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Adrenomedullin, an Autocrine Mediator of Blood-Brain
Barrier Function
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Since the discovery that adrenomedullin gene expression is 20- to 40-fold higher in endothelial cells than

even in the adrenal medulla, this peptide has been regarded as an important secretory product of the vascu-

lar endothelium, together with nitric oxide, eicosanoids, endothelin-1, and other vasoactive metabolites.

Cerebral endothelial cells secrete an exceptionally large amount of adrenomedullin, and the adrenomedullin

concentration is about 50% higher in the cerebral circulation than in the peripheral vasculature. The

adrenomedullin production of cerebral endothelial cells is induced by astrocyte-derived factors.

Adrenomedullin causes vasodilation in the cerebral circulation, may participate in the maintenance of the

resting cerebral blood flow, and may be protective against ischemic brain injury. Recent data from our labo-

ratory indicate that adrenomedullin, as an endothelium-derived autocrine/paracrine hormone, plays an im-

portant role in the regulation of specific blood-brain barrier properties. Adrenomedullin is suggested to be

one of the physiological links between astrocyte-derived factors, cyclic adenosine 3′,5′-monophosphate

(cAMP), and the induction and maintenance of the blood-brain barrier. Moreover, the role of adrenomedullin

in the differentiation and proliferation of endothelial cells and in angiogenesis suggests a more complex

function for adrenomedullin in the cerebral circulation and in the development of the blood-brain barrier.
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product of the vascular endothelium, together with nitric ox-
ide (NO), endothelin-1, and other vasoactive metabolites.

Among the endothelial cells of different tissues, the en-
dothelium of the brain is highly specific. Although cerebral
endothelial cells (CECs) share many common properties of
the peripheral endothelium (4), they have a unique morpho-
logical and functional feature, the formation of the blood-
brain barrier (BBB). The BBB contributes to the stability of
the brain parenchymal microenvironment by strictly control-
ling the traffic of molecules and cells between the blood and

Introduction

Adrenomedullin (AM) was originally isolated from human
pheochromocytoma, and the initial reports suggested that the
adrenal medulla, ventricle, kidney and lung have the highest
levels of expression of AM mRNA (1, 2). However, since
the discovery that the AM gene expression is 20- to 40-fold
higher in endothelial cells than even in the adrenal medulla
(3), this peptide has been regarded as an important secretory



the central nervous system (4, 5). Recently we described that
the AM production of CECs is about one magnitude higher
than that of other endothelial cells (6). We also found that
the AM concentration in the cerebral circulation is signifi-
cantly higher than that in other tested parts of the circulation
(6). Moreover, AM has some important functions in the reg-
ulation of the BBB (7). In this review, we describe current
knowledge about the possible role of AM in the cerebral cir-
culation, with a focus on CECs and the BBB.

The Blood-Brain Barrier—An Overview

The BBB is a functional unit of cells forming a dynamic in-
terface between blood and the central nervous system (4) and
its primary role is to provide special ionic homeostasis for
the proper functioning of neural synapses. Tight intercellular
junctions between CECs restrict the free passage of mol-
ecules and cells from blood to the central nervous system.
Glial endfeet cover brain microvessels and capillaries, and
both CECs and astrocytes interact with pericytes embedded
in the capillary basement membrane, with perivascular mi-
croglia and with neurons innervating the cerebral microves-
sels.

Cells of the cerebral endothelium, like other endothelial
cells, produce pro- and anticoagulant proteins (for review see
Ref. 4) as well as vasoactive mediators such as endothelin-1
(8), NO (9), angiotensin peptides (10), AM (6), and
eicosanoids (11, 12). Endothelial scavenger receptors partici-
pate in the metabolism of low density lipoproteins (13).

