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In this paper, we present a variational inequality framework for the modeling, qualitative analysis, and computation of equilibrium patterns 
in multiproduct, multipollutant oligopolistic markets with marketable pollution permits in the presence of transaction costs. The model 
deals explicitly with spatial differentiation and also guarantees that the imposed environmental quality standards are met through the initial 
allocation of licenses. An algorithm is proposed, with convergence results, to compute the profit-maximized quantities of the oligopolistic 
firms' products and the quantities of emissions, along with the equilibrium allocation of licenses and their prices. Numerical examples are 
included to illustrate this approach. 

T he problem of environmental pollution occurs when 
emissions from firms result in ambient concentrations 

that are sufficiently high to cause damage to property, 
ecosystems, human health, and/or aesthetics. Firms may 
discharge pollutants when there is no attached cost to such 
behavior nor any incentive for the reduction of the dis- 
charges. In recent years, a variety of policy instruments has 
been introduced in order to curb pollution. 

One policy instrument that offers an incentive to curb 
pollution is the marketable pollution permit system, the 
central concept of which can be traced to Dales (1968), 
whose work was on water pollution permits, and to 
Crocker (1966), whose work was on air pollution permits. 
Montgomery (1972) presented two systems of marketable 
pollution permits: a system of "pollution licenses" that de- 
fines allowable pollution concentrations at a set of receptor 
points, and a system of "emission licenses" that confers the 
right to emit pollutants at a certain rate. The former system 
is referred to as the ambient-based permit system (APS), 
whereas the latter is referred to as the emission-based per- 
mit system (EPS). In the ambient-based permit system, a 
target level of environment quality is established by the 
governmental authority, with the level of pollution being 
defined in terms of total allowable emissions. Pollution 
permits, the entitlement of which would enable the holder 
to emit a specified amount of pollution, are subsequently 
allocated to the firms. The firms holding permits are free to 
trade among themselves. In this approach, under competi- 
tive conditions (cf. Montgomery 1972), the reallocation of 
transferable permits can lead to substantial cost reduction 
while meeting environmental quality standards. 

We now distinguish between two classes of pollutants, 
with the first and easiest class to control commonly referred 
to as uniformly mixed assimilative pollutants, and the 
second, and somewhat more complex class, being nonuni- 
formly mixed assimilative pollutants. Assimilative pollu- 
tants are so termed because the capacity to absorb them is 
rather large; by uniformly mixed, it is meant that the ambient 
concentration depends on the total amount of emissions but 
not on the distribution of these emissions among the sources 
(cf. Tietenberg 1985). Carbon dioxide and other greenhouse 
gases are the archetypical uniformly mixed and, ultimately, 
assimilative pollutants. Volatile organic compounds are 
not uniformly mixed on a regional (multistate) scale, al- 
though on a smaller scale, such as within an airshed like the 
Los Angeles basin, they may be approximated as such. 
Indeed, on a multistate scale, no traditional pollutant is well 
mixed; but on a local scale, such an approximation may 
be appropriate. In this paper we consider a large region- 
as in the case of power utilities, for example-and hence 
nonuniformity is a reasonable assumption. 

For uniformly mixed pollutants (cf. Tietenberg 1985), 
a cost-effective solution may be achieved by the EPS 
approach, which allows for unit-for-unit trades among any 
sources in the airshed for example, in the case of air 
pollution. However, for nonuniformly mixed assimilative 
pollutants, an APS approach rather than an EPS approach 
may be preferable. Nevertheless, in an APS approach a 
pollution dispersion matrix is required, and dispersion mod- 
eling in itself is not a trivial task. Air pollution dispersion 
matrices, however, are not unique to APS permit systems 
because dispersion models were already in use by the 

Subject classifications: Environment: marketable pollution permits. Economics: oligopolistic markets with transaction costs. 
Area of review: ENVIRONMENT, ENERGY AND NATURAL RESOURCES. 

Operations Research, ) 2000 INFORMS 0030-364X/00/4801-0424 $05.00 

Vol. 48, No. 3, May-June 2000, pp. 424-435 424 1526-5463 electronic ISSN 



NAGURNEY AND DHANDA / 425 

Environmental Protection Agency prior to the implementa- 
tion of permit systems (cf. Tietenberg 1985). For additional 
background, we refer the reader to such standard texts on 
environmental economics as Tietenberg (1988), Pearce and 
Turner (1990), and Kahn (1998). 

Another approach to curb pollution in a region is the 
approach whereby polluters are charged a fixed price for 
each unit of pollution (cf. Montgomery 1972). If the same 
price is charged for pollution on all firms, then the marginal 
costs of abatement are equated across firms, and the result- 
ing level of pollution can be reached in a cost-minimizing 
manner. Yet another approach is to have polluting firms pay 
a price equal to the marginal external cost of their polluting 
activities. These price incentives, in the form of Pigouvian 
taxes (cf. Pigou 1920), would lead to corrective behavior 
on the part of the polluting firms by inducing them to inter- 
nalize the full social costs of pollution. One may also use an 
approach discussed in Nagurney et al. (1996), in which 
targets are imposed on the economic variables (which in 
their case were supply, demand, and transportation targets) 
with associated penalties for failure to comply and with the 
taxes set accordingly. That approach utilized a generaliza- 
tion of goal programming through the use of variational 
inequalities. 

In this paper we model multiproduct, multipollutant 
oligopolistic firms engaged in markets in ambient-based 
pollution permits. Besides facing production costs and 
emission costs, the firms also face transaction costs asso- 
ciated with the trade of permits, in addition to the price of 
purchasing licenses in excess of the initial allocations in 
order to fulfill the allowance of emissions. 

More theoretical environmental policy analyses focus on 
developing policy instruments under the assumption that 
firms are perfectly competitive in their product markets. 
However, modern industrial markets may not satisfy the 
conditions for perfect competition, where it is assumed that 
there are many producers, each of which cannot affect the 
price of the product that they produce and takes the price 
as given; they might be better characterized as having an 
oligopolistic structure. In recent years, there has been an 
increasing theoretical interest in modeling oligopolies in 
the context of environmental policy-making (see, for exam- 
ple, Hahn 1984, Carraro et al. 1996, and Van Egteren and 
Weber 1996). Hence, in this paper we focus on oligopolistic, 
rather than on perfectly competitive, firms. 

We assume that the firms are perfectly competitive in the 
permit markets. More specifically, each source of pollution 
takes the price of the license to pollute a particular pollu- 
tant at a certain point as given, because each source in a 
region is small relative to the entire economy. The model 
also deals explicitly with spatial differentiation through the 
use of a diffusion matrix that maps emissions from sources 
to receptor points that are dispersed in space. This is espe- 
cially important because studies show that if spatial differen- 
tiation is not built into the system, then some or most of the 
cost savings from employing an economic-based approach 
can be lost (cf. Mendelsohn 1986). Nevertheless, Bohi and 

Burtraw (1997) showed that considerable cost savings were 
achieved under an EPS-based system for the U.S. SO2 emis- 
sions. A main reason for those cost savings was the flexibility 
allowed electric utilities to switch to lower sulphur content 
coal. Under that program, some utilities mitigated the emis- 
sion levels rather than engaging in trading of permits, but 
this is an advantage afforded by economic incentive systems, 
whereby the overall goal of emission reduction is attained. 

Furthermore, it is clear that policy instruments must 
be analyzed within the context of the market structure. 
Here we provide a modeling and, in particular, computa- 
tional framework to allow for such analyses in the case of 
oligopolistic firms and perfectly competitive permit markets 
in the presence of transaction costs. The case of perfectly 
competitive firms and permit markets can also be handled 
within the variational inequality framework as discussed in 
Nagurney and Dhanda (1996) and extended to include trans- 
action costs using the modeling approach presented here. 

We focus on transaction costs in this paper because they 
can obstruct the performance efficiency of the permit market 
by impeding the trading process of permits. This is especially 
important in the case of the APS approach that we model 
in this paper. For example, the information requirements 
needed in order to derive the pollution dispersion/diffusion 
matrix may raise the transaction costs in the trading pro- 
cess. In general terms, transaction costs can arise in any 
market and usually result from the transfer of any property 
right, because the parties to an exchange must find one an- 
other, communicate, and exchange information (cf. Stavins 
1995). Empirical evidence also suggests the prevalence of 
transaction costs. The Fox River water pollutant trading pro- 
gram did not perform up to the expectations, largely because 
of high transaction costs in the form of administrative re- 
quirements. On the other hand, when these administrative 
requirements were minimal, a high level of trade took place 
in lead-rights trading among refineries, a program that was a 
part of the Environmental Protection Agency's leaded gaso- 
line phasedown in the United States. The refineries were 
already experienced at striking deals with one another and, 
hence, the firms did not have to engage in broker fees to find 
trading partners (cf. Hahn and Hester 1989). In another case, 
the New Jersey Pinelands transferable development rights 
program, the transaction cost were minimized by the gov- 
ernment body taking on a feeless brokerage role (cf. Tripp 
and Dudeck 1989). 

The mathematical framework chosen for the formulation, 
qualitative analysis, and computation of the equilibrium 
pattern in markets for pollution control in the presence 
of transaction costs is that of finite-dimensional varia- 
tional inequality theory. Thus far, variational inequality 
theory has been used in environmental economic policy 
modeling in the context of ambient-based pollution permit 
markets in oligopolistic markets but only in the case of 
single-product, single-pollutant oligopolistic firms and in 
the absence of transaction costs (cf. Nagurney and Dhanda 
1996). Hence, this paper extends the earlier work to a 
more general setting. Moreover, we emphasize that to date 
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no general computational procedure or model has been 
developed to handle transaction costs in such a setting. The 
only prior work was that of Stavins ( 1995), who provided no 
computational procedure and whose model was very simple. 

Our model applies the theory of variational inequalities to 
yield the profit-maximized quantities of multiple products, 
the optimal quantities of various emissions, the equilibrium 
allocation of the pollution licenses, and the prices of the 
licenses, all in the presence of transaction costs. We aim to 
make a contribution in the direction of environmental eco- 
nomics since the use of variational inequality theory to this 
field has yet to be fully explored. For a plethora of addi- 
tional equilibrium problems in both operations research and 
in economics that have been studied as variational inequal- 
ity problems, see Nagurney (1993). 

The paper is organized as follows. In ?1, we develop 
the optimization problem faced by an individual firm in the 
presence of transaction costs. Subsequently, we present the 
economic conditions governing the market model and then 
derive the variational inequality formulation of the equilib- 
rium conditions. In addition, we also provide the qualitative 
properties of the equilibrium pattern. In ?2, we propose an 
algorithm for the computation of the equilibrium pattern and 
provide conditions for convergence. This algorithm yields 
variational inequality subproblems of very simple structure, 
each of which can be solved explicitly and in closed form. 
This algorithm is then applied to compute solutions to sev- 
eral numerical examples in ?3. We summarize our results 
and present conclusions in ?4. 

1. THE MULTIPRODUCT, MULTIPOLLUTANT 
OLIGOPOLY MODEL WITH AMBIENT-BASED 
POLLUTION PERMITS AND TRANSACTION 
COSTS 

In this section, we develop the multiproduct, multi- 
pollutant oligopolistic market model with ambient-based 
pollution permits and transaction costs. As mentioned, 
transaction costs can emerge in the construction of a mar- 
ket in pollution permits because the firms, to trade licenses 
to pollute, must find one another, must communicate, and 
must exchange information. 

We consider m firms that are sources of industrial pol- 
lution in the region, and which are fixed in location, with 
a typical source or firm denoted by i. There are n receptor 
points, with a typical receptor point denoted by j. Also, let 
there be r different pollutants emitted by the firms, with a 
typical pollutant denoted by t. Let et denote the amount of 
pollutant t emitted by firm i and group the firm's emissions 
into a vector ej E R+. We assume, as given, an r x m x n 
diffusion matrix H, where the component h{, denotes the 
contribution that one unit of emission by source i makes to 
average pollutant concentration of type t at receptor point j 
(cf. Montgomery 1972). 

Let a permit denote a license, the possession of which 
will allow a source to pollute a specific pollutant at some 
specific receptor point. Hence, each polluter will have 

to hold a portfolio of licenses to cover all the relevant 
monitored receptor points. Let IP denote the number of 
licenses for pollutant t at point j held by source i, and 
group the licenses for each firm i into a vector 1i E R?'. We 
assume throughout that some initial allocation of licenses 
ito, ,i= l...,m; j=I,...,n; tz 1,...,r has been made 
by the regulatory agency and, later in this section, discuss 
how this allocation should be made in order to ensure that 
environmental quality standards are met. 

Furthermore, let t denote the price of the licenses for 
pollutant t that affects receptor point ], and group the prices 
of the licenses into the vector p e R'. Also, assume that the 
market in pollution licenses is perfectly competitive; that is, 
each source of pollution takes the price of the license to pol- 
lute at a specific point as given and cannot affect the price 
itself because each source is small relative to the entire econ- 
omy. The license trading system, as an economic-incentive 
approach, designs license markets in order to achieve 
environmental goals in a cost-effective manner. The effec- 
tiveness, therefore depends upon perfect competition in the 
permit market, and regulators should design policy instru- 
ments that would guarantee perfect competition in permit 
trading. Indeed, unlike the firms' production outputs, the 
supply of initial licenses is fixed and determined so that 
the environmental goals are achieved. The "market" power, 
in this sense, is entirely dependent on the initial license 
allocation and controlled by the regulatory agency. 

Let there be s distinct products that are produced by the 
firms in a noncooperative manner, with a typical output de- 
noted by d and the quantity of product d produced by firm 
i denoted by qid. These quantities are first grouped into the 
vector q e Rms. We assume that each product is homoge- 
neous; that is, the consumers are indifferent as to which firm 
was the producer. 

The underlying idea behind the market in pollution per- 
mits is that the firms or sources of pollutants must be en- 
couraged to trade permits. A typical firm participating in a 
permit market, however, has to take into account various 
costs, such as those of production, emission abatement, pur- 
chasing pollution licenses, and finally, the transaction costs 
involved in the trade of these licenses. 

Each firm i in the oligopoly is faced with a cost fi of 
producing the vector of quantities qi, where 

fi = fi(qi)- 

Each firm i in the region is also faced with a joint-cost gi, 
which is dependent both upon the product vector qi and the 
emission vector ei, where 

gi =gi(ei,qJ). (2) 

In addition, a firm encounters transaction costs to be able 
to participate in the permit market to trade pollution licenses. 
Specifically, let ct denote the total transaction cost that a 
firm i incurs to trade pollution permits for pollutant t at 
receptor point j in the market, where 

Ctj = Ctj( Its ). ~~~~~~(3 ) 
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Hence, we assume that the transaction cost for the pur- 
chase or sale of a license to pollute a particular pollutant at a 
specific receptor point depends upon the number of licenses 
for that particular pollutant and that receptor point held by 
the firm. 

Because we assume that the firms are oligopolistic in their 
product markets, they affect the prices of the outputs. Hence, 
if we denote the price of a product d by Pd. we can write 

Pd = Pd Eqid )*(4) 

Consequently, each firm i acquires a revenue 

S Pd E qid )qid (5) 
d=1 i=l 

Because the regulatory body bestows upon the firm i an 
initial allocation of licenses l2, the value of a firm's initial 
endowment of licenses is given by - 

' atr7lp* where 
pt* denotes the given price of a license to pollute for the 
specific pollutant t at receptor point j, which, under the 
assumption of perfect competition in the license markets, is 
assumed given. 

Also, the cost of purchasing licenses for a specific pollu- 
tant t that affects receptor point j for source i is given by 

n 5 pt*(t - Ito). (6) 

j= 1 

We assume that each firm in the oligopoly is profit- 
maximizing and thus can be characterized by a function 
that measures its profit or net revenue. The profit function 
ui faced by each such firm i; i = 1,..., m can hence be ex- 
pressed as the difference between the total revenue acquired 
and the total cost incurred by the firm: 

ui =ui(q, ei, i) 

- E (Pd ( qid )qid - f1(q) - gi(ei, qi) 

r n r n 

-E E Uljlty _ E E pt*l _i Ut 
t=l j=l t=1 j=l 

An oligopolistic firm's optimization problem is then 
expressed as: 

Maximize ui(q, ei, li) (8) 

subject to: 

hlt e itlt ; j ~ l . .....n, t ~ l . .r,(9 

and the nonnegativity constraints: 

qid O;eit O 'It~ ' 

Constraint (9) states that each firm is allowed to have an 
average rate of emission per pollutant that produces no more 
pollution at any point than the amount the firm is licensed 
to cause at that point. Hence, this constraint handles spa- 
tial differentiation. Note that here we allow the licenses to 
take on fractional values because both the diffusion matrix 
elements and the emissions may take on such values. 

Let At denote the Lagrange multiplier associated with 
the tjth constraint in (9), and let hi denote the vector of 
Lagrange multipliers in R7. Finally, group the vectors Xi 
into the vector i eR"7'r. Note that Xtj may be interpreted 
as the shadow price, and henceforth we term this Lagrange 
multiplier as the marginal abatement cost. 

As stated earlier, the oligopolistic firms are assumed to 
operate in a noncooperative manner in their product markets, 
where the governing equilibrium concept is that of Nash- 
Cournot (cf. Nash 1950, Cournot 1838) and is defined as 
follows (see also Gabay and Moulin 1980). 

DEFINITION 1 (NASH-COURNOT EQUILIBRIUM). A Nash-Cour- 
not equilibrium is a vector of production outputs q* ER's 
emission quantities e* E jmnr, and licenses l E R , such 
that 

ui(q*, 4e*, 7*) ? ui(qi, ei, 1i) 

Vqi, Vei, V!i satisfying (9) and (10), for all firms i, (11) 

where q~*=(ql*,.* * ql*- I Il q * q** m 

In other words, the rationality postulate here is that each 
firm selects its production outputs, its emissions, and its 
licenses, so that its profit is maximized, given the produc- 
tion output vector decisions of the other oligopolistic firms. 
Note that here we consider a Cournot oligopoly, rather than 
a Bertrand oligopoly, in which firms select the prices of 
their products. For background on Bertrand oligopolies, see 
Tirole (1988) and the references therein. An increasing 
number of energy market models (e.g., Oren 1997) are based 
upon a supply function conjecture, where each firm be- 
lieves that other firms will not change their supply function 
(price vs. quantity). We have selected a Cournot oligopoly 
rather than a Bertrand or supply function oligopoly in 
order to be consistent with the firm's variables which are all 
quantity variables in particular, the amounts to produce- 
the amounts of pollutants to emit as well as the number of 
licenses to purchase. We leave the modeling of Bertrand 
oligopolies and ambient-based pollution permits for future 
research. 

Optimality Conditions for a Firm 
If we assume that the profit function, ui(q, ei, ii), for each 
firm i is concave with respect to its arguments and is con- 
tinuously differentiable, the necessary and sufficient condi- 
tions for an optimal firm-specific product, emission, license, 
and marginal abatement cost pattern, (q>* e7*, /7, 27 ), given 
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p* and q, is that this pattern is nonnegative and satisfies 
the inequality: 

f [i(q) + agi(e7, q7) 

d = l Oqid Oqid 

aPd(L1i= qd)* Pd 
*1 

aqld qid -Pd Z.v id)j [qid -q1dj 

d 
+q1 x [* -i e] 

r n 

t~L j 

Note that (12) expresses the optimality conditions, that is, 
the Kuhn-Tucker conditions in variational inequality format. 
Indeed, convex optimization problems can be formulated as 
variational inequality problems, although the converse is not 
true, except under certain assumptions (cf. Kinderlehrer and 
Stampacchia 1980, Nagumney 1993). Inequality (12) can be 
interpreted as follows: The optimality of a point implies that, 
for every feasible point, the rate of change of the function 
starting from that point is nonnegative (see also Bertsekas 
and Tsitsiklis 1989). 

In the case of a Nash-Coumnot equilibrium in which each 
of the firms optimizes unilaterally, an inequality similar to 
(12) needs to hold for each of the other oligopolistic firms. 
Indeed, Gabay and Moulin (1980) have shown that Nash 
equilibria admit variational inequality formulations. 

If, on the other hand, we consider the case where the firms 
are perfectly competitive and the price of each product d is 
now fixed and given by .d. for d 1,... ,Is, then the fixed 
price would replace the price function Pd(-) in the profit 
function (7) and the optimality conditions for a perfectly 
competitive firm would still take the form of (12), but with 

apd( 11qld) q*_p q) 

in (12) replaced by oPd 

Market Clearing Conditions for Licenses 

We now describe the system of qualities and inequalities 
governing the quantities and prices of licenses in the region 
at equilibrium. 

Mathematically, the economic system conditions gov- 
erning market clearance in pollution permits are: For 

each receptor point j; j = 1,... , n, and for each pollutant 
t; t= 1,. ..,r: 

E 0, if pt* > O 13 

The system (13) states that if the price of a license for 
pollutant t at a point j is positive, then in equilibrium the 
market for licenses at that point must clear; if there is an 
excess supply of licenses for a particular pollutant t at a 
receptor point, then the price of a license at that point must 
be zero. 

We first give the governing equilibrium conditions for 
the entire problem and then derive the variational inequality 
formulation, which is a unified framework within which all 
the inequalities and equalities can be expressed as a single 
inequality. 

DEFINITION 2 (MARKET EQUILIBRIUM). A vector of produc- 
tion outputs, emissions, licenses, associated marginal costs 
of abatement, and license prices, (q*, e*, 1*,A*, p*) E 

Rms+mr+2rmn+nr, is an equilibrium of the multiproduct, 
multipollutant oligopoly with ambient-based pollution per- 
mits developed above if and only if it satisfies inequality 
( 12) for all firms i; i = 1, . . ., m, and the system of equalities 
and inequalities ( 13 ) for all receptor points: j; j = 1,..., n, 
and for all pollutants: t; t = 1, . . ., r. 

We now derive the variational inequality formulation of 
the equilibrium conditions for the market model. 

THEOREM 1 (VARIATIONAL INEQUALITY FORMULATION). A vec- 
tor of firm production outputs, emissions, licenses, and 
associated marginal abatement costs, and license prices, 

(q*, e*, I* ,* p*) e Rms~mr?3rmn+rn 

is an equilibrium if and only if it satisfies the variational 
inequality problem. 

m f s g(q* O gi(ei*, i* ) ?i~~ii. + ag (7,q7 
i=1 d=1 aqd qid 

aq=d l =l eiid - Pd 
Oqid qdPd (aq*d )]X [qid -q*] 

7n1 r _g~* _~ 17 
il >=1 [ag(e7q) + Et*ht x [et - et*] 

?+ E[E +acO)e<xt ~-l; 
i=1 t=1 iL [ elj= i li 1 

m r n 

+ Z E , [ltj*hliei *] x - 

i=1 t=1 j=1 
r n m 

+ EL E(lt - x et*] [-pt ]) 
V=q e=, i )( + lq ,1,i E EmSm+rnr (( 14 
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PROOF. See the appendix. 

We now put variational inequality (14) into standard 
form (cf. Nagurney 1993). Define the column vector 
X -(q, e, i, X, p) E RKms+mr+2rmn+rn and F(X) as the row 
vector consisting of the row vectors (G(X),E(X),L(X), 
A(X),P(X)), where G(X) is the ms-dimensional vector 
with component id given by: -8ui/8qid, E(X) is the 
mr-dimensional vector with component it given by 
-aui/aet + Ein7J 2tj ht ; L(X) is the mrn-dimensional vector 
with component itj given by pjt + Octc(lt)/a0ltj - <t; A(X) 
is the mrn-dimensional vector with component itj given by 
it- ht et; and P(X) is the rn-dimensional vector with tjth 
component given by Em I (lt - lt). 

Variational inequality (14) can now be expressed as 

F(X*).(X-X*))O, VXEK, (15) 

where K {X =(q, e, 1, , p) E Rs+mr+2rmn+rn} and . de- 
notes the inner product in the Euclidean space RN. Note 
that in the case of perfectly competitive firms, the governing 
variational inequality would be as in (14), with the term 

aPd( *q~d) 

in (14) replaced by Pd- 

Note that the variational inequality (14) provides a for- 
mulation of the equilibrium conditions that consist of both 
equalities and inequalities, and one does not know a 
priori which equilibrium variables will have positive values. 
Moreover, it provides a concise formulation, consisting of a 
single inequality. In addition, numerous equilibrium prob- 
lems in both economics and in operations research have 
now been formulated and studied as variational inequality 
problems (cf. Nagurney 1993 and the references therein). 

In the next corollary we prove that the equilibrium pattern 
is independent of the initial license allocation, provided that 
the sum of licenses for each pollutant and each receptor point 
is fixed. We then provide what those sums should be equal to 
in order to guarantee that the imposed environmental quality 
standards are met. In particular, let QJ denote the imposed 
environmental standard for receptor point j and pollutant t. 

COROLLARY 1 (INDEPENDENCE OF EQUILIBRIUM PATTERN FROM 
INITIAL LICENSE ALLOCATION). If It ) 0, for all i = 1, ...,; 
j .n; t r, and E'1 It?= QJ, for j1 n 
and t = 1, ... , r, with each QJ fixed and positive, then the 
equilibrium pattern (q*,e*,l*,X*, p*) is independent of 
the I? 

PROOF. See the appendix. 

Corollary 1 shows that any initial allocation of licenses 
that adheres to the imposed sum QJ for each pollutant and 
receptor point will not affect the equilibrium pattern. 

In the next theorem, we give a mechanism for the deter- 
mination of the sums of the initial license allocation in order 
to guarantee that the environmental standards are met. 

THEOREM 2 (ACHIEVEMENT OF ENVIRONMENTAL STANDARDS). 

An equilibrium vector achieves environmental quality 
standards represented by the vector Q= (Q1,... aQn) 
where Qj {Q!,.'.. Qf} provided that E' Ito = Q4, for 
all j= I,...,n and all t= I,...,r. 

PROOF. See the appendix. 

We now discuss the above model in relationship to an- 
other model that has appeared in the literature. In particular, 
if there is only a single pollutant and no transaction costs, 
then the above model (and the variational inequality for- 
mulation) collapses to the single-product, single-pollutant 
oligopolistic model with no transaction costs, developed in 
Nagurney and Dhanda (1996). 

1.1. Qualitative Properties 

In this subsection we investigate certain qualitative proper- 
ties of the equilibrium. In particular, we establish properties 
of the function F(X) that are needed for convergence of the 
algorithm in ?2. 

LEMMA 1 (MONOTONICITY). If the profit functions ui are 
concave for each firm i, then F(X) is monotone; that is, 

[F(X1)-F~~~~~~~~~~~~~~~~~~~~~(X2)] . [XI _X2]0 X X2K (6 

PROOF. See the appendix. 

LEMMA 2 (LIPSCHITZ CONTINUITY). The function F(X) is 
Lipschitz continuous; that is, there exists a positive con- 
stant L, such that 

JIF(X')-F(X2)- ALIJX' -X2 , VX X2 EK, (17) 

under the assumption that the profitfunctions have bounded 
second-order derivatives. 

PROOF. See the appendix. 

DEFINITION 3 (COERCIVE FUNCTION). A function F(X), from 
a feasible set K to RN, is said to be coercive if 

(F(X)-F(X')) . (X-Xl) 
liX 

- X1 1-) (18) 

as I X I- oc, for X e K, and for some X1 e K. 

We now state the existence result. 

THEOREM 3 (EXISTENCE). If (q*, e*, /* A* p*) e Rms+mr+2rmn+rn 

satisfies variational inequality (14) then the equilibrium 
production, emission, and license vector is a solution to the 
variational inequality problem: 

ft >j aui(q*, e7,17i) 
EiE aqfd i[qzd-qd] 

i+1 E)1 
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+ ? i n? acb.(P* )x - 

+ELL ant~~i X [1it- .J 0, 

i=I t=l j=l I 
V(q, e, ) eK1, (19) 

where 

K -{ (q, e, 1) E Rms+mr+rmn; 

ht et ib; i Z (lt - it) 0; Vi, t,. (20) 
i~ 1 

A solution to (19) is guaranteed to exist provided 
that -Vu(-) is coercive, where Vu is the gradient of u. 
Moreover, if (q*,e*,I*) is a solution to (19), there 
exist A* eR rmn and p* eR'4n, such that (q* e* I* p*) 
is a solution to variational inequality (14) and, hence, an 
equilibrium. 

PROOF. See the appendix. 

We now present the uniqueness result. 

THEOREM 4 (UNIQUENESS). Assume that -Vu( ) is strictly 
monotone over Rms+mr+mnr, that is, 

E 
E 

[Oui(q, el, l1 ) _ ui(q2 e2, i)]x[d-2] - ?:E~ [auKql, eIl) - 8ui(q2,e i i ) 1 x [ql - q2] 

i= I d,= CLqd I 
m r 

(q l el l l)(q2 e2 1Y 
- ~ L 8u~(q i ieJ i J x [et' - e2] 

+ r n [act (ltJ) act.(lt~2] -l]>0 

V(ql, el, 11), (q2,e2, 12) ( Rms+mr+mnr 

Then the equilibrium production, emission, and license 
pattern (q*, e*, l* ) is unique. 

PROOF. See the appendix. 

2. THE ALGORITHM 
In this section we present an algorithm for the solution of 
variational inequality ( 14) governing the market equilibrium 
model for pollution permits. The algorithm resolves the vari- 
ational inequality problem into very simple subproblems, 
each of which can be solved explicitly and in closed form. 

The algorithm we propose for the computation of the 
equilibrium pattern is the modified projection method for 
Korpelevich (1976). The algorithm is guaranteed to con- 
verge, provided that F satisfies only the monotonicity 
condition and the Lipschitz continuity condition, assuming 
that a solution exists. The algorithm has been applied by 

Nagurney and Dhanda (1996) previously to compute 
the equilibrium pattern in single-pollutant, single-product 
oligopolistic and perfectly competitive market equilibrium 
problems with ambient-based permits, but without trans- 
action costs. It has also been applied to compute the equi- 
librium pattern in spatial markets with ad valorem tariffs 
(cf. Nagurney et al. 1996), as well as the equilibrium pat- 
tern in a variety of financial problems (cf. Nagurney and 
Siokos 1997). 

The statement of the modified projection method is as 
follows. 

Step 0: Initialization. Set X0 E K. Let Y7= 1 and let x 
be a scalar such that 0 < oc < L-' where L is the Lipschitz 
continuity constant (cf. (17)). 

Step 1: Computation. Compute X by solving the vari- 
ational inequality subproblem: 

[X T+ x(-1)T _ X9_- I]T. [X XS 

for all Xe K. (22) 

Step 2: Adaptation. Compute X7 by solving the varia- 
tional inequality subproblem: 

[XST+ ofl )T -_ X-] .[-X] O. 

for all Xe K. (23) 

Step 3: Convergence Verification. If max IX( - 5- l 
e ?, for all 1, with E > 0, a prespecified tolerance, then stop; 

else, set i = 7-+ 1, and go to Step 1. 
We now discuss the modified projection method more 

fully. We first recall the definition of the projection of X, 
on the closed convex set K, with respect to the Euclidean 
norm, and denoted by PKX, as 

y = PKX = arg min JJX-zl. (24) 
zEK 

In particular, we note that (cf. Nagurney 1993, Theo- 
rem 1.2) XS generated by the modified projection method 
as the solution to the variational inequality subproblem (22) 
is actually the projection of (X-1 _- xF(XS-'1 )T7) on the 
closed convex set K, where K here is simply the nonnega- 
tive orthant. In other words, 

X =PK[X 1 - oF(X-1)T]. (25) 

Similarly, XA generated by the solution to variational 
inequality subproblem (23) is the projection of X`-1 - 

ocF(X~ )T on the nonnegative orthant, that is, 

X- = PK[X I - OF(X )T]. (26) 

Because the feasible set here is of box type, the above 
projections immediately decompose across the coordinates 
of the feasible set. In fact, the solution of each of the vari- 
ables encountered in (22) and (23) amounts to projecting 
onto R? separately. Consequently, we can provide closed- 
form expressions for the solution of problems (22) and (23 ). 
In particular, we have that (22) can be solved as: 
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For all firms i; i= 1,...,m, and all products d; 
d = 1,...,s, set: 

(27) 

and for all firms i; i=1,.. .,m, and for all pollutants t; 
t= 1,.. .,r, set: 

eitg =max{ (0u, q cxe ,1 ) = 

~~~~~~e 

- E it4fl hij)+etg-' J (28) 

For all firms i; i = 1, ...,m, all receptor points j; j =1, ...,n, 
and all pollutants t; t = 1,... , r, set: 

O-= maxf tY-1I - (l f) +1,? }; 

(29) 

and 

,itJ = max{O, (-Its- l + hijetg- 1 ) + t>1- I} (30) 

Finally, for all receptor points j; j = 1, ... ,n, and for all 
pollutants t; t = 1,.. ., r, set 

frY= max{oj2 (-El1'?O+Z It1o) I+ 1 t I 

(31) 

Variational inequality subproblem (27) can be solved 
explicitly in closed form in a similar manner. 

Convergence is given in the following theorem. 

THEOREM 5 (CONVERGENCE). The modified projection me- 
thod described above converges to the solution of varia- 
tional inequality (14) under the assumptions that the profit 
functions have bounded second-order derivatives and are 
concave. 

PROOF. See the appendix. 

3. NUMERICAL EXAMPLES 
In this section we present numerical examples illustrating 
the model presented in ? 1, along with the performance of the 
algorithm of ?2. The data access information is presented in 
tables in the appendix. 

We present three oligopoly examples of increasing com- 
plexity, and then for each of these examples we subsequently 
increase and then decrease the transaction costs to evaluate 
the effect on the trades of licenses. 

We assume that each firm faces a production cost function 
of the form 

Yi~) EICjdqjd + (1/13Kd: (Izd? )/13d] (32) 

with the specific terms for the parameters reported along 
with the examples. The demand price function for product 
d, in turn, in each example is assumed to be given by 

Pd(Eqid) -50001/1l1 (E qd (33) 

We note that similar production cost and demand price func- 
tions have been used by Murphy et al. (1982). 

Each firm i in each example also faces an emission cost 
function of the form 

r S 

gi(ei, qi) = [gI it(et)2+g2itet+g4it]+ E g3idqid, (34) 
t=4 d=1 

with the specific terms for the parameters reported along 
with the examples. 

The transaction cost function employed by firm i for pol- 
lutant t at receptor point j in each example was of the form 

Clt (Itltj- jt(Ilt )2 + 02ijt Itj + ocijt, (35) 

with the specific terms for the parameters reported along 
with the examples. 

The initial allocation of the licenses, the l9s, were set 
as Pt0 = 3, for all i, j, t. The diffusion matrix H terms, the 'I 

hlts were set as follows: For t = 1: h = 5, if i j j; and 
hb = 0.5 j, otherwise, for all i,j. For t = 2: h=10 , ifi ?=a; 

and h= Si., otherwise, for all i,j. The initial values for 
the quantities were set as follows: q0 = 15, if i = d; and 
q0 = 25, otherwise. The initial values for the emissions were 
set as follows: ei = 10, for all i, t. All other initial variables 
were initialized to 1. 

The convergence tolerance E was set to 0.0001, and the 
parameter a was set to 0.1 in the algorithm for all the exam- 
ples. We also computed the maximum error for this conver- 
gence tolerance and the average error, where the error was 
defined as the absolute value of the respective left-hand-side 
term in the variational inequality (14) for each variable that 
had a computed positive value. Note that this value should 
be as close to zero as possible. 

The algorithm was coded in FORTRAN 77. The system 
used was the IBM SP2 at the University of Massachusetts 
at Amherst. 

In addition, to measure the effect of changes in the trans- 
action costs on the trade of licenses, we defined the volume 
of trade measure A\ as follows: 

r m r l 

_ ~~2 
t=1 i=1 t=1 

EXAMPLE 1. In this example, the oligopoly consisted of two 
firms that produce two products and emit two pollutants, 
which in turn affect two receptor points. Refer to Table 1 in 
the appendix for the input data for Example 1. 

The modified projection method converged in 1702 iter- 
ations and yielded the equilibrium output vectors reported 
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in Table 2 in the appendix, with a maximum error of 0.0097 
and an average error of 0.00016. The positive equilibrium 
license prices, in this example, signal that the market clears 
for the licenses for each pollutant and receptor point. The 
volume of trade measure A = 10.114. 

We then perturbed the transaction cost data by increasing 
the transaction costs by multiplying the 0 1 ij, parameter by 5 
for all ijt. For brevity, we do not report the new equilibrium 
pattern but note that the equilibrium prices for licenses 
affecting receptor point 1 and receptor point 2 dropped to the 
new prices as reported at the bottom of Table 2. The volume 
of trade A now decreased to 4.937. Hence, the transaction 
costs, as expected, had a negative effect on the trades that 
took place. We then decreased the original 0 l ij terms by 
a factor of 5 for all i, j, t and obtained the new computed 
A = 11.92. Such a decrease in transaction costs resulted in 
an increase in the trade volume. 

EXAMPLE 2. To evaluate the effect of the number of firms on 
the equilibrium pattern, we increased the number of firms 
from two to three in the second example. The three firms 
in the oligopoly produce two products and emit two pollu- 
tants that affect two receptor points. Refer to Table 3 in the 
appendix for the input data for this example. 

The algorithm required 1,414 iterations for convergence 
to the equilibrium output vectors reported in Table 4 in the 
appendix. Note that in this example, as in Example 1, the 
markets in licenses for each pollutant and receptor point also 
cleared and, hence, the prices were positive. In this example, 
A = 17.568, with the maximum error equal to 0.00018 and 
the average error equal to 0.001. 

We subsequently increased the transaction costs in the 
same manner as in Example 1 by multiplying the coefficient 
b 1 ijt by 5 for all ijt. As expected, A then decreased to 
13.385, reflecting that transaction costs are a barrier to trade. 
The equilibrium prices for the licenses also dropped. 

Finally, we decreased the transaction cost terms in the 
identical manner as Example 1 and the new computed 
A = 19.325, providing further evidence that transaction 
costs act as a barrier to trade. 

EXAMPLE 3. In the third example, we increased the number 
of receptor points from two to three and the three firms 
in the oligopoly still produce two products and emit two 
pollutants, as in Examples 1 and 2. Refer to Table 5 in the 
appendix for the input data for this example. 

The modified projection method converged in 1,718 
iterations and yielded the equilibrium vectors reported in 
Table 6 in the appendix. The maximum and average errors 
were, respectively, 0.00094 and 0.00017. In Example 3, the 
markets in licenses for each pollutant and receptor point 
cleared and the prices were positive. In this example, the 
value of A is 28.234. We note that the equilibrium quantity 
vector remains the same as in the previous example indi- 
cating that a change in the number of receptor points does 
not directly impact the quantities a firm produces, at least 
in this particular example. 

We next increased the transaction costs as we had in the 
preceding two examples by multiplying the coefficient 0 1 ijt 
by 5 for all ijt, with the consequence that the volume of 
trade measure A then decreased to 23.869. In addition, the 
prices of the licenses dropped, reflecting the decrease in the 
volume of licenses traded. 

As in Examples 1 and 2, we then decreased the transaction 
costs by dividing the original 0 1 ijt values by 5 for all i, j, t. 
As expected, the volume of trade increased, with the new 
A = 29.775. 

These examples illustrate the effect of certain parameters, 
such as changes in transaction costs, on the volume of 
licenses traded. Specifically, we note that in these examples 
an increase in transaction costs leads to a decrease in the 
volume of licenses traded, whereas a decrease leads to an 
increase in the volume of licenses traded. 

The above numerical examples highlight the variety of 
multiproduct, multipollutant oligopoly problems with mar- 
ketable pollution permits that can be solved. Although the 
algorithm requires a large number of iterations for conver- 
gence, each iteration of the algorithm is remarkably simple 
and computationally very efficient because closed-form ex- 
pressions are used. Indeed, each of the above examples was 
solved in a negligible amount of CPU time-less than 0.001 
CPU seconds. Moreover, the computed solutions are very 
accurate. The algorithm appears suitable for the evaluation 
of alternative transaction cost scenarios. 

4. SUMMARY AND CONCLUSIONS 
In this paper we have presented a variational inequality 
framework for the formulation, qualitative analysis, and 
computation of equilibria in multiproduct, multipollutant 
oligopolistic markets with marketable pollution permits and 
in the presence of transaction costs. The model explicitly 
handles spatial differentiation for the pollutants as well as 
the transfers between firms that take place. 

The model significantly extends those that have been pre- 
sented in the literature todate. Moreover, we proposed an 
algorithm, along with convergence results, that resolves 
what we expect to be large-scale problems into very sim- 
ple subproblems, which can then be solved in closed form. 
Finally, to illustrate both the model and the algorithm, we 
presented numerical results. 

Additional research in the future will include empirical 
analysis, as well as the incorporation of dynamics into the 
modeling scheme. 

APPENDIX 

Input and output data can be found tables in an additional 
appendix at the Operations Research Home Page: 

http://www.informs.org/pubs 

in the Online Collection. 
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PROOF OF THEOREM 1. Assume that (q*, e*, I* ,* pI) 
* 

Rms+mr+2rmn+rn is an equilibrium. Note that inequality (12) 
holds for all firms i= 1,.. .,m. Hence, summing (12) over 
all firms, we obtain 

M S 
Of[a(qf*) + agi(e*,q*) 

i=1 d=1 - qqid Oqid 

iqd d Pd( i)]X[id iqd] + 
* x [P+d - ] J 

m r ng~* * 

+f [g(el'I) +>3 x [e'- _ t*] 

i=l t=l jl = 
+~~~~ S ~ + 

V(q, e, 1, X ) E Rm4S+mr+2rmn. (A. 1 ) 

Also, from the system ( 13 ) we can conclude that the equi- 
librium must satisfy 

- E_ ) X [p4- _ pJt* ] > O Vpt Rrn 
t=1 j=l i=l 

(A.2) 

Finally, summing (A. 1 ) and (A.2), one obtains variational 
inequality ( 14). 

We now establish the converse of the proof, that is, the 
solution to (14) also satisfies (12) and (13). 

Le (q*, e* I* X* p*) ~Rms~mr+2rmn+rn be a solution of 
(14). If one lets qid ql~, eft eit, lt, =J ll~y ,tj= {7 for all 
i, d,]j, t, and substitutes these values into (14), one obtains 

r n m 

SE [(lto - it*) x [i-t - pJt*] O VpERrn 
t=1 j=l i=l 

(A.3) 

which implies (13). 
Similarly, if one lets PJt p=t* for all j, t, and substitutes 

these values into (14), one obtains 

E-k aefi(qp) +ag1(eiqi*) 
i=1 d=1 L i=i 

aqld qd -Pd 
( Lqid )J]X [id-zd ] 

M S 
[fgi(e7 e*7) + qx[e>)e*] 

m r n 

Z E , [ll-hljeit*] x [Xt1 _ [t4 It 
i=1 t=1 j=4 

V(q, e, 1, X) E RmS+mr+2rmn (A.4) 

which implies that (12) must hold for all the firms. The 
proof is complete. 

PROOF OF COROLLARY 1. Note that the first four terms in 
variational inequality (14) are independent of PtO. The last 

ii 
term in (14), on the other hand, depends only on the sum 
EiL=?1 iv, for j = 1, .. . , n and a fixed pollutant t. The proof 
is complete. 

PROOF OF THEOREM 2. From constraint (9) we have that 

htjet*AlItJ*, Vj, Vt. (A.5) 

It then follows from equilibrium conditions (13) that 

Ehtet* < It*<It= Q5, Vt, Vj. (A.6) 
i=1 i=1 i=l 

The proof is complete. 

PROOF OF LEMMA 1. In view of the definition of F(X) in the 
above model, the left-hand side of inequality (16) takes the 
form 

M S 
O[ui(q ,e ,11) _ aui(q2 e2, 1 x[qj _q2] 

+E EE (- qa' i, i i xi)~ )~l- 
Ei d l qid tqld i id 

- ( 8ui(q2,e ,li) + >ij3t2hit x[eil-e2] 

+ + [ t Cbu itl) 

+ S S [(lt) _ht etl -h{1e2)]x [X) -x;j] 
i=1 t=1 j~l 

+~~~~~~~~ x [et eto2l)(toI2)x[j p A7 
t~~~~~l ~ jjl i1 

After combining and simplifying terms, the expression 
(A.7) reduces to 

?i [ 8u1(q1,e;,l') 8u1(q~siai) 

i=1 d =1 - jjl)jx11 
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j 
[aui(ql eilJi) 

- 

8ui(q2,ei2l)] -rtl t2i 

i=l 
t=l. 

[ 
U 1] _ cbl],) 

+EEE 8c0lt! OP 
[1 l] (A.8) 

But under the assumption that the profit functions are con- 
cave in their respective arguments, we know that the nega- 
tive of the gradient of the utility functions is monotone, and 
hence the expression in (A.8) must be greater than or equal 
to zero. Monotonicity of F(X) has thus been established. 
The proof is complete. 

PROOF OF LEMMA 2. Follows from the same arguments as 
the proof of Lemma 3 in Nagurney and Dhanda (1996). 

PROOF OF THEOREM 3. Assume, on the contrary, that 

_ 

Oui(q*, e7, /7) xqdqd 

E E Oqd qid qid] 
i~1 d~1 ql 

M 
j gi(e7,7* 

+ E E ('etq' x [eit- et*] 
i=1 t=1 I 

m r n ~ (~ 

__1 t=__~ ii 

for some (q, e, ) E K. (A.9) 

But according to variational inequality (14) and (A.9) it 
then follows that 

m r n 

Z Z Z h' X [e>- e *] 
i=l t=l j=l 

m r n 

?E E i [p21(* - /27)] X [IJ I'] 
i=l t=l j=l 

m r n 

+~ >j , [1'*-8h'(et7*, ] x [e - e*] 

i=1 t=1 j=1 

r n nl 

E( Ito_ a(it*) XI _ pt*I 
t=l j=l i=l 

Le g nw =, aniqid 
qid] 

i=l te=l 
m r 

ng @e*, qt*) 

+ E -~~~~i gli x [ilt - it*]> 0. (A.1I0) 
i=l t=l j=l I 

(A. 10), after some simplifications, yields 

m r n m r 1i 

E S E ,*ht x [e] -EE [pt* 
i=l t=1 j=l i=1 t=1 j=1 

r n m 

x[l E E E itox X[- _ pat ](A. 11 ) 
t=i j=1 i=L 

which can be expressed as 

ni r n 

E 
E-E [ht et - it ] x it* 

i-- t= I j= I 

m r n 

+-E E E[t - it] x [pJt*]. (A. 12) 
i=1 t=1 j=1 

But each term in (A. 12) must be less than or equal to zero 
in view of the feasible set given in (20). Therefore, (A. 10) 
cannot hold true, and we have established a contradiction 
to (A.9). Therefore, variational inequality (19) must be 
satisfied. 

Moreover, under the coercivity condition on -Vu, the 
existence of a solution to (19) and (20) is guaranteed from 
the standard theory of variational inequalities (cf. Nagurney 
1993). Finally, according to the Lagrange multiplier theo- 
rem, there exist nonnegative multipliers A* and p* corre- 
sponding to the linear inequality constraints in K1, which 
must satisfy (14). The proof is complete. 

Note that a coercivity condition on the profit functions 
of the firms in an oligopolistic market was also imposed by 
Gabay and Moulin (1980) in order to obtain an existence 
result. 

PROOF OF THEOREM 4. Assume that there are two solutions, 
X* and X, to variational inequality (14); that is, we have 
that, forX* EK and XEK, 

F(X*) (X-X*),>O, VXEOK, (A.13) 

and 

F(X) (X -X) > , VX EK. (A. 14) 

Let X = X and make this substitution into (A. 13); simi- 
larly, let X =X*, and make the substitution into (A.14). 
Adding then the two resulting inequalities yields: 

[F(X* )-F(X C)] [X,-X* ] 
,8[jui(q*,e,,l*) Cui(q-,e,1)] 

ft j[aui(q*,es*, *) u(q-j, , li)] [ef* Jt] 

i=1 t=1 

+i Ei )_ ,( gi) X Utj* _ Z] ~>A O. 



NAGURNEY AND DHANDA / 435 

But the left-hand side of (A. 15) must be less than zero, 
under the assumption of strict monotonicity, and thus we 
must have that q1* =-id, for all i, d, et* = i, for all i, t, and 

lJ = llp for all ij, t. The proof is complete. 

PROOF OF THEOREM 5. It follows from Lemmas 1 and 2 
that the function F(X) is both monotone and Lopschitz 
continuous, under the stated assumptions. Hence, as estab- 
lished in Theorem 2 of Korpelevich (1976), the modified 
projection method is guaranteed to converge under these 
conditions. 
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