinetic and potential energies for the scalar field. Note that
in the action Iy 4tter for matter dynamics, the metric couples to matter through the function A(yp),
so this representation is not manifestly metric; it can however be made so by a change of variables
that yields the Jordan-frame action,

I= (167TG)71 /[¢R - ¢71w(¢)guyau¢au¢ - ¢2V](_g)1/2 d4{E + Imattcr(wmagp.l/) ) (4)

where ¢ = A(p)~? is the transformed scalar field, g,,, = A%(¢)g,. is the physical metric underlying
gravitational observations, and 3 + 2w(¢) = [d(In A(p))/dp] 2.

The “classic” Brans—Dicke theory corresponds to fixing w to a constant wpp, and it is indistin-
guishable from GR in the limit wgp — oo. In the PPN framework, the only parameter that differs
from GR is v = (1 4+ wpp)/(2 + wpp). Damour and Esposito-Farése [142] considered an expansion
of log A(¢) around a cosmological background value,

log A(p) = ao(p — wo) + %ﬁo@ — o) 4, (5)

where 3y (and further coefficients) = 0 reproduces Brans-Dicke with o = 1/(2wgp + 3), B0 > 0
causes the evolution of the scalar field toward ¢g (and therefore toward GR); and 8y < 0 may allow
a phase change inside objects like neutron stars, leading to large SEP violations. These parameters
are bound by solar-system, binary-pulsar, and GW observations [143, 186].

Scalar-tensor theories have found motivation in string theory and cosmological models, and
have attracted the most attention in terms of tests with GW observations.

2.2.2 Vector-tensor theories

These are obtained by including a dynamical vector field u* coupled to the metric tensor. The
most general second-order action in such a theory takes the form [471]

1 v
= 16:C d*z\/—g {(1 + wu,u”)R — Kgﬂu?;u;ﬂu + Ay u? + 1)} ,
where K}/ = 19" gap + c20405 + 304307, — cautu” gag (6)
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in which a semicolon denotes covariant differentiation, and the coefficients ¢; are arbitrary con-
stants. There are two types of vector-tensor theories: in unconstrained theories, A = 0 and the
constant w is arbitrary, while in Einstein-aether theories the vector field u* is constrained to have
unit norm, so the Lagrange multiplier A is arbitrary and the constraint allows w to be absorbed
into a rescaling of G. For the unconstrained theory, only versions of the theory with ¢4 = 0 have
been studied and for these the field equations are [469]

R RQNA +w®n)\ +77®,{)\ +€® )\‘1‘7@ +Agm/\—0
S 1 1,
ek, + §Tu;w — iquR — R, =0,
w 1
@f(f,\) = ugurR + U’ Ry — iganR — (u?).ox + ger0gu?,
(77) 1 8 1 1 o B
O, = 2uup Ry — ngu u” Rop — (u™upe);x ]a—|—ng(unuA)—|—§gm(u u”).aB,
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where Fj,, =y, — Upyw, u? = uut, = —co, e=—(ca +¢3)/2, and 7 = —(c1 + c2 + c3). We use
the usual subscript notation, such that “()” and “[;” denote symmetric and antisymmetric sums.

In the constrained Einstein-aether theory [250] the field equations are

« c, O
I 0 — catt®ug,
where J%, = K"‘Bu B

8G

= Ay,

Gaﬂ — T(") + detter

Ty = (ﬂa“%) = T sy = Tiapyu”),,, +er (uG — wandly) + catiatig
1
+ [UVJ;;LV - 041./42] UqUp — igaBLu ; (8)

where 1% = uﬁu%, L, = —Kﬁ‘ﬂu“ us is the aether Lagrangian, and Tmatter is the usual matter
stress-energy tensor [163]. Via field redefinition this theory can be shown to be equivalent to GR
ifeg+c4=0,¢1+ca+ec3 =0, and c3 = £+/c1(c; —2) [57]. Field redefinition can also be used
to set ¢1 + ¢3 = 0 [185]; if this constraint is imposed then equivalence to GR is only achieved if
the ¢; are all zero. This constraint is therefore appropriate to pose Einstein-aether theory as an
alternative to test against GR, since then any non-zero values of the ¢; would represent genuine
deviations from GR.

Unconstrained vector-tensor theories were introduced in the 1970s as a straw-man alternative
to GR [469], but they have four arbitrary parameters and leave the magnitude of the vector field
unconstrained, which is a serious defect. Interest in Einstein-aether theories was prompted by the
desire to construct a covariant theory that violated Lorentz invariance under boosts, by having a
preferred reference frame — the aether, represented by the vector u*. The preferred reference frame
also provides a universal notion of time [202]. Interest in theories that violate Lorentz symmetry
has recently been revived as a possible window onto aspects of quantum gravity [22].

2.2.3 Scalar-vector-tensor theories

The natural extension of scalar-tensor and vector-tensor theories are scalar-vector-tensor theories in
which the gravitational field is coupled to a vector field and one or more scalar fields. These theories
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are relativistic generalizations of Modified Newtonian Dynamics (MoND), which was proposed in
order to reproduce observed rotation curves on galactic scales. The relativistic extensions were
designed to also satisfy cosmological observations on larger scales. The action takes the form

1

S = ﬁ/délx \/jg(LG+LS+Lu+Lmatter)v (9)

where Lg = (R — 2A)/G and Latter are the usual gravitational and matter Lagrangians. There
are two main versions of the theory, which differ in the choice of the scalar-field and vector-field
Lagrangians Lg and L,,.

In Tensor-Vector-Scalar gravity (TeVeS) [61] the dynamical vector field u* is coupled to a
dynamical scalar field ¢. A second scalar field o is here considered non-dynamical. The Lagrangians
are

11, 1G 4,
LS = % |:0' (gaﬂ — ’U,O‘uﬁ) (b’a(b”@ —+ §ﬁ0 F(GO' ) s
K A
e RARYOWY
Lu = o 070 Bupan + 220 (whu, + 1) (10)

where Bog = ug o — Ua,3, I is an unspecified dimensionless function, K is a dimensionless param-
eter, and [ is a constant length parameter. The Lagrange multiplier ) is spacetime dependent, set
to enforce normalization of the vector field u#u, = —1. In TeVeS the physical metric that governs
the gravitational dynamics of ordinary matter does not coincide with g,,, but is determined by
the scalar field through

G = €*° g — 2u,u, sinh(26). (11)

An alternative version of TeVeS, called Bi-Scalar-Tensor-Vector gravity (BSTV) has also been
proposed [392], in which the scalar field o is allowed to be dynamical. TeVeS is able to explain
galaxy rotation curves and satisfies constraints from cosmology and gravitational lensing, but stars
are very unstable [402] and the Bullet cluster [123] observations (which point to dark matter)
cannot be explained.
In Scalar-Tensor-Vector Gravity (STVG) [317] the Lagrangian for the vector field is taken to
be
L,=w [B“”BW — Z,uQu”uu + Vu(u)} , (12)

with B, defined as before. The three constants w, u, and G that enter this action and the
gravitational action are then taken to be scalar fields governed by the Lagrangian

_ 16 {1 vp <G,VG,p Hvlp > n Va(G) | Vulp)
vWop

_|_

o2 2 +V,(w)|. (13)

STG |27 e T
It is claimed that STVG predicts no deviations from GR on the scale of the solar system or for
small globular clusters [319], and that it can reproduce galactic rotation curves [97], gravitational
lensing in the Bullet cluster [98], and a range of cosmological observations [318]. TeVeS-like theories
are constrained by binary-pulsar observations [186]. It has been proposed that an extension of the
ESA-led LISA Pathfinder technology-demonstration mission may allow additional constraints on
this class of theories [301]. To date the consequences of TeVeS or STVG for GW observations have
not been investigated.

2.2.4 Modified-action theories

f(R) gravity. This theory is derived by replacing R with an arbitrary function f(R) in the
Einstein—Hilbert action. There are two versions of f(R) gravity. In the metric formalism the
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action is extremized with respect to the metric coefficients only, and the connection is taken to be
the metric connection, depending on the metric components in the standard way. The resulting
field equations are

(_R;mR;k + gnAR;uR;#)fm(R) + (_R;n)\ + gm\DR)fH(R) + Rm/\f/(R) - %gm/\f(R) =0. (14)

In the Palatini formalism, the field equations are found by extremizing the action over both the
metric and the connection. For an f(R) action the resulting equations are

Rrf'(R) = Samf(B) =0, Va [V=3f (R)g™] =0. (15)

If the second derivative f”(R) # 0, metric f(R) gravity can be shown to be equivalent to a Brans—
Dicke theory with wpp = 0, while Palatini f(R) gravity is equivalent to a Brans—Dicke theory with
wpp = —3/2, with no constraint imposed on f(R) [180, 419, 146]. In both cases, the Brans—Dicke
potential depends on the exact functional form f(R).

f(R) theories have attracted a lot of interest in a cosmological context, since the flexibil-
ity in choosing the function f(R) allows a wide range of cosmological phenomena to be de-
scribed [336, 108], including inflation [423, 459] and late-time acceleration [107, 112], without
violating constraints from Big-Bang Nucleosynthesis [168]. However, metric f(R) theories are
strongly constrained by solar-system and laboratory measurements if the scalar degree of freedom
is assumed to be long-ranged, which modifies the form of the gravitational potential [121]. This
problem can be avoided by assuming a short-range scalar field, but then f(R) theories can only
explain the early expansion of the universe and not late-time acceleration. The Chameleon mech-
anism [262] has been invoked to circumvent this, as it allows the scalar-field mass to be a function
of curvature, so that the field can be short ranged within the solar system but long ranged on
cosmological scales.

There are also other issues with f(R) theories. For example, in Palatini f(R) gravity the post-
Newtonian metric depends on the local matter density [418], while in metric f(R) gravity with
f"(R) < 0 there is a Ricci-scalar instability [153] that arises because the effective gravitational
constant increases with increasing curvature, leading to a runaway instability for small stars [56, 55].
We refer the reader to [419, 146] for more complete reviews of the current understanding of f(R)
gravity.

Chern—Simons gravity. Yunes and others [6, 8, 12, 13, 103, 104, 111, 158, 189, 212, 218,
272, 323, 416, 488, 491, 496, 501, 503, 499, 340] have recently developed an extensive analysis
of the observational consequences of Jackiw and Pi’s Chern—Simons gravity [249], which extends
the Hilbert action with an additional Pontryagin term *RR that is quadratic in the Riemann
tensor [212]:

I = (167TG)_1 /[R - iQ*RR](—g)l/Q d4(E + Imatter(wmvg,uu) 5 (16)

here *RR = *R%,°*Rb ., is built with the help of the dual Riemann tensor *R%,°? = %eCdef R%ey,
and it can be expressed as the divergence of the gravitational Chern—Simons topological current;’
the scalar field 6 can be treated either as a dynamical quantity, or an absolute field. In both cases,
*RR vanishes, either dynamically, or as a constraint on acceptable solutions, needed to enforce
coordinate-invariant matter dynamics, which restricts the space of solutions available to GR.
Chern—Simons gravity is motivated by string theory and by the attempt to develop a quantum
theory of gravity satisfying a gauge principle. The Pontryagin term arises in the standard model of

3 In field theory, topological currents are those whose conservation follows not from the equations of motion, but
from their very geometric construction.
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particle physics as a gauge anomaly: the classical gravitational Noether current that comes from
the symmetry of the gravitational action is no longer conserved when the theory is quantized, but
has a divergence proportional to the Pontryagin term. This anomaly can be canceled by modifying
the action via the addition of the Chern—Simons Pontryagin term. The same type of correction
arises naturally in string theory through the Green—Schwarz anomaly-canceling mechanism, and
in Loop Quantum Gravity to enforce parity and charge-parity conservation.

The presence of the Chern—Simons correction leads to parity violation, which has various ob-
servable consequences, with magnitude depending on the Chern—Simons coupling, which string
theory predicts will be at the Planck scale. If so, these effects will never be observable, but various
mechanisms have been proposed that could enhance the strength of the Chern—Simons coupling,
such as non-perturbative instanton corrections [433], fermion interactions [10], large intrinsic cur-
vatures [9] or small string couplings at late times [468]. For further details on all aspects of
Chern—Simons gravity, we refer the reader to [11].

General quadratic gravity. This theory arises by adding to the action all possible terms that
are quadratic in the Ricci scalar, Ricci tensor, and Riemann tensor. For the action

_ 1
T 167G

/ V=9 (=2A + R+ aR* + BR,-R°" + YRup,sR*°) d*z (17)
the field equations are [372]

1
Rn)\ _§Rgm)\ + aKm/\ + /BLN/\ + Agn)\ - 07
1
Koy = —2R. ) + 290 0R — §R2gm\ +2RR,,

1 1
LR/\ = _2RZ;U)\ + DRK}\ + EQNADR - ign)\RaTRUT + QR:RU,\ B (18)
This class of theories is parameterized by the coefficients «, 3, and . More recently, Stein and
Yunes [504] considered a more general form of quadratic gravity that includes the Pontryagin term
from Chern—Simons gravity. Their action was

S = / V=9 {“R + a1 fi(0) R + az f2(0) Ry R™ + a3 f3(0) Rapea R

B

Fagf1(0) Ry g R — 5 V.0V + 2V ()] + Emmer}, (19)

in which the «; and ( are coupling constants, 6 is a scalar field, and Ly,a¢ter 1S the matter Lagrangian
density as before. There are two versions of this theory: a mon-dynamical version in which the
functions f;(#) are constants, and a dynamical version in which they are not.

General quadratic theories are known to exhibit ghost fields — negative mass-norm states that
violate unitarity (see, e.g., [419] for a discussion and further references). These occur generically,
although models with an action that is a function only of R and R? —4R,,, R*"" 4+ R, 5o R*° only
are ghost-free [126]. Ghost fields are also present in Chern—Simons modified gravity [323, 158],
which places strong constraints on the parameters of that model.
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2.2.5 Massive-graviton theories

Massive-graviton theories were first considered by Pauli and Fierz [350, 175, 176], whose theory is
generated by an action of the form

1 1 1 1
See = M3 [t |~ @by + L(OMP ~ 5O,)0°NE) + 5(0uh) O 107)
L (1) + M| 20)

in which h, is a rank-two covariant tensor, m and Mp are mass parameters, T}, is the matter
energy-momentum tensor, indices are raised and lowered with the Minkowski metric 7,,, and
h = h,,n"*". The terms on the first line of this expression are generated by expanding the Einstein—
Hilbert action to quadratic order in h,,. The massive graviton term is m? (h,“,h“” — hz); it
contains a spin-2 piece h,, and a spin-0 piece h.

This model suffers from the van Dam—Velten—Zakharov discontinuity [454, 505]: no matter how
small the graviton mass, the Pauli-Fierz theory leads to different physical predictions from those of
linearized GR, such as light bending. The theory also predicts that the energy lost into GWs from
a binary is twice the GR prediction, which is ruled out by current binary-pulsar observations. It
might be possible to circumvent these problems and recover GR in the weak-field limit by invoking
the Vainshtein mechanism [446, 41], which relies on nonlinear effects to “hide” certain degrees
of freedom for source distances smaller than the Vainshtein radius [40]. The massive graviton
can therefore become effectively massless, recovering GR on the scale of the solar system and in
binary-pulsar tests, while retaining a mass on larger scales. In such a scenario, the observational
consequences for GWs would be a modification to the propagation time for cosmological sources,
but no difference in the emission process itself.

There are also non-Pauli-Fierz massive graviton theories [36]. For these, the action is the same
as that in Eq. (20), but the first term on the second line (the massive graviton term) takes the
more general form

— (/{ilhuyh'uy + k‘gh2) R (21)

where k; and ko are new constants of the theory that represent the squared masses of the spin-2
and spin-0 gravitons respectively. This theory can recover GR in the weak field, since k; and k5 can
independently be taken to zero, with modifications to weak-field effects that are on the order of the
graviton mass squared. These theories are generally thought to suffer from instabilities [350, 175,
176], which arise because the spin-0 graviton carries negative energy. However, it was shown in [36]
that the spin-0 graviton cannot be emitted without spin-2 gravitons also being generated. The spin-
2 graviton energy is positive and greater than that of spin-2 gravitons in GR, which compensates
for the spin-0 graviton’s negative energy. The total energy emitted is therefore always positive,
and it converges to the GR value in the limit that the spin-2 graviton mass goes to zero.

These alternative massive-graviton theories are therefore perfectly compatible with current
observational constraints, but make very different predictions for strong gravitational fields [36],
including the absence of horizons for black-hole spacetimes and oscillatory cosmological solutions.
Despite these potential problems, the existence of a “massive graviton” can be used as a convenient
strawman for GW constraints, since the speed of GW propagation can be readily inferred from
GW observations and compared to the speed of light. These proposed tests generally make no
reference to an underlying theory but require only that the graviton has an effective mass and
hence GWs suffer dispersion. This will be discussed in more detail in Section 5.1.2.
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2.2.6 Bimetric theories of gravity

As their name suggests, there are two metrics in bimetric theories of gravity [382, 384]. One is
dynamical and represents the tensor gravitational field; the other is a metric of constant curvature,
usually the Minkowski metric, which is non-dynamical and represents a prior geometry. There are
various bimetric theories in the literature.

Rosen’s theory has the action [381, 382, 383, 384]

1 v oo 1
S = G /d4l‘ |: —det(n)n"¥g BgWS (ga'ylugaéu - 29a7|u9a5|u>:| + Smatter s (22)

in which 7,,, is the fixed flat, non-dynamical metric, g,, is the dynamical gravitational metric and
the vertical line in subscripts denotes a covariant derivative with respect to 7,,. The final term,
Smatter, denotes the action for matter fields. The field equations may be written

1
s = 57 s = ~167G/ Ao 0607 (T — ST ). (23)

Lightman and Lee [287] developed a bimetric theory based on a non-metric theory of gravity
due to Belinfante and Swihart [62]. The action for this “BSLL” theory is

1 y " 5
T puv|a Ye% i 24
S = e /d x +/— det(n) (4h hw,|a — f64h7ah ) + Shatter (24)

in which 7 is the non-dynamical flat background metric and A, is a dynamical gravitational tensor
related to the gravitational metric g, via

1 2
Guv = <1 - 16h> AﬂAaua

« 1 «
o= A9 (55 - 2hu) , (25)

in which % is the Kronecker delta and AY is defined by the second equation. Indices on A, and
hag are raised and lowered with 7,,,, but on all other tensors indices are raised and lowered by g,
Both the Rosen and BSLL bimetric theories give rise to alternative GW polarization states, and
have been used to motivate the construction of the parameterized post-Einsteinian (ppE) waveform
families discussed in Section 5.2.2.

There is also a bimetric theory due to Rastall [374], in which the metric is an algebraic function
of the Minkowski metric and of a vector field K*. The action is

1

5= 647G

/d4:17 [ fdet(g)F(N)K’“VKu;y] + Shatter » (26)

in which F(N) = -N/(N +2), N = ¢""K, K, and a semicolon denotes a derivative with respect
to the gravitational metric g,,,. The metric follows from K* by way of

Guv =/ 1+ naﬂKaKB (nuu + K/,LKI/) ; (27)

where 7, is again the non-dynamical flat metric. This theory has not been considered in a GW
context and we will not mention it further; more details, including the field equations, can be found
in [469)].
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2.3 The black-hole paradigm

The present consensus is that all of the compact objects observed to reside in galactic centers
are supermassive black holes, described by the Kerr metric of GR [377]. This explanation follows
naturally in GR from the black-hole uniqueness theorems and from a set of additional assumptions
of physicality, briefly discussed below. If a deviation from Kerr is inferred from GW observations,
it would imply that the assumptions are violated, or possibly that GR. is not the correct theory of
gravity. Space-based GW detectors can test black-hole “Kerr-ness” by measuring the GWs emitted
by smaller compact bodies that move through the gravitational potentials of the central objects
(see Section 6.2). Kerr-ness is also tested by characterizing multiple ringdown modes in the final
black hole resulting from the coalescence of two precursors (see Section 6.3).

The current belief that Kerr black holes are ubiquitous follows from work on mathematical
aspects of GR in the middle of the 20th century. Oppenheimer and Snyder demonstrated that
a spherically-symmetric, pressure-free distribution would collapse indefinitely to form a black
hole [341]. This result was assumed to be a curiosity due to spherical symmetry, until it was
demonstrated by Penrose [351] and by Hawking and Penrose [224] that singularities arise inevitably
after the formation of a trapped surface during gravitational collapse. Around the same time, it
was proven that the black-hole solutions of Schwarschild [401] and Kerr [260] are the only static
and axisymmetric black-hole solutions in GR [248, 114, 379]. These results together indicated the
inevitability of black-hole formation in gravitational collapse.

The assumptions that underlie the proof of the uniqueness theorem are that the spacetime is
a stationary vacuum solution, that it is asymptotically flat, and that it contains an event horizon
but no closed timelike curves (CTCs) exterior to the horizon [223]. The lack of CTCs is needed
to ensure causality, while the requirement of a horizon is a consequence of the cosmic-censorship
hypothesis (CCH) [352]. The CCH embodies this belief by stating that any singularity that forms
in nature must be hidden behind a horizon (i.e., cannot be naked), and therefore cannot affect
the rest of the universe, which would be undesirable because GR can make no prediction of what
happens in its vicinity. However, the CCH and the non-existence of CTCs are not required by
Einstein’s equations, and so they could in principle be violated.

Besides the Kerr metric, we know of many other “black-hole-like” solutions to Einstein’s equa-
tions: these are vacuum solutions with a very compact central object enclosed by a high-redshift
surface. In fact, any metric can become a solution to Einstein’s equation: it is sufficient to insert
it in the Einstein tensor, and postulate the resulting “matter” stress-energy tensor as an input to
the equations. However, such matter distributions will not in general satisfy the energy conditions
(see, e.g., [361]):

e The weak energy condition is the statement that all timelike observers in a spacetime
measure a non-negative energy density, T),,v*v” > 0, for all future-directed timelike vectors
v, The null energy condition modifies this condition to null observers by replacing v* by
an arbitrary future-directed null vector k*.

e The strong energy condition requires the Ricci curvature measured by any timelike
observer to be non-negative, (T, — TS g, /2)v v > 0, for all timelike v#.

e The dominant energy condition is the requirement that matter flow along timelike or
null world lines: that is, that —T#v" be a future-directed timelike or null vector field for any
future-directed timelike vector v*.

These conditions make sense on broad physical grounds; but even after imposing them, there re-
main several black-hole-like solutions [427] besides Kerr. Thus, space-based GW detectors offer an
important test of the “black-hole paradigm” that follows from GR plus CCH, CTC non-existence,
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and the energy conditions. This paradigm is especially important: putative black holes are ob-
served to be ubiquitous in the universe, so their true nature has significant implications for our
understanding of astrophysics.

If one or many non-Kerr metrics are found, the hope is that observations will allow us to tease
apart the various possible explanations:

Does the spacetime contain matter, such as an accretion disk, exterior to the black hole?
Are the CCH, the no-CTC assumption, or the energy conditions violated?
Is the central object an exotic object, such as a boson star [389, 261]?

Is gravity coupled to other fields? This can lead to different black-hole solutions [265, 396,
413], although some such solutions are known [428]) or suspected [156] to be unstable to
generic perturbations.

Is the theory of gravity just different from GR? For instance, in Chern—Simons gravity black
holes (to linear order in spin) differ from Kerr in their octupole moment [496], and this
correction may produce the most significant observational signature in GW observations [416].

While these questions are challenging, we can learn a lot by testing black-hole structure with
space-based GW detectors. These tests are discussed in detail in Section 6.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2013-7


http://www.livingreviews.org/lrr-2013-7

Testing General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors 19

3 Space-Based Missions to Detect Gravitational Waves

The experimental search for GWs began in the 1960s with Joseph Weber’s resonant bars (and
resonant claims [124]); it has since grown into an extensive international endeavor that has produced
a network of km-scale GW interferometers (LIGO [288], EGO/VIRGO [167], GEO600 [203], and
Tama/KAGRA [254]), the proposals for space-based observatories such as LISA, and the effort to
detect GWs by using an array of pulsars as reference clocks [232].

In this section we briefly describe the architecture of LISA-like space-based GW observatories,
beginning with the “classic” LISA design, and then discussing the variations studied in the 2011 —
2012 ESA and NASA studies [20, 215]. We also discuss proposals for detectors that would operate
in a higher frequency band (between 0.1 and 10 Hz) that would bridge the gap in sensitivity
between LISA-like and ground-based observatories.

3.1 The classic LISA architecture

The most cited LISA reference is perhaps the 1998 pre-phase A mission study [64]; a more up-to-
date review of the LISA technical architecture is given by Jennrich [252], while the LISA science-
case document [370] describes the state of LISA science at the end of the 2000s. Here we give only
a quick review of the elements of the mission, referring the reader to those references for in-depth
discussions.

LISA principles. LISA consists of three identical cylindrical spacecraft, approximately 3 m wide
and 1 m high, that are launched together and, after a 14-month cruise, settle into an Earth-like
heliocentric orbit, 20° behind the Earth. The orbit of each spacecraft is tuned slightly differently,
resulting in an equilateral-triangle configuration with 5 x 10° km arms (commensurate with the
frequencies of the LISA sensitivity band), inclined by 60° with respect to the ecliptic. This config-
uration is maintained to 1% by orbital dynamics alone for the lifetime of the mission, nominally
5 years, with a goal of 10. In the course of a year, the center of the LISA triangle completes a
full revolution on the ecliptic, while the triangle itself, as well as its normal vector, rotate through
360°.

LISA detects GWs by monitoring the fluctuations in the distances between freely-falling refer-
ence bodies — in LISA, platinum-gold test masses housed and protected by the spacecraft. LISA
uses three pairs of laser interferometric links to measure inter-spacecraft distances with errors near
10+ Hz '/2. The phase shifts accumulated along different interferometer paths are proportional to
an integral of GW strain along those trajectories. The test masses suffer from residual acceleration
noise at a level of 3 x 107'% m s~2, which is dominant below 3 mHz. Together, the position and
acceleration noises (divided by a multiple of the armlength) determine the LISA sensitivity to GW
strain, which reaches 10729 Hz /2 at frequencies of a few mHz.

Alternatively (but equivalently), we may describe LISA as measuring the GW-induced relative
Doppler shifts between the local lasers on each spacecraft and the remote lasers. These Doppler
shifts are directly proportional to a difference of instantaneous GW strains (as experienced by the
local spacecraft at the time of measurement, and by the distant spacecraft at a time retarded by
the LISA armlength divided by the speed of light). In either description, the 1% “breathing” of
the LISA constellation occurs at frequencies that are safely below the LISA measurement band.

LISA technology. The distance measurement between the test masses along each arm is in
fact split in three: an inter-spacecraft measurement between the two optical benches, and two
local measurements between each test mass and its optical bench. To achieve the inter-spacecraft
measurement, 2 W of 1064-nm light are sent and received through 40-cm telescopes. The diffracted
beams deliver only 100 pW of light to the distant spacecrafts, so they cannot be reflected directly;
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instead, the laser phase is measured and transponded back by modulating the frequency of the
local lasers. Each of the two optical assemblies on each spacecraft include the telescope and a
Zerodur optical bench with bonded fused-silica optical components, which implements the inter-
spacecraft and local interferometers, as well as a few auxiliary interferometric measurements, which
are needed to monitor the stability of the telescope structure, to control point-ahead corrections,
and to compare the two lasers on each spacecraft. The LISA phasemeters digitize the signals
from the optical-bench photodetectors at 50 MHz, and multiply them with the output of local
oscillators, computing phase differences and driving the oscillators to track the frequency of the
measured signal. This heterodyne scheme is needed to handle Doppler shifts (as well as laser
frequency offsets) as large as 15 MHz.

Because intrinsic fluctuations in the laser frequencies are indistinguishable from GWs in the
LISA output, laser frequency noise needs to be suppressed by several orders of magnitude, using a
hierarchy of techniques [252]: the lasers are prestabilized to local frequency references; arm locking
may be used to further stabilize the lasers using the LISA arms (or their differences) as stable
references; finally, Time-Delay Interferometry [149] is applied in post processing to remove residual
laser frequency noise by algebraically combining appropriately-delayed single-link measurements,
in such a way that all laser-frequency—noise terms appear as canceling pairs in the combination.
With this final step, the LISA measurements combine into synthesized-interferometer observables
[447] analogous to the readings of ground-based interferometers such as LIGO.

The LISA disturbance reduction system (DRS) minimizes the deviations of the test masses from
free-fall trajectories, by shielding them from solar radiation pressure and interplanetary magnetic
fields. On each spacecraft, the DRS includes two gravitational reference sensors (GRSs): a GRS
consists of a 2-kg test mass, enclosed in an electrode housing with capacitive reading and control
of test-mass position and orientation, and accompanied by additional components to cage and
reposition the test mass, to maintain vacuum, and to control the accumulation of charge. The other
crucial part of the DRS are the micro-Newton thrusters (on each spacecraft, three clusters of four
colloid or field-emission—electric propulsion systems), which are controlled in response to the GRS
readings to maintain the nominal position of the test mass with respect to the spacecraft. This is
known as drag-free control. The thrusters need to provide up to 100 uN force with < 0.1 4N noise.
In addition to this active correction, test-mass acceleration noise is minimized by the accurate
knowledge and correction of spacecraft self-gravity, by enforcing magnetic cleanliness, and by
controlling thermal fluctuations. A version of the LISA DRS with slightly lower performance will
be flown and tested in LISA Pathfinder [305, 25], a single-spacecraft technology precursor mission.

The LISA response to GWs. Compared to ground-based interferometers, the LISA response
to GWs is both richer and more complex [166, 462, 448, 133]. First, the revolution and rotation
of the LISA constellation imprint a sky-position—dependent signature on long-lasting GW signals
(which for LISA include all binary signals): the revolution causes a time-dependent Doppler shift
with a period of a year, and a fractional amplitude of 10~%; the rotation introduces a l-year
periodicity in the LISA equivalent of the ground-based—interferometer antenna patterns [299],
endowing an incoming monochromatic GW signal with eight sidebands, separated by yr—! =
3.17 x 1078 Hz. These effects are sometimes referred to as the LISA AM and FM modulations.
Thus, GW signals as measured by LISA carry information regarding the position of the source; on
the other hand, data analysis must account for these effects, possibly including sky position among
the parameters of matched-filtering search templates.

Second, the long-wavelength approximation, whereby the entire “interferometer” shrinks and
expands as one, cannot be used throughout the LISA band; indeed, the wavelength of GWs reaches
the LISA armlength at a frequency of 60 mHz. As a consequence, the LISA response to a few-second
impulsive GW is not a single pulse, but a collection of pulses with amplitudes and separations
dependent on the sky position and polarization of the source; the effect on high-frequency chirping
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Figure 1: Time-Delay Interferometry (TDI). LISA-like detectors measure GWs by transmitting laser light
between three spacecraft in triangular configuration, and comparing the optical phase of the incident lasers
against reference lasers on each spacecraft. To avoid extreme requirements on laser-frequency stability over
the course of the many seconds required for transmission around the triangle, data analysts will generate
time-delayed linear combinations of the phase comparisons; the combinations simulate nearly equal-delay
optical paths around the sides of the triangle, and (much like an equal-arm Michelson interferometer) they
suppress laser frequency noise. Many such combinations, including those depicted here, are possible, but
altogether they comprise at most three independent gravitational-wave observables. Image reproduced by
permission from [447], copyright by APS.

signals is more subtle, but still present. This further complicates data analysis, and introduces an
independent mechanism (a triangulation of sorts) to localize GW sources of short duration and
high frequency.

Third, LISA is in effect three detectors in one: this can be understood most easily by considering
that subsets of the three LISA arms form three separate Michelson-like interferometers (known in
LISA lingo as X, Y, and Z) at 120° angles. More formally, the LISA interferometric measurements
can be combined into many different TDI observables (see Figure 1), some resembling actual optical
setups, others quite exotic [447], although at most three observables are independent in the sense
that any other observable can be reconstructed by time-delaying and summing a generic basis of
three observables [452]. Furthermore, such a basis can be chosen so that its components have
uncorrelated noises, much like widely separated ground-based detectors [369]. One of these must
correspond, in effect, to X +Y + 7, and by symmetry it must be relatively insensitive to GWs in the
long-wavelength limit, providing for an independent measurement of a combination of instrument
noises.

3.2 LISA-like observatories

The mission-concept studies ran in 2011-2012 by ESA [20] and NASA [215] embrace several
approaches to limiting cost.

Reducing mass is a broadly useful strategy, because it allows for launch on smaller, cheaper
rockets, and because mass has been shown to be a good proxy for mission complexity, and therefore
implementation cost. ESA’s NGO design envisages interferometric links along two arms rather than
LISA’s three, resulting in an asymmetric configuration with one full and two “half” spacecraft. As
a consequence, only one TDI observable can be formed, eliminating the capability of measuring
two combinations of GW polarizations simultaneously.

Propellant may be saved by placing the spacecraft closer together (with arms ~ 1-3 Mkm
rather than 5 Mkm) and closer to Earth. At low frequencies, the effect of shorter armlengths is to
reduce the response to GWs proportionally; for the same test-mass noise, sensitivity then decreases
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by the same ratio. At high frequencies, the laser power available for position measurement increases
as L2, since beams are broadly defocused at millions of kms, improving shot noise, but not other
optical noises, by a factor L=! (in rms). As a consequence, the sweet spot of the LISA sensitivity
shifts to higher frequencies, although one may instead plan for a less powerful laser, for further
cost savings. Spacecraft orbits that are different than LISA’s, such as geocentric options, or flat
configurations that lie in the ecliptic plane would also alter GW-signal modulations, and therefore
parameter-estimation performance. The NASA report examines such effects briefly [215].

Reducing mission duration also saves money, because it reduces the cost of supporting the
mission from the ground, and it allows for shorter “warranties” on the various subsystems. Con-
versely, missions are made cheaper by accepting more risk of failure or underperformance, since
risk is “retired” by extensive testing and by introducing component redundancy, both of which are
expensive. The NASA study also explored replacing LISA’s custom subsystems with variants al-
ready flown on other missions (as in OMEGA [229]), or eliminating some of them altogether (as in
LAGRANGE [304]). However, the significant performance hit and additional risk incurred by such
steps is not matched by correspondingly major savings, because the main cost driver for LISA-like
missions is the necessity of launching and flying three (or more) independent spacecraft. Switching
to atom interferometry would make for very different mission architectures, but the NASA study
finds that an atom-interferometer mission would face many of the same cost-driving constraints as
a laser-interferometer mission [215, 43].

Indeed, the overarching conclusion of the NASA study is that no technology can provide dra-
matic cost reductions, and that scientific performance decreases far more rapidly than cost. Thus,
“staying the course” and pursuing a modestly descoped LISA-like design, whenever programs and
budgets will allow it, may yet be the most promising strategy for GW detection in space.

3.3 Mid-frequency space-based observatories

The DECi-hertz Interferometer Gravitational wave Observatory (DECIGO [408, 256, 257]) is a
proposed Japanese mission that would observe GWs at frequencies between 1 mHz and 100 Hz,
reaching its best (h ~ 1072%) sensitivity between 0.1 and 10 Hz, and thus bridging the gap between
LISA-like and ground-based detectors. Prior to DECIGO, the possibility of observing GWs in the
decihertz band had been studied in the context of a possible follow-up to LISA, the Big Bang
Observer (BBO [357, 135, 138]).

The final DECIGO configuration (2024+) envisages four clusters in an Earth-like solar orbit,
each cluster consisting of three drag-free spacecraft in a triangle with 1000-km arms. GWs are
measured by operating the arms as a Fabry—Pérot interferometer, which requires keeping the arm-
lengths constant, in analogy to ground-based interferometers and in contrast to LISA’s transpond-
ing scheme. DECIGO’s test masses are 100 kg mirrors, and its lasers have 10 W power. The
roadmap toward DECIGO includes two pathfinders: the single-spacecraft DECIGO Pathfinder [23]
consists of a 30 cm Fabry-Pérot cavity, and it could detect binaries of 103 —10° M, black holes if
they exist near the galaxy [480]; next, pre-DECIGO [257] would demonstrate the DECIGO mea-
surement with three spacecraft and modest optical parameters, resulting in a sensitivity 10-100
times worse than one of the final DECIGO clusters.

The DECIGO science objectives [257] include measuring the GW stochastic background from
“standard” inflation (with sensitivity down to Qgr ~ 2 x 1071%), and determining the thermal
history of the universe between the end of inflation and nucleosynthesis [325, 274]; searching for
hypothesized primordial black holes [390]; characterizing dark energy by using neutron-star binaries
as standard candles (either with host redshifts [333], or by the effect of cosmic expansion on the
inspiral phasing [408, 334]); illuminating the formation of massive galactic black holes by observing
the coalescences of intermediate-mass (10% —10* M) systems; constraining the structure of neutron
stars by measuring their masses (in upwards of 100000 detections per year); and even searching
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