To fulfill the barrier function, CECs, in addition to the
above-mentioned general endothelial features, have special,
epithelial characteristics which distinguish them from cells
of the peripheral endothelium (4). Tight intercellular junc-
tions limit paracellular flux, while the small number of
pinocytotic vesicles restricts transendothelial traffic of cells
and molecules. Accordingly, the electrical resistance of brain
capillaries in vivo can reach 2,000 Ω (14). Tight junctions 
also contribute to the polarity of CECs, i.e., different proteins
are expressed on the luminal (e.g., P-glycoprotein (15)) and
on the basal membrane (e.g., Na＋/K＋ATPase (16)).

To provide substrates to the cells of the nervous system,
CECs actively transport nutrients to the brain (see for re-
view: Ref. 17). Special transporter systems have also been
described in the brain endothelium, such as glucose trans-
porter-1 (18), amino acid transporters (19), or transferrin re-
ceptors (20).

Recently, efflux transporters have been discovered on
CECs; these transporters prevent toxic compounds from en-
tering the central nervous system, and eliminate and/or reg-
ulate the interstitial levels of mediators (see for review: Refs. 
21 and 22). The ligands of the adenosine triphosphate-binding
casette (ABC)-transporter P-glycoprotein are primarily xenobiotics
(15), while multidrug resistance proteins pump leukotrienes,
and gluthatione conjugated compounds to the blood, whereas
other BBB efflux pumps thus far identified help to eliminate

organic anions and organic acids (21, 22). Neurotransmitters
such as glutamate (23), serotonin (24), or histamine (25) also
have specific removal systems at the BBB.

Enzymes specific for the cerebral but not for the peripher-
al endothelium, such as γ-glutamyl transpeptidase, butyryl
choline and acetyl choline esterases, monoamine oxidases A
and B, and glutamate decarboxilase, participate in transport
processes and formation of the enzymatic BBB (see for re-
view: Ref. 4).

The BBB phenotype of CECs is induced by the astroglial
environment (26). Although the effects of neurons on the in-
duction of some specific CEC properties have been de-
scribed (for review see Ref. 27), the effect of astroglia on
CECs in vitro has been more extensively studied. Several
BBB parameters are upregulated when CECs are co-cultured
with astroglia or cultured in astrocyte-conditioned medium.
The expression and junctional localization of the tight junc-
tion proteins occludin, claudin-1, and ZO-1 are increased, as
are the number of tight junction strands (28) and the
transendothelial electrical resistance (17, 29, 30). Astroglia
also augment the expression and activity of specific BBB
transporters and enzymes (17, 29). The endothelial expres-
sion and activity of antioxidant enzymes such as manganese
superoxide dismutase are also induced by the astroglia (31).
Moreover, astrocytes can induce CECs to produce vasoac-
tive mediators such as NO (32) or adrenomedullin (6), 
and can induce the expression of vascular endothelial 
growth factor and angiopoietin receptors on CEC (33). De-
spite the large number of studies, the molecular mechanism
of astrocyte signalling to CECs, as well as the related mem-
brane interactions and/or secreted factors, is still an enigma
(5).

Brain endothelial cells also exert important effects on as-
troglia, such as induction of astrocyte differentiation, demon-
strating that there is cross-talk between the two neighboring
cell types (34). These results indicate that CECs and astro-
cytes form a functional unit during the development and
maintenance of the BBB.

AM Production in the Cerebral 
Microcirculation

The finding of the high AM production in peripheral en-
dothelial cells (3, 35) indicates that CECs are probably an
important source of AM in the cerebral microcirculation.
However, the initial report by Sugo et al. (3) did not support
this hypothesis: these authors found very low AM produc-
tion by cultured bovine CECs, which was only a few percent
of the AM production of rat aortic endothelial cells. More-
over, this observation about the low AM production of CECs
was recently supported by Ladoux and Frelin (36), who de-
scribed weak AM mRNA expression in clones of rat CECs
by Northern blot analysis. It should be mentioned, however,
that CECs passaged a large number of times (10–20 pas-
sages) in both studies (3, 36), which might have deteriorated
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the original phenotype of the primary cells (37–39).
In contrast to these experiments, we have recently found

unexpectedly high AM production in primary cultures of rat
CECs both at the peptide and at the mRNA levels (6). Rat
CECs had about one magnitude higher AM production than
those reported for other primary cells (for review see Ref.
40). Only the AM productions of Hs68 and NHLF human 
fibroblast cells (41) and T98G glioblastoma cells (42) were
close to that of rat CECs; however these are cell lines and
not primary cells. Thus the available data indicate that rat
CECs have the highest rates of AM synthesis and secretion
among the cells studied.

The high AM production of rat CECs was further en-
hanced by astrocyte-derived factors; significantly elevated
AM production was detected in the culture medium of pri-
mary rat CECs co-cultured with astrocytes or cultured in as-
trocyte-conditioned medium (6). These results suggest that
the in vivo AM production may be even higher. AM produc-
tion by rat CECs, however, could not be induced by cy-
tokines, bacterial lipopolysaccharide, or thrombin (6), which
are the most powerful inducers of AM release in peripheral
endothelial cells (35). Our studies also revealed that AM is
secreted primarily but not exclusively at the luminal (blood)
side of CEC monolayers (6). In contrast to AM, endothelin-
1, a vasoconstrictor peptide, is secreted mostly toward the
abluminal (brain) side of bovine CECs (43).

We could not detect AM immunoreactivity in brain mi-
crovessels (6), whereas Serrano et al. (44, 45) found only
small immunoreactive deposits in some cerebral capillaries.
The weak immunoreactivity in brain endothelial cells and 
the high, and time-dependently increased level of immunoreactive 
(ir)-AM in the culture medium (6) suggest that most of the
AM formed by rat CECs is immediately secreted, as is the
case in peripheral endothelial cells (3, 35), vascular smooth
muscle cells (46) and fibroblasts (41). These observations 
also suggest that immunochemistry may not be the optimal
method for studying AM production by the cerebral endothe-
lium.

In addition to the CECs, other cellular elements of the
cerebral vessels can produce AM, i.e. vascular smooth mus-
cle cells (3, 35), pericytes (6), or even astrocytes (6, 47) and
neurons (44, 48). All of the above-mentioned cells, however,
are on the brain side of the BBB, and thus their contribution
to the AM level measured in the cerebral circulation is ques-
tionable. AM production by both these cells and the choroid
plexus (49, 50) seems more likely to contribute to the AM
level of the cerebrospinal fluid (CSF). The AM concentration
in the CSF is comparable to (49) or lower than (51) that in
plasma, and it has been suggested that these two compart-
ments regulate AM level independently (51, 52).

In vivo, we found an approximately 50% higher AM con-
centration in the jugular vein than in the carotid artery (6).
We also found an approximately 50% higher AM concentra-
tion in the venous plasma effluxed from the brain than in the
venous plasma from peripheral organs (6). These observa-

tions strongly support our in vitro findings. Previously, no
significant difference was observed among ir-AM levels in
the venous blood from the kidney, lung, adrenal gland and
systemic arterial blood of rats (53). However, a significantly
lower concentration in the left ventricle and aorta compared
to venous side of circulation was reported in some studies
and it was also proved that the lung is the major site of AM
clearance in humans (54, 55).

We can conclude that the cerebral circulation has an ex-
ceptionally high AM concentration due to the significantly
elevated basal AM secretion by brain endothelial cells,
which is induced by astrocyte-derived factors.

AM Receptors in the Cerebral 
Microcirculation

When injected intravenously, AM acts predominantly in or-
gans in which the AM gene is highly expressed (56). This
observation suggests that AM is a local autocrine and/or
paracrine hormone (56) and that AM released by rat CECs
may act primarily on AM receptors present in the cerebral
endothelium itself and their neighboring cells.

Three receptors have been proposed to have specific AM-
binding properties: L1, which is a putative rat AM receptor
(57), and combinations of the calcitonin receptor-like recep-
tor (CRLR) with either receptor-activity modifying protein 2
(RAMP-2) or RAMP-3 (58). On the other hand, the combi-
nation of CRLR with RAMP-1 forms the calcitonin gene-re-
lated peptide receptor 1 (CGRP1) (58). It seems probable
that CRLR–RAMP-2 and CRLR–RAMP-3 compose func-
tional AM receptors, whereas the identity of both human
(59) and rat L1 (57) orphan receptors as AM receptors has
been questioned (60). We previously characterized the ex-
pression of CRLR and RAMP-1, -2, and -3 on isolated cere-
bral microvessels (61), rat CECs and rat cerebral pericytes
(6) by reverse transcriptase-polymerase chain reaction (RT-
PCR), and measured the intracellular cyclic adenosine 3′,5′-
monophosphate (cAMP) concentration after exogenous AM 
administration. RAMP-2 showed the highest expression, followed 
by RAMP-3 and RAMP-1, and exogenous AM increased the
intracellular cAMP concentration in rat CECs and pericytes,
suggesting the existence of functional AM receptors on these
cells (6). Although astrocyte-derived factors increased the 
AM production of rat CECs, they did not change the expression
of AM receptor components in rat CECs (6). Oliver et al.
(62) reported the same expression pattern of RAMPs in the
human cerebral vasculature.

There has been no previous publication describing each of
the known AM receptor components at the BBB. Moreno et
al. (63) demonstrated the expression of CRLR, as they called
the A-CGRP1 receptor, on human CECs, but they did not
check the expression of RAMPs. Ladoux and Frelin (36)
found variable expression of CRLR and RAMPs in 13 clones
of cultured rat CECs. However, no significant effect of AM
or CGRP on cAMP formation was found (36), indicating
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that these cloned rat CECs with high passage numbers had
no functional AM or CGRP receptors. The presence of spe-
cific AM receptors and of an AM-stimulated increase in the
level of cAMP in astrocytes has also been reported (64).

AM and BBB Functions

cAMP has long been known to contribute to the regulation
of BBB functions; for example, cAMP elevates
transendothelial electrical resistance and decreases paracellu-
lar permeability (5, 28, 30, 65), reduces the rate of fluid-
phase endocytosis (30), and increases P-glycoprotein func-
tion (66).

Activation of adenylate cyclase is a common consequence
of AM receptor activation in a wide variety of cells (56).
Cultured rat CECs secrete an exceptionally high amount of
AM (6), and both isolated cerebral microvessels (61) and
cultured rat CECs (6) express mRNA of functional AM re-
ceptor components and exhibit a dose-dependent increase in
cAMP concentration after administration of exogenous AM.
These results and the binding of AM to mouse cerebral cap-
illaries (67) suggest that AM plays a role at the BBB.

In a recent study, we provided evidence that AM has
cAMP-like effects on specific BBB functions in vitro (7).
Exogenous AM increased transendothelial electrical resis-
tance and reduced endothelial permeability for the low molec-
ular weight sodium fluorescein, which suggests a tightening
of intercellular junctions. AM also decreased endothelial flu-
id phase endocytosis and activated the P-glycoprotein efflux
pump in cultures of rat CECs (7). Treatment with both the
AM receptor antagonist, AM22-52, and the AM antisense
oligonucleotide decreased the basal intracellular cAMP level
in rat CECs (6). Michibata et al. (68) have reported that neu-
tralization of endogenous AM by monoclonal antibodies re-
duced the basal cAMP production in bovine aortic endothe-
lial cells, but not in smooth muscle cells. We have also
shown that antisense treatment significantly reduces the AM
production in primary rat CECs and decreases transendothe-
lial electrical resistance (7). It is remarkable that the basal in-
tracellular cAMP concentration is the highest in rat CECs
followed by GP8 immortalized rat CECs and human umbili-
cal vein endothelial cells, which corresponds to the AM pro-
duction of these cells (6). These observations suggest that
AM, as an autocrine mediator, plays an important role in the
maintenance of basal intra-endothelial cAMP level, and that
AM is an autocrine inducer of BBB functions of CECs via
the activation of adenylate cyclase enzyme. Moreover, astro-
cyte-derived factors have been shown to increase the AM
production by primary rat CECs, suggesting that AM is in-
volved in the astrocytic regulation of the BBB phenotype (5,
26). Therefore, AM may constitute a physiological link be-
tween astrocyte-derived factors, cAMP, and the induction
and maintenance of the BBB properties by rat CECs.

