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Modularity and Innovation in Complex Systems 
 

Abstract 
 

The problem of designing, coordinating, and managing complex systems has been central to 

the management and organizations literature. Recent writings have tended to offer modularity as, at 

least, a partial solution to this design problem. However, little attention has been paid to the problem 

of identifying what constitutes an appropriate modularization of a complex system. We develop a 

formal simulation model that allows us to carefully examine the dynamics of innovation and 

performance in complex systems. The model points to the trade-off between the destabilizing effects 

of overly refined modularization and the modest levels of search and a premature fixation on inferior 

designs that can result from excessive levels of integration.  The analysis highlights an asymmetry in 

this trade-off, with excessively refined modules leading to cycling behavior and a lack of 

performance improvement. We discuss the implications of these arguments for product and 

organization design. 

 
 



1.  Introduction 

 The problem of designing, managing, and coordinating the myriad activities that make up 

large-scale complex systems such as economic institutions, products, or organizations has been 

central to the concerns of the management literature, as well as the social sciences more generally. 

Simon’s (1962) essay on the Architecture of Complexity is a central building block in the analysis of 

the properties of complex systems and the articulation of general design principles for such systems. 

He argued that complex systems that are hierarchical and decomposable tend to evolve faster and 

toward stable, self-generating configurations. In recent years, the debate over modular versus 

integrated design logics has resurrected interest in Simon’s early ideas (Baldwin and Clark 2000, 

Sanchez and Mahoney 1996).  

 There are two broad themes underlying the extant literature on modularity. The first addresses 

the contingencies under which modular design structures are favored over integrated ones (Alexander 

1964, Baldwin and Clark 2000, Langlois 2002, Simon 1962, Ulrich and Eppinger 1999). Modular 

design structures are advocated as particularly useful when systems become so large and 

interdependencies between elements of the system so numerous that integrated design efforts become 

almost impossible (Parnas 1972, Simon 1962). In other words, modular designs are a useful means of 

managing complexity.  

A second theme in the literature revolves around the “power of modularity” wherein the focus 

is on the advantages that modular design structures have over their integrated counterparts. In the 

product design context, modular design structures, it is argued, are favored over integrated ones when 

flexibility and rapid innovation are more important than overall performance (Ulrich and Eppinger 

1999). Modularization, if carried out properly, is expected to accelerate product innovation primarily 

through two mechanisms, autonomous (within component) and modular (mix-and-match of modules) 

innovation (Baldwin and Clark 2000). In an organizational context, it is argued that modularization of 

product designs can pave the way for similar modularization of organization designs thus facilitating 

coordination of activities via an “information structure” rather than managerial authority or hierarchy 

(Sanchez and Mahoney 1996). Other authors have suggested that modular designs facilitate 
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outsourcing via contracts and/or alliances of non-critical components or modules (e.g., Schilling and 

Steensma 2001) and thereby reduce the scope of activities that firms need to pursue in-house. Still 

others have argued that modular designs help multi-business firms “rapidly respond to altered 

business conditions by recombining diverse divisional resources and product-market domains” 

(Galunic and Eisenhardt 2001: 1244).   

While extant research has yielded a great deal of understanding of the contingencies under 

which modularity is good and what benefits they provide, there is little systematic research on how 

decision makers partition designs into modules and what are the risks of partitioning incorrectly. If 

one side of the coin is that modular designs are the answer to managing complexity, then the flip side 

is to consider how “good or appropriate” modular designs may be realized in the face of complexity. 

The following description of Intel’s Itanium chip design effort not only illustrates the difficulty of 

designing an appropriate modular architecture of a complex product system but also how much of a 

trial and error process it is: 

“Developing Itanium, previously known by the code name Merced, has been an intense and 
unpredictable effort that sometimes teetered on the brink of disaster. Time and again, a project 
team of as many as 500 circuit engineers, chip architects and software wizards found it has 
underestimated the difficulty of its task, more than once sinking into a quagmire of 
complexity with no obvious way out…The team broke into separate groups, each working on 
one piece without knowing just how they would fit together…The chip’s architects had 
divided functions into separate modules, like letting teams of subcontractors design the rooms 
of a house. In mid-1996, Mr. Thomas slotted the modules together for the first time in what 
the team called the floor plan. Bad news: The floor plan was larger than anyone had expected, 
far too big to fit on a die of silicon that Intel could manufacture economically…The team 
found itself sweating through a “die diet” as it worked feverishly to slim down bloated 
functions and subsystems…But individual modules, initially only rough designs, kept 
growing larger as they were refined. After months of struggle, senior Intel managers realized 
that they could solve the size problem only with a radical step: a new manufacturing process 
that would let engineers shrink every wire and transistor…The switch to a new fabrication 
process appeared to solve most of the Merced project’s problems, at the cost of a few months 
of delay. But the project team soon found itself in a fresh predicament as they worked to tune 
up the movement of signals across the chip. In a well functioning chip, signals flit from 
module to module in a precisely timed choreography, with the speed of the chip as a whole 
determined by the slowest signals. Merced engineers started looking for those slowpokes and 
found ways to speed them up via slight changes to the chip design. Soon, however, it became 
clear that many of these changes were disrupting the chip’s delicate signal ballet, forcing 
engineers of other modules to rework their designs as well. The team found itself in a 
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nightmarish world where a change to one module would ripple through the work of several 
hundred other people, leaving more problems in its wake” (Hamilton 2001: 1) 

The excerpt above makes it clear how difficult it is to achieve an appropriate modular design 

for an organization’s innovative efforts with regard to a complex product system such as a 

microprocessor. This should not be surprising as the problem of designing large-scale, interacting 

systems has been found to be NP-complete (Chapman, Rozenblit, and Bahill 2001, Schaefer 1999). 

As Schaefer (1999: 325) notes, “it would seem unlikely that a firm could ever hope to uncover an 

optimal modular design partition for a complex product”. On the premise that “good” designs, 

modular or otherwise, are a product of evolution rather than foresight, it is important to understand 

the nature and significance of alternative design choices and their performance implications.  

As a first step in examining these questions, we believe that there is a need for careful 

examination of the performance implications of over- and under-modularity given a true underlying 

structure for a design problem. We attempt to meet this need by setting up a formal model that 

enables us to understand the evolutionary dynamics of complex systems. Our analysis points to 

critical tradeoffs as the degree of modularity of a complex system is varied. On the one hand, 

modularity offers the advantage of parallelism (Marengo et al., 2000). However, given that systems 

are likely to be nearly, not fully decomposable (Simon, 1962), fine-grained partitioning of decision 

problems is likely to result in efforts at improvement with respect to one partition perturbing the 

performance of other partitions. Moderate amounts of such self-perturbation1 have a useful property 

of encouraging search and preventing premature lock-in to inferior designs. However, high levels of 

such self-perturbation inhibit the ability of the system to systematically improve and exploit the 

intelligence of prior search efforts. 

We explore the implications of over- and under-modularity by carefully examining the 

influence, individually and in combination, of two key processes of design evolution: (1) local search, 

and, (2) recombination. We report two sets of analyses, the first of which systematically examines the 

benefits of modularity that the literature reports. This also forms the baseline to facilitate 

                                                 
1 The term self-perturbation is used since the performance landscape of individual partitions is perturbed not by some 
external shock but by adaptation efforts within the same system. 
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interpretation of the second set of results where we examine the implications of over- and under-

modularity given a true underlying structure.  

In the first set of analyses, we assume that the designers have discovered the true underlying 

structure or decomposition of a decision problem and explore the interaction among the various 

processes of adaptation (local search, recombination based on module selection and recombination 

based on firm-level selection). Consistent with the literature on modularity, we indeed find evidence 

for the powerful adaptive benefits of modular designs. Among the more nuanced results, we find a 

complementarity between recombination and local search, with recombination playing a powerful 

adaptive role in the early stages of design evolution, and local search helping obtain incremental 

performance improvements in later stages.   

In the second set of analyses, we relax the assumption that designers have uncovered the true 

underlying structure and examine the performance implications of over- and under-modularity 

relative to the true underlying structure. We first explore the relationship between modularity 

(integration) and the rate of adaptation through local search. We show that there is an important 

asymmetry between the performance implications of over- and under-modularity. While excessive 

levels of integration can slow the pace of adaptation and can lead to premature lock-in to an inferior 

outcome, excessive levels of modularity can, in the limit, stymie any possibility of adaptive change.  

Second, we expand the scope of the search process to include recombination in addition to local 

search to examine the robustness of the initial result regarding the asymmetry in adaptive 

performance of over- and under-modularity.  We find that when both local search and recombination 

are present, we again see a greater performance penalty for over- rather than under-modularity.   

The next section briefly reviews the literature on modularity and draws out the key 

assumptions that inform our formal model. Section 3 describes the basic structure of the formal 

model. In section 4, we present the results. Finally, in section 5 we discuss the implications of our 

results for modularity in products and organizations.  
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2.  Complex Systems and Modularity  

Simon (1962: 468) defined a complex system as “one made up of a large number of parts that 

interact in a nonsimple way…in such systems…given the properties of the parts and the laws of their 

interaction, it is not a trivial matter to infer the properties of the whole.” The complexity here stems 

primarily from the often unknown nature and magnitude of interactions between different parts of the 

system and the consequent system performance implications. The nature of the interaction between 

two parts may vary from positive (increasing in one another), negative (decreasing in one another), or 

unrelated. Furthermore, the nature of the interaction may alternate between positive, negative, and 

unrelated over different ranges of interaction strength. As a result, overall system performance can 

exhibit highly non-linear and/or non-monotonic behavior in response to changes in one or more parts. 

The Itanium chip design effort described above clearly falls in the domain of the complex. The 

designers often discovered unknown interactions between different parts of the system and 

encountered unanticipated changes in performance. In such systems, ostensibly localized adaptation 

can have serious consequences for overall system performance. In this paper, the term “complex 

system” is used to describe such a set of interdependent decisions. This conceptualization is general 

enough to include product design decisions such as the Itanium chip above, organization design 

decisions such as the division of labor between people, departments, or geographic locations, or 

broadly the firm itself and its organization of interdependent activities. It is also broadly consistent 

with a decision-theoretic model of organizations wherein information processing and decision 

making is decentralized among specialized agents (Radner 1993). 

Modularity is a general set of design principles for managing the complexity of such large-

scale interdependent systems. It involves breaking up the system into discrete chunks that 

communicate with each other through standardized interfaces or rules and specifications (Langlois 

2002). Organizational structures can be seen as modular to a greater or lesser degree. Grouping 

activities by functions (unitary) or by products (M-form) and delineating the lines of authority seeks 

to minimize redundant information flow, reduce conflicts, and improve coordination. Clearly, for 

modularity to work as designed, it is important to adhere to some rules in creating modules. 
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Central to the notion of modularity is the distinction between interactions within sub-systems 

and interactions between sub-systems of complex systems (Simon 1962). When there are no 

interactions between sub-systems, the system is fully decomposable. However, fully decomposable 

systems are rarely observed in nature, though near decomposability – where interactions between 

sub-systems are significantly weaker than the interactions within sub-systems – is not uncommon 

(Simon 1982: 212-213). Drawing on Simon (1962), Baldwin and Clark (2000: 63) define “a module 

as a unit whose structural elements are powerfully connected among themselves and relatively 

weakly connected to elements in other units”. In addition, they argue that, “when the complexity of 

one of the elements crosses a certain threshold, that complexity can be isolated by defining a separate 

abstraction that has a simple interface. The abstraction hides the complexity of the element; the 

interface indicates how the element interacts with the larger system” (Baldwin and Clark 2000: 64). 

Thus, the key goal of realizing modular designs is to group strongly interacting elements or parts 

together and separate weakly interacting ones. 

Baldwin and Clark’s (2000) discussion of modularity and design points to two senses in 

which the term “modularity” may be deployed. In the first, it can denote the “real” underlying 

structure for a given design problem, reflecting not only the partitioning and decomposition of the 

task but also the design of interfaces among the design elements. In this usage, terms such as under- 

or over-modularized make little sense.  

If the search for the “appropriate” number of modules were trivial, then reserving the term 

“modular” for this ideal decomposition seems reasonable. However, as noted earlier, the problem of 

complex system design is not an exact science that will always result in an optimal solution. Not only 

are systems not fully decomposable, but also apt partitions that capture the nearly decomposable 

structure of complex systems is not self-evident. Designers are searching on the matrix of design 

parameters at four levels: (1) the “appropriate” number of modules; (2) the “appropriate” mapping of 

design elements to the modules; (3) the “appropriate” interactions among the design elements within 

each module; and, (4) the “appropriate” interfaces or interactions between modules. Therefore, given 

the complexity of the design task, indeed its impossibility (Schaefer 1999), in making guesses about 
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the optimal number of modules, firms may err on the side of greater modularity or greater integration. 

Consistent with this second usage, we use the term “module” to refer to a particular partitioning and 

decomposition of a task and are agnostic as to whether any given modularization does or does not 

capture the true underlying structure of the complex system under consideration.   

The literature suggests that modular designs confer several benefits such as reducing design 

and development time (Ulrich and Eppinger 1999), allowing parallelism in design and testing 

(Baldwin and Clark 2000, Loch, Terwiesch, and Thomke 2001), multiply design options through 

mix-and-match of modules (Baldwin and Clark 2000), and allowing localized adaptation within 

hidden modules (Baldwin and Clark 2000). In the models that follow, we attempt to examine how the 

reported benefits vary with design choices that are over- or under-modularized.  

3.  Model 

 The model set-up for examining the performance implications of over- and under-modularity 

requires the specification of three features of the system: (1) the representation of the true underlying 

structure of the system and its performance landscape; (2) how designers create modular 

representations of the true structure (i.e., design choices); and, (3) the processes of adaptation on the 

landscape that allows the evaluation of different modular representations of the true structure. We 

elaborate each serially. 

3.1. Modeling the true underlying structure of the system of interdependent choices 

 A firm, or more specifically, a firm’s decision problem which can include product design or 

organization design decisions, is represented as a row vector of N attributes or decision variables [a1, 

a2, a3, …an]. Without loss of generality, in our model, each decision variable can take on two possible 

values (0, 1). Thus, there is a set of 2N possible organizational forms. For instance, use of group-

based work organization might represent a setting of 1 and 0 otherwise. It follows that different 

settings for the decision variables of the organization have different performance implications. 

Continuing with the work organization example, choice of work organization is likely to have 

interactions with the incentive system, accounting methods and systems, quality of employee effort, 
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physical layout, and so on. For instance, it is conceivable that group-based work organization entail 

collective workspaces, which in turn requires better group level monitoring and regulation of 

employee effort. In other words, some combinations of decision choices may yield performance 

improvements while others may undermine it (Ichniowski, Shaw, and Prennushi 1997, Macduffie 

1995).  

The performance landscapes underlying such a representation of firms tend to be rugged with 

several peaks and valleys since tweaking a decision choice that results in sub-unit performance gains 

does not always lead to concomitant firm-level performance improvements due to the presence of 

interactions between decision choices. A stylized real world analogue of such performance 

degradation is likely when an individual with no formal ties to a team is rewarded based on team 

performance. In this case, individual incentives are likely to stimulate higher performance. The 

performance of the firm depends on the settings (1s or 0s) of the decision variables and the 

interactions among them. When there are no interactions between decision variables, each decision 

makes an independent contribution to firm performance. As the interactions between decision 

variables increase, the contribution of each decision choice to firm performance becomes increasingly 

interdependent. The complexity of the firm stems primarily from the often unknown interactions as 

well as the functional form guiding the interactions among the decision variables. For this reason, the 

performance landscapes of such complex decision problems tend to be rugged and non-linear with 

actions on one decision choice having ripple effects on other decision choices (Levinthal 1997).2 

Simon’s (1962) exposition on the architecture of decomposable systems forms the basis for 

our modeling of the interaction patterns among the decision variables. Figure 1 illustrates an 

interaction matrix for a problem with 18 decision variables and 3 modules. This structure represents 

the true underlying modularity against which performance of over- and under-modularized structures 

                                                 
2 Our characterization of a performance landscape here bears a close link to the work of Kauffman (1993).  A critical 
distinction, though, lies in the fact that the systems that we explore have some unknown, but inherent structure, while 
Kauffman examines purely random structures of interactions.  The inherent structure imposed by modularity serves to 
create a locally correlated landscape (Bar-Yam 1997) which is in contrast to a rugged landscape of random interactions 
explored in work by Kauffman (1993) and others (cf., Levinthal 1997). Thus, the modeling is a blend of the conceptual 
ideas of Simon (1962) and the technical apparatus of Kauffman (1993).  
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are compared. In the figure, an alphanumeric notation represents each decision variable. The 

alphabetic portion denotes the module, while the numeric portion denotes the respective decision 

variable. The x’s in each row-column intersection represents the presence of interdependence 

between decision variables. Reading across a row, an “x” indicates that the row variable is affected 

by the column variable. Conversely, reading down a column, an “x” indicates that the column 

variable affects the row variable. Therefore, x’s positioned symmetrically above and below the 

principal diagonal represents reciprocal interdependence between decision variables.   

Within each module, each decision variable is tightly coupled with the other decision 

variables in the same module, i.e., reciprocal dependence (Thompson 1967). In addition, modules 2 

and 3 have a weakly coupled interface relationship with the next higher module, denoted by a single 

x below the principal diagonal. We see that the contribution of an individual variable, ai, depends on 

other variables as indicated in Figure 1. Thus, decision variable a1 depends on decision variables a2, 

a3, and a4. In contrast, decision variable b1 depends on 4 other decision variables (a4, b2, b3, b4).  

As a result, decision variable a1 can result in 16 (24) possible levels of performance, depending on its 

own value (0 or 1) and the value of the 3 other decision variables on which it depends, while decision 

variable b1 can take on 32 possible levels of performance, depending on its own value and the value 

of the 4 other decision variables on which it depends.  

Therefore, consistent with our discussion of modularity earlier, the interaction matrix in 

Figure 1: (1) is nearly decomposable; (2) indicates that the interaction within modules is stronger than 

the interaction between modules; (3) most of the information within a module is encapsulated in the 

sense that changing four of the six decision variables will not affect the performance of other 

modules; and, (4) the interfaces are few and small (two decision variables each). In this sense, we 

have been faithful to the accepted principles of modularity in defining the real, underlying structure 

of the problem.  

The performance contribution (ωi) of each decision variable (ai) is determined both by the 

state (0 or 1) of the ith decision choice and the states of the ‘j’ other decision choices on which it 

depends. Thus, 
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ωi =  ωi(ai; ai
1, ai

2…ai 
j) 

The value of ωi is treated as an i.i.d. random variable drawn from the uniform distribution3 U 

[0,1] for each configuration of ai and the ‘j’ other decision choices on which it depends. Thus, for a 

firm with 18 decision variables there are 218 distinct uniform random numbers associated with each 

firm configuration. Firm performance Ω is a simple average of the ωi over the N decision choices. 

 

 

In addition to initializing the performance landscape as characterized above, the states (0,1) of 

the vector of decision variables ai are drawn at random at the start of an experiment. Since any single 

run is sensitive to the inherent randomness in both the initial states of the decision variables and the 

initialization of the performance landscape, we replicated each experiment 100 times with different 

starting seeds for both the specification of the performance landscape and the starting state of the 

system to remove the stochastic component endemic to any single run. The reported results, unless 

noted otherwise, are averaged over 100 runs.   

3.2.  Modeling the design representation of the true structure 

 In each of the experiments described here, a modular structure, i.e., the number of partitions 

or modules that would guide design decisions, was specified.  We determined module composition 

(i.e., the decision variable(s) that would be assigned to a design module) for a given value of N, such 

that the design modules were equal in size. More generally, for a system with N decision variables 

and M true modules we created ‘K’ design structures or modules ‘s’, where the kth  module sk 

comprised (N/K) decision variables. We assume each module to be equal in size4 to simplify the 

decision problem into simply choosing ‘K’. Thus, the composition of each module sk was determined 

according to the following rule: 

                                                 
3 The results are robust to alternative distributional assumