
FULL PAPER Public Health

Real time detection of farm-level swine mycobacteriosis outbreak using time series 
modeling of the number of condemned intestines in abattoirs

Yasumoto ADACHI1)** and Kohei MAKITA2)*

1)Higashi-Mokoto Meat Inspection Center, Okhotsk Sub-Prefectural Bureau, Hokkaido Prefectural Government, 72–1 Chigusa,  
Higashi-Mokoto, Ozora Town, Abashiri-Gun, Hokkaido 099–3231, Japan

2)Veterinary Epidemiology Unit, Division of Health and Environmental Sciences, Department of Veterinary Medicine, School of 
Veterinary Medicine, Rakuno Gakuen University, 583 Bunkyodai Midorimachi, Ebetsu, Hokkaido 069–8501, Japan

(Received 19 December 2014/Accepted 9 April 2015/Published online in J-STAGE 24 April 2015)

ABSTRACT. Mycobacteriosis in swine is a common zoonosis found in abattoirs during meat inspections, and the veterinary authority is 
expected to inform the producer for corrective actions when an outbreak is detected. The expected value of the number of condemned 
carcasses due to mycobacteriosis therefore would be a useful threshold to detect an outbreak, and the present study aims to develop such 
an expected value through time series modeling. The model was developed using eight years of inspection data (2003 to 2010) obtained 
at 2 abattoirs of the Higashi-Mokoto Meat Inspection Center, Japan. The resulting model was validated by comparing the predicted time-
dependent values for the subsequent 2 years with the actual data for 2 years between 2011 and 2012. For the modeling, at first, periodicities 
were checked using Fast Fourier Transformation, and the ensemble average profiles for weekly periodicities were calculated. An Auto-
Regressive Integrated Moving Average (ARIMA) model was fitted to the residual of the ensemble average on the basis of minimum 
Akaike’s information criterion (AIC). The sum of the ARIMA model and the weekly ensemble average was regarded as the time-dependent 
expected value. During 2011 and 2012, the number of whole or partial condemned carcasses exceeded the 95% confidence interval of the 
predicted values 20 times. All of these events were associated with the slaughtering of pigs from three producers with the highest rate of 
condemnation due to mycobacteriosis.
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Mycobacterium avium-intracellulare Complex (MAIC) is 
a common pathogen that, like M. tuberculosis, causes tuber-
culosis in humans and opportunistic infections in those suf-
fering from acquired immune deficiency syndrome (AIDS) 
[7, 15, 30]. Mycobacteriosis in swine caused by MAIC is 
a chronic infectious disease, which presents as caseous ne-
crosis in submandibular lymph nodes and mesenteric lymph 
nodes. In swine, the most common lesion is the one found 
in mesenteric lymph node [32]. Mycobacteriosis is the only 
known disease that forms caseous necrosis in animals and 
humans. Japanese meat inspection service follows the state-
ments of a manual [20]: ‘a caseous necrosis suggests my-
cobacteriosis’, and it regards such case as mycobacteriosis 
without further microbiological examinations. Intestines are 
condemned when the caseous necrosis is a single lesion, and 

whole carcasses are condemned when the systemic infection 
is found, causing a significant economic burden for the pig 
producer.

The abattoir condemnation data at the Higashi-Mokoto 
Inspection Center (hereafter “abattoir data”) are stored as 
electronic data, which is fed back to each producer monthly 
upon request. In addition to this feedback, the pig producer 
also receives notification when mycobacteriosis is observed. 
As swine mycobacteriosis occurs sporadically throughout 
the year, it is not easy to distinguish an outbreak from spo-
radic cases on the basis of either daily raw abattoir data or 
monthly aggregated data. Therefore, a rational framework is 
needed to distinguish between sporadic cases and outbreaks. 
However, such a framework has not been successfully devel-
oped or applied in any country.