In addition to its role in the regulation of CEC permeabili-
ty, cAMP is also important in the regulation of the perme-

ability of other endothelial and epithelial cells of the body
(69). Interestingly, AM knockout homozygous mice die at
midgestation with extreme hydrops fetalis and cardiovascu-
lar abnormalities, including severe hemorrhages and pericar-
dial effusions (70, 71). This suggests a more general role for
AM as an endothelium-derived autocrine hormone in the
regulation of endothelial permeability.

The Role of AM in the Cerebral Circulation

Several studies have provided evidence that AM has a va-
sodilatory effect in the cerebral circulation (for review see
Ref. 72). It has been reported that canine basilar arteries
showed greater sensitivity to AM than did renal, coronary or
femoral arteries (73). Robust vasodilator responses to AM
have been observed in the cerebral arteries of dogs (73–75),
rats (75, 76), and humans (77), as well as in rat cerebral arte-
rioles (78, 79). Moreover, AM has been shown to induce in-
creases in cerebral (80, 81) and vertebral (74) blood flow.

Until recently, the mechanism of action of AM in the cere-
bral vessels has been poorly defined. It is now clear that the
major effect on AM-stimulated cells is an elevation of intra-
cellular cAMP concentration (for review see Ref. 56). In ad-
dition, AM has been reported to activate constitutive NO-
synthase by increasing the intracellular calcium concentration 
in peripheral endothelial cells (82, 83), and NO produced by
endothelial cells was shown to contribute to the vasodilator
effect of AM in vivo (82). Therefore, the vasodilator effects 
of AM may be dependent on at least two mechanisms, a direct
action of AM on vascular smooth muscle cells (VSMCs)
coupled to the accumulation of intracellular cAMP (84), and
an indirect mechanism involving the stimulation of NO pro-
duction (82). However, in rat cerebral arterioles, Lang et al.
(78) demonstrated that both ATP-sensitive and calcium-
dependent potassium channels play a role in the dilator response 
to AM.

Pericytes, the capillary counterparts of vascular smooth
muscle cells, express AM receptors (6). Because of their
close proximity to endothelial cells, and their large number
in brain capillaries (85), cerebral pericytes are putative
paracrine targets for AM produced by the cerebral endotheli-
um. Pericytes contain α-smooth muscle actin (86), and thus
can induce vasoconstriction and vasodilation within capillary
beds (87). AM may regulate the capillary blood flow acting
on pericytes (43, 85), and this mechanism may contribute to
the increased cerebral blood flow after exogenous AM ad-
ministration (80).