In this study, we used time series analysis in an attempt 
to design a mycobacteriosis prediction model. Time series 
analysis is a method that is used to analyze sequential data 
with equally spaced measurements in time (hereafter “time 
series data”) and is performed by fitting of the data to various 
models. The Auto-Regressive Integrated Moving Average 
(ARIMA) model [5], one method that is frequently used for 
time series analysis, can be used to describe a wide variety of 
behaviors for time series data using relatively simple expres-
sions and thus has been used in a range of studies.

In order to fit an ARIMA model, the time series data pre-
sented for anlaysis must be stationary, without a trend or a 
cyclical fluctuation. To eliminate both trend and periodicity, 
Brockwell et al. proposed three methods, as follows: (i) esti-
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mating a trend along with cyclical components and subtract-
ing both of them from the original data; (ii) introducing the 
lag-d differencing (where d is the interval of the periodicity) 
and (iii) fitting a sum of harmonics and a polynomial trend [6].

ARIMA modeling is widely used in a range of natural 
sciences, including biomedicine and public health [24, 33]. 
In the field of public health, ARIMA models are used to 
describe and forecast the incidence of infectious diseases, 
such as campylobacteriosis [3], severe acute respiratory syn-
drome (SARS) [11], hemorrhagic fever with renal syndrome 
(HFRS) [18], cholera [2], onchocerciasis [17], influenza 
[25], malaria [31] and dengue fever [4], and even the number 
of patients visiting emergency departments [23, 26]. More-
over, such models are applied in detecting bioterrorism [23] 
or food poisoning of unknown source [3] by observing the 
excess of the case numbers over the confidence interval of 
expected numbers (i.e., as predicted by the model). Although 
time series analysis has been widely used in public health, 
such analysis has not been applied frequently to abattoir 
data. To our knowledge, such modeling is represented by 2 
published studies. Neumann et al. performed a retrospective 
analysis of abattoir data in the New Zealand pig industry 
using the ARIMA model [22]. Vial et al. performed a retro-
spective analysis of Swiss slaughterhouse data using a GAM 
model [29].

The present study attempted to use the ARIMA model to 
distinguish mycobacteriosis outbreaks at the farm level from 
sporadic cases. Temporal cyclical components in abattoir 
data were estimated to calculate weekly ensemble average, 
and the residuals after subtracting the temporal cyclical com-
ponents were fitted to an ARIMA model. Subsequently, we 
estimated the time-dependent expected values by summing 
up the cyclic components and the ARIMA model. Finally, 
we compared the actual data observed after the period used 
for model fitting and the 95% confidence interval of the ex-
pected values predicted by the model in an attempt to detect 
outbreaks at the farm level. The methodology used in the 
present study can be applied not only to swine mycobacte-
riosis but also to other diseases detected in veterinary meat 
inspection.

MATERIALS AND METHODS

Study area and data collection: The Higashi-Mokoto 
Meat Inspection Center is located in Abashiri-Gun, Hok-
kaido, Japan, and has 2 abattoirs, which receive 150,000 
to 200,000 pigs annually for slaughtering, mainly from the 
eastern Hokkaido. At this facility, pig carcasses are inspected 
by gross pathological examination, and the carcasses harbor-
ing intestines with nodular caseous necrosis are diagnosed 
with swine mycobacteriosis.

In this study, we used the data from both abattoirs within 
jurisdiction of the Higashi-Mokoto Meat Inspection Center, 
as collected from April 1, 2003, to May 27, 2013. The num-
ber of condemned intestines due to mycobacteriosis in swine 
(hereafter “observed data”) and the names and townships of 
the corresponding producers were used to identify the farms 
with high incidences of swine mycobacteriosis; these pro-

ducers were informed of potential outbreaks as part of the 
Meat Inspection Center’s mandate.

The numbers of the observed data (dates of operation) 
used for the analysis consisted of 1,922 days over roughly 
8 years as a training period for the model and 788 days 
(roughly 2 years) as a validation period for the model.

Analysis of periodicity: In order to understand the period-
icity of the number of condemned carcasses, we performed 
Fast Fourier Transform (FFT) [28] to calculate a periodo-
gram from the observed data obtained during the training 
period. As the observed data do not include non-operating 
days and are not completely serial, FFT could not be per-
formed on the raw primary data. Therefore, we pretreated 
data before FFT as follows: (i) connecting observed data 
of weekdays without weekends and (ii) replacing missing 
data on non-operating weekdays with the medians of each 
day of the week as dummy values, such that-5-day intervals 
constituted a nominal week. The variation in the number of 
condemned intestines among days of the week was assessed 
using a generalized linear model (GLM) with quasi-Poisson 
errors. All the statistics in the present study were performed 
using statistic software R (version 3.0.1).

Estimation of ARIMA model: For the estimation of the 
ARIMA model, week ensemble averages were subtracted 
from observed data for each date of the weeks, and the 
residuals including missing values were used. Three main 
parameters need to be selected when fitting an ARIMA 
model: the orders of autoregressive (AR), differencing or 
integration (I), and moving average (MA). Autoregressive 
terms relate the the observation made at time t in the series 
to the observation made at time t-1, or to the observation 
made at t-2 and so on. Moving average terms relate the er-
ror (difference between observation and estimated value) at 
time t to the error at times t-1, t-2, etc. If the time series data 
contain a stochastic trend (that is, if the data contain a unit 
root), differencing is performed to eliminate the trend and to 
obtain a stationary process. The introduction of the principle 
of ARIMA model is described briefly by Trottier et al. [27], 
and the detailed introduction to this method is available in 
the textbook by Brockwell et al. [6]. We examined unit roots 
in residual data by using the Augmented Dickey Fuller-test 
(ADF test) [8, 9]. These coefficients of the ARIMA model 
were estimated using the Arima function in R [13] by moni-
toring Akaike’s information criterion (AIC). The estimation 
used data obtained between April 2003 and March 2011 and 
was performed under the conditions of AR (p) with 0≤p≤ 
5 and MA (q) with 0≤q≤5. Since the ensemble average 
with overall mean was subtracted according to Brockwell’s 
method, the estimation was performed without a constant 
term. At the same time, we compared both conditions with 
and without drift on the basis of the AIC.

The ARIMA model selected based on the AIC was 
checked using the Ljung-Box test [19] to ensure that the re-
siduals were independent and temporally equally distributed 
over time. Furthermore, the significance of the coefficients 
and the stationarity of AR (p) process were tested. The t val-
ues, calculated by dividing the coefficients by the standard 
errors, were used to perform t-tests for the significance of 
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the coefficients. The stationarity was checked by calculating 
the roots for the characteristic polynomial using the poly-
root function in R [14], confirming that the nontrivial roots 
(expressed as absolute values) were greater than 1. Finally, 
for the examinations of possible temporal effects other than 
week periodicity (see Results), the remaining residuals were 
tested using the autocorrelation function (ACF) and partial 
autocorrelation function (PACF) [6], using missing-data-
omitted residuals.

Prediction of the expected condemned number of swine 
intestines: The model generated as described above was used 
to calculate the expected values and the confidence intervals 
for the interval between April 2011 and May 2013; valida-
tion was performed by comparing the resulting values with 
the observed data for the same interval. The expected value 
of the condemned number for the specific day was calculated 
by summing the ensemble average of the week and the ARI-
MA-predicted value of the day. The 95% confidence interval 
of each future day was calculated in the same manner. When 
the actual number of whole or partially condemned carcasses 
in the observed data exceeded the expected value, the pro-
ducers who sold the condemned carcasses were identified 
and the annual rate of condemnation by Japanese fiscal year 
(April to March) was calculated.

Test of the robustness of the model: The ARIMA model 
predicts the next day’s value (for each day) using the records 
of the past several days, with the duration determined by the 
larger order of AR or MA. Therefore, there arises a criti-
cal question: how sensitive is the model to the very recent 
condemned numbers of carcasses used for the prediction? 
In order to prove the robustness of the model, we replaced 
the last actual condemned numbers of the training phase (de-

termined by either AR or MA) with an equal number of the 
numbers generated randomly as follows. The numbers were 
drawn from a Poisson distribution with the shape parameter 
lambda (λ) of the 8-year observed data at the training phase 
and were subtracted by week ensemble average. We then re-
fitted the ARIMA model for the updated AR and MA based 
on the least AIC. Then, the differences in deviance between 
the 2 predicted models (model 1: predicted by using en-
semble average-subtracted actual observed data and model 
2: the last few days of the training phase were replaced with 
randomly generated numbers as stated above) at the valida-

Fig. 1. A periodogram of pretreated data with only week-days. X-
axis shows weeks, and the highest peak corresponds to weekly pe-
riodicity. The line at upper right corner represents 95% confidence 
interval.

Fig. 2. Box plot showing daily number of condemned swine intes-
tines.

Fig. 3. Box plot showing the rate of condemnation per day.
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tion phase were tested for significance at a level of P<0.05 
using chi-squared statistics. The statistical processing was 
performed for 100 iterations.

RESULTS

Analysis of periodicity: The periodograms calculated by 
FFT show the local maximum value at the 1-week cycle 
(Fig. 1). The number of data points replaced with the medi-
ans of the week of a day as dummy values was 145.

Table 1 shows the numbers of pig slaughtered, average 
number of pigs slaughtered in each operating day with 2.5 
and 97.5 percentiles, rate of condemnation due to mycobac-
teriosis and mean daily number of condemnation estimated 
in GLMs with quasi-Poisson errors (dispersion parameter 
7.1) with P-values for each day of a week. The average num-
bers of intestines condemned on each day of a week were 
used in the modeling as week ensemble averages.

Figures 2 and 3 show box plots of the daily numbers of 
condemned intestines and the rates of condemnation per day, 
respectively, for the presentation of the variations. Although 
the daily number of pigs slaughtered was consistent (Table 
1), the daily number of condemned intestines differed ac-
cording to the day of a week (Table 1, Fig. 2). The number 
of condemned intestines was highest on Mondays, followed 
by Tuesdays. When sub-set of the data consisting of the days 
which exceeded the average condemnation rate (0.485%) 
was examined, a similar temporal pattern in the number of 
days exceeded, and the daily number of condemned intes-

tines among the days of a week was observed (Table 2).
Table 3 shows total number of producers, total days and 

mean daily number of producers brought pigs between 
April 1, 2003 and March 31, 2011. The 95% confidence 
limit overlapped between Monday and Friday, and no obvi-
ous clustering in the number of producers in particular day 
of a week. Figure 4 shows the frequency of the producers 
brought pigs according to the annual number of pigs sold. 
The median number of pigs brought by a producer in a year 
was 365.6, and the mean was 1,717.0. The majority of pro-
ducers brought less than 500 heads per year.

Estimation of ARIMA model: The ADF test rejected the 
null hypothesis of a unit root. Thus, the order of differencing 
or integration (I) was identified as zero. As the result of the 
estimation on the basis of least AIC, we selected ARIMA (3, 
0, 4) with the mean zero. The result of the Ljung-Box test 
(P<0.05) showed that the residuals were independent and 
evenly distributed over time. The t-tests for significance of 
coefficients showed that the coefficients of all the options of 

Table 2. The variation of condemnation rate among the days 
exceeded the overall average condemnation rate

Day of the week The number of days Daily number of 
condemnation

Monday 207 11.3 (4.0–28.7)
Tuesday 134 9.7 (3.0–27.0)
Wednesday 56 7.7 (3.4–24.8)
Thursday 81 8.5 (3.0–21.0)
Friday 111 7.4 (3.0–18.5)
Saturday 6 7.8 (4.1–16.6)
Sunday 0 0

Fig. 4. Frequency of the producers brought pigs according to the 
annual number of pigs sold between April 1, 2003 and March 31, 
2011.

Table 1. The variation in the condemnation of intestine by day of a week between April 1, 2003 and March 31, 2001

Day of the week Pigs slaughtered Average number of pigs 
slaughtered in operating daysa)

Rate of condemnation 
per 1000

Condemned 
per dayb)

Significantly different 
Combinationsb)

Monday 267,000 640 (578–912) 9.5 7.1 Tu, W, Th, F
Tuesday 257,000 650 (515–872) 5.9 3.8 M, W, Th, F
Wednesday 293,000 740 (572–915) 2.2 1.6 M, Tu, Th, F
Thursday 276,000 696 (543–878) 3.3 2.3 M, Tu, W
Friday 267,000 674 (502–851) 4 2.7 M, Tu, W
Saturday 23,000 525 (400–620) 2.3 1.2 M, Tu, F
Sunday 1,000 277 (230–322) 0 <0.01 -
Total 1,385,000 4.8

a) The values in parentheses are 2.5 and 97.5 percentiles. b) Estimates and P-values are based on GLMs. M: Monday, T: Tuesday, W: 
Wednesday, Th: Thursday, F: Friday.
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AR: 1–3 and MR: 1–4 were significantly different from zero 
(Table 4).

Moreover, the roots for the characteristic polynomial 
were greater than 1, thus confirming the stationarity of the 
ARIMA model. The ACF and PACF plots of the residuals 
of the week-ensemble-average-deducted ARIMA model did 
not show any other peaks and were regarded as white noise 
(Fig. 5a and 5b).

Prediction of the expected condemned number of swine 
intestines: The number of days when the actual number of 
condemned intestines exceeded the upper limit of the 95% 
confidence interval was three in fiscal year 2011 and 17 in 
fiscal year 2012 (Figs. 6 and 7). Because the lower limit 

of the 95% confidence intervals falls below zero, they are 
not indicated in these figures. The minimum, median and 
maximum numbers of daily condemned intestines of these 
20 days were 13, 18.5 and 49, respectively; these values 
exceeded the overall mean number (which was 2.05) for fis-
cal years 2011 and 2012. Total number of days, minimum, 
median and maximum, and the annual rates of condemnation 
of the three producers indicated in using the upper limit (UL) 
of the 95% confidence interval are indicated in Table 5.

On the days on which the confidence interval was exceed-
ed, the suppliers of pigs slaughtered at the abattoirs included 
at least one of the three producers with the highest annual 
rates of condemnation due to mycobacteriosis for the respec-

Table 3. The variation in the number of producers brought pigs by day of a week 
between April 1, 2003 and March 31, 2011

Day of a week Total number of producers 
brought pigs

Total days 
brought pigs

Daily number of pro-
ducers brought pigs*

Monday 6,711 357 18.8 (13–25)
Tuesday 5,237 396 13.2 (6–24)
Wednesday 6,144 396 15.5 (9–23)
Thursday 6,349 397 16 (9–24)
Friday 6,589 397 16.6 (10–23)
Saturday 283 44 6.4 (3–12)
Sunday 4 2 2.0 (0–3)

*The values in parentheses are 2.5 and 97.5 percentiles.

Table 4. Statistics of the parameters selected in the ARIMA (3, 0, 4) model

Parameter Coefficient Standard error t-statistics P-value
AR (1) 1.44 0.026 54.8 <0.001
AR (2) –1.37 0.042 –32.4 <0.001
AR (3) 0.91 0.025 36.8 <0.001
MA (1) –1.52 0.033 –45.5 <0.001
MA (2) 1.51 0.05 30.2 <0.001
MA (3) –1.07 0.038 –28.2 <0.001
MA (4) 0.18 0.023 7.6 <0.001

AR: Auto-regressive; MA: Moving average.

Fig. 5. ACF (a) and PACF (b) of the residuals of data subtracting a week average ensemble. 
X-axis shows lag day, and Y-axis shows correlation coefficient. The residuals are distributed 
randomly over lag.
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tive fiscal year. The annual rates of condemnation of these 
producers were 8.1%, 10.0% and 13.6% (fiscal year 2011), 
and 23.1%, 30.5% and 32.9% (fiscal year 2012). Therefore, 
farm-level outbreaks of mycobacteriosis in these producers 
were highly suspected, given the fact that annual overall 
rates were less than 1% at the Higashimokoto Meat Inspec-
tion Center. One producer with high annual condemnation 
rates was represented in the top 3 in both fiscal years.

Test of the robustness of the model: The fitted ARIMA 
model was ARIMA (3, 0, 4), meaning that the number of 
days used to feed the model was selected as the larger order 
of AR (3) or MA (4). Thus, the last 4 values of the observed 
data during the training period were used to calculate the 
first expected value in the validation period. Therefore, these 
values were replaced with the randomly generated values 
from a Poisson distribution with a λ of 3.37. Out of the result 
of the estimations of ARIMA model using replaced data 
for 100 iterations, ARIMA (3, 0, 4) was selected 99 times, 
and ARIMA (4, 0, 3) was selected once on the basis of least 

AIC. Consequently, it became clear that the ARIMA (3, 0, 
4) model was appropriate for the next step. As the results 
of the repetition of χ2 test (df=4) to examine the difference 
between deviances for 100 iterations, the statistical signifi-
cance (P<0.05) was not shown for 99 times and was shown 
once. We concluded that the ARIMA (3, 0, 4) model was 
statistically robust for data analysis.

DISCUSSION

This study attempted to perform time series analysis of ab-
attoir data to distinguish outbreaks of mycobacteriosis from 
sporadic cases. Although the prevalence at the animal level 
is quite low as it was shown in the results, sporadic cases of 
swine mycobacteriosis occur commonly at the farm level. 
Morita et al. reported that sporadic infections of MAIC were 
detected in 870 of 1,200 piggeries (72.5%) between 1988 
and 1990 at a slaughterhouse in Gunma Prefecture, Japan 
[21]. Distinguishing the outbreaks from sporadic cases based 
on daily raw abattoir data is therefore not easy; however, a 
time series analysis in this study demonstrated the feasibil-
ity of its practical application in the real-time detection. The 
detection of the outbreaks is important, because of the public 
health impact to consumers and economic impact to produc-
ers of the disease, as stated in the introduction. Komijn et 
al. suggested that pigs may be an important vehicle for M. 
avium infections in humans [16]. Real-time detection of the 

Fig. 6. The observed condemned numbers of swine intestines due to 
mycobacteriosis and 95% confidence interval of values predicted 
by the ARIMA model. A detection of exceeded number of condem-
nation was based on the expected value produced by the model, not 
on an optical judgment of the figure.

Fig. 7. The enlarged view of Fig. 6 for the interval between April 
2011 and May 2013.

Table 5. The condemnation rate of the three producers detected by the model

Fiscal year Rank ID Annual rateb) Minb) Medianb) Maxb) Days of salesa)

2011
1 P 13.6% 0.0% 0.0% 77.3% 45
2 Qc) 10.0% 0.0% 0.0% 50.0% 49
3 R 8.0% 0.0% 0.0% 53.8% 24

2012
1 S 32.9% 32.9% 32.9% 32.9% 1
2 Qc) 30.5% 0.0% 23.5% 89.5% 49
3 T 23.1% 0.0% 24.0% 49.0% 13

a) The total number of days when these producers brought pigs. b) The rates of condemnation.  
c) Producer “Q” in 2011 and 2012 is the same producer.
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outbreak at the farm level can minimize public health risks 
by careful detection of the rest of the carcasses of the day 
and can help the responsible producer to improve farm hy-
giene immediately. Such collaborative effort between meat 
inspection and livestock hygiene service would be effective 
in controlling zoonotic diseases [1].

Although this study dealt with only one disease, swine 
mycobacteriosis, such an analytical method potentially can 
be applied to many other diseases of concern in food animals, 
permitting detection of outbreaks at the production level.

In the present study, we were able to identify the producers 
with elevated condemnation rates of diseased pigs brought 
into the abattoirs, specifically noting when the number of 
daily condemned intestines exceeded the upper limit of a 
95% confidence interval. These outlying events presumably 
correspond to outbreaks in the respective source farms im-
mediately on the day of inspection. Similar temporal patterns 
in the daily number of condemned intestines among the days 
of a week seen in both the whole dataset between 2003 and 
2011, and the days which exceeded the average condemna-
tion rate also supported the validity of this time series mod-
eling. Traditionally, the statistical processing for abattoir 
data in Japan has been used only to calculate monthly and 
annual total incidences. Hence, by the traditional statistical 
analysis, outbreaks of diseases might not be recognized until 
total slaughter numbers were obtained, causing a lag in the 
potential detection of non-sporadic events. Therefore, the 
application of time series analysis, as used in this study, may 
accelerate the rapid detection of outbreaks.

While this study demonstrated the above-stated strengths, 
our analysis has three limitations. First, sensitivity and 
specificity in diagnosis of mycobacteriosis are not taken into 
account. The meat inspection for mycobacteriosis in swine 
intestines is based on visual examination, and misdiagnosis 
may happen. However, restrictions in expense and time pre-
cluded our investigation of the sensitivity and the specificity 
of the histopathology examinations. In fact, unless molecular 
technology is used, classical tests would miss some infec-
tions. A study using 239 lymph nodes from pig carcasses 
with caseous lesions showed sensitivity of 79.1% by Ziel-
Neelsen stain (189 positive) and 69.5% by culture [16], and 
the kappa value (agreement) of these tests, calculated from 
the published data, was 0.016, which is interpreted to be 
slight agreement [10]. Second, a separate (though related) 
limitation is that the present study selected the number of 
condemned intestines in abattoirs due to mycobacteriosis 
as an objective variable. The prevalence rate among pigs 
slaughtered on a given day might be better variable for mod-
eling to identify suspected outbreaks accurately, as disease 
is a binary response [12]. However, mycobacteriosis is a 
rare disease with low annual condemned rate (0.36% in fis-
cal year 2012), which makes the data heavily zero-inflated 
and over-dispersed. Third, the present model does not take 
background farm size into account in detecting outbreak of 
mycobacteriosis. There is a concern that the model may miss 
an outbreak of a small-scale farm, and on the other hand, 
it may be so sensitive against prevalence of the disease in 
large-scale farm that even sporadic cases may be detected. 

However, as Fig. 6 showed, the level of detection is low 
enough to detect outbreak even in the small-scale farms. 
Moreover, large-scale farms have multiple production units, 
and outbreaks can occur within a unit. Thus, the present 
model can detect such outbreaks at a sale to slaughterhouse, 
and we think this would not be a notable limitation.

The periodogram showed the weekly periodicity of the 
condemned number in this study. Specifically, the period-
icity was indicated by the result of FFT without data for 
non-operating days, and high condemnation numbers were 
observed on Mondays (Table 1, Fig. 2), This weekly peri-
odicity was not caused by the periodicity in the number of 
swine submitted for slaughter, as no particular day-specific 
pattern was detected in the number of swine brought to the 
abattoirs (Table 1). We hypothesize that the producers with 
high mycobacteriosis prevalence rates tended to bring swine 
to the abattoirs for slaughter on one specific day of the week 
(Monday). However, specific (individual) producers bring-
ing infected swine for slaughter on Mondays in multiple 
weeks responsible for the increase were not able to be con-
firmed (data not shown), and the actual cause of the pattern 
remains uncertain.

The ARIMA model uses the last several values in time 
series data to predict the first subsequent expected value and 
assigning the expected values sequentially to predict the 
second subsequent expected value and so on. Therefore, we 
evaluated the effect of statistical randomness in these last 
several values by assessing the results for robustness. As a 
result, replacement of last several actual numbers with ran-
dom numbers did not affect the model significantly, which in 
turn proved that the model takes preceded long term infor-
mation into account well enough.

In conclusion, although there are limitations, time series 
analysis appears to be useful in rapid detection of potential 
outbreaks of swine mycobacteriosis. In Higashi-Mokoto 
Meat Inspection Center, this time-series model has been de-
veloped further into user-friendly system on EXCEL fed by 
R-programing model and just has been applied in daily meat 
inspection service. This method can be applied to the other 
zoonotic food-borne diseases, thereby promoting increased 
food safety.
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