The observations that AM is secreted in large amounts by
the brain endothelium (6), that there is a high concentration
of AM in the cerebral circulation (6), and that AM receptors
are expressed in the cerebral vasculature (6, 36, 61–63, 77)
suggest that AM might play roles in maintaining the resting
tone of cerebral vessels and physiologically regulating the
cerebral blood flow.
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The Role of AM in Cerebral Pathologies

AM and Cerebral Ischemia

Because AM is a cerebral vasodilator, it would be expected
that excess production of AM might lead to an improved
postischemic neurological outcome. Dogan et al. (80) and
Watanabe et al. (88) reported beneficial effects of intra-
venous administration of AM in focal cerebral ischemia in
rats. AM tended to suppress the reduction in regional cere-
bral blood flow after middle cerebral artery occlusion, and
inhibited the increase in myeloperoxidase activity (i.e., de-
creased the number of infiltrating neutrophils) in the is-
chemic area, which led to significantly decreased brain in-
jury (80, 88). These results are very similar to the data re-
ported for CGRP administration (89). On the other hand, in-
tracerebroventricular administration of a high dose of AM
before and after occlusion of the middle cerebral artery has
been shown to cause a significant increase in the degree of
focal cerebral injury (75).

Hypoxia increases AM production in cultured rat cerebral
(36), bovine carotid (90), and human coronary artery en-
dothelial cells (91). Serrano et al. (45) demonstrated an in-
crease in AM expression in cortical neurons and in perivas-
cular structures that may represent glial elements or peri-
cytes as well as in endothelial cells. There are several mech-
anisms by which ischemia may increase AM expression.
One of them involves the hypoxia inducible factor-1 (HIF-1)
which binds to the DNA motifs known as hypoxia-respon-
sive elements and influences gene expression (92). Several
hypoxia-responsive elements have been found in human and
mouse AM genes (93). Another mechanism for increased
AM expression could be the augmentation of AM mRNA
stability that takes place during hypoxia (36, 93). Other hy-
poxia-inducible gene products (94) at the cerebral endotheli-
um may include autocrine and paracrine regulators of BBB
permeability and vasoreactivity (e.g., AM, endothelin-1, NO,
plasminogen activator inhibitor-1, vascular endothelial growth 
factor receptor), transporters (e.g., glucose transporter-1, 
transferrin receptor), and the P-glycoprotein efflux pump.
Exogenous AM administration has been shown to increase
the barrier phenotype in monolayers of CECs (7), which may
suggest that increased AM production can play a protective
role in the maintenance of BBB integrity during hypoxia.

The cytoprotective effect of AM in the cardiovascular and
renal system has been well documented (95–97). Serrano et
al. (45) reported a correlation between AM expression and
the degree of structural conservation of the cortical neurons
after oxygen-glucose deprivation. The high expression of
AM observed after 10–12 h of reperfusion may have con-
tributed to the preservation of normal morphology in the im-
munopositive cortical neurons, suggesting a neuroprotective
role for AM (45).

AM and Subarachnoid Hemorrhage

AM is suspected to play a role in the pathologic mechanism
of subarachnoid hemorrhage (SAH). Two investigations
have reported that plasma concentrations of AM were in-
creased in patients suffering from SAH throughout the study
period (52, 98), and in the latter study the AM levels were
correlated with the clinical condition of patients (98). How-
ever, in these studies no relationship was found between
plasma AM concentration and the onset of cerebral va-
sospasm (52, 98), a major cause of delayed brain ischemia
after SAH (99). On the other hand, Wijdicks et al. (100) re-
ported a significant correlation between increased levels of
circulating AM and the presence of vasospasm. In another
study, patients with symptomatic vasospasm were found to
have significantly higher levels of AM in the cerebrospinal
fluid (CSF) than those without vasospasm, the concentration
of AM in the CSF increased with time in response to brain
ischemia, and the increase was unrelated to the plasma 
concentrations (52). It has been speculated that the elevated
plasma AM concentrations may be the consequence of in-
creased sympathetic activity after SAH (101), which may
stimulate vascular tissue to secrete AM into the bloodstream
(102). The increased concentration of AM in the CSF may
be the result of increased AM production by the ischemic
brain tissue (36, 45, 75), or may be the result of BBB disrup-
tion (103, 104), which can lead to AM flux from the cerebral
blood to the CSF. The relationship between AM and SAH
needs to be explored further in the laboratory and in a larger
series of patients with SAH.

AM and Migraine

Migraine is one of the most common neurological disorders.
The pathophysiology of migraine is still not completely un-
derstood, but there is a clear association between head pain
and the release of CGRP. CGRP levels are increased in the
circulation (105) and saliva (106) during migraine attacks
and in migraine sufferers outside of attacks (107). CGRP is
contained in nociceptive afferent C and Aδ fibers innervating
cerebral vessels (108). These perivascular fibers release
CGRP and dilate cerebral blood vessels acting on CGRP re-
ceptors, thereby resulting in the exacerbation of headache
pain. Cerebral vessels are pharmacologically classified as
possessing CGRP1 receptors. Recent studies (6, 62) have
shown that CGRP receptors are present in vascular smooth
muscle cells but not in CECs, supporting a minor role of en-
dothelial cells in mediating vasomotility in response to
CGRP. Although, at the present time, there is no direct evi-
dence that AM is involved in the pathogenesis of migraine,
several facts should be considered in this regard: 1) AM and
CGRP can act on the same receptors (58) and have similar
modes of action (109); 2) CGRP is present in perivascular
sensory nerve fibers but not expressed in CECs (36), while
AM is not present in perivascular nerves (44, 77) but is se-
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creted in large amounts by the brain endothelium (6); 3)
CGRP has no significant role in the maintenance of resting
tone of cerebral vessels (110) but is responsible for adjusting
local cerebral blood flow in response to nociceptive signals
(77, 111), while AM might be important for maintaining the
resting tone of cerebral vessels; and 4) AM presynaptically
inhibits neurotransmission in the perivascular CGRPergic
nerves of rat mesenteric resistance arteries, probably de-
creasing CGRP release (112).

Conclusions

AM has been shown to have a wide range of effects on 
circulation, including vasodilation (113), regulation of vas-
cular smooth muscle cell proliferation (114), inhibition of
endothelial apoptosis (115–117), promotion of angiogenesis
(118), and regulation of blood coagulation and fibrinolysis
(119). The results of studies using transgenic overexpressing
and knockout models have further emphasized that AM is
crucial to vascular morphogenesis and function (70, 71, 97,
120). The circulating AM plasma concentration has been re-
ported to be elevated in a variety of conditions affecting the
cardiovascular system, including essential hypertension
(121), chronic heart failure (122), diabetes (123, 124), sepsis
(125), and normal pregnancy (126). Because such a broad
range of conditions have been associated with AM elevation,
it seems likely that increases in AM are not causative of dis-
ease but rather compensatory to other cardiovascular events.
The results on transgenic mice overexpressing the AM gene
support the idea of a protective role for AM (97).

The AM system may be especially important in the cere-
bral circulation. The concentration of AM is about 50%
higher here than in other regional circulations due to an as-
trocyte-induced elevation of the AM production by CECs
(6). AM causes vasodilation in the cerebral circulation and
may be important in the maintenance of the resting cerebral
blood flow and protective against ischemic brain injury. Re-
cent data from our laboratory indicate that AM, as an en-
dothelium-derived autocrine/paracrine hormone, plays an
important role in the regulation of specific BBB properties
(7). AM may be one of the physiological links between as-
trocyte-derived factors, cAMP, and the induction and main-
tenance of the BBB. Moreover, the role of AM in the differ-
entiation and proliferation of peripheral endothelial cells
(117) and in angiogenesis (118) suggests a more complex
function for AM in the cerebral circulation and in the devel-
opment of BBB.

The characteristics and functions of AM and CGRP recep-
tors will require further investigation. In particular, there is
need for the development of novel, potent, specific and pos-
sibly non-peptide receptor antagonists as potential therapeu-
tic tools for the suppression of AM-mediated proliferative ef-
fects in tumours or as anti-migraine drugs (127). Similarly,
the development of non-peptide agonists may be useful in
providing a protective effect in ischemic brain injury and in

brain edema.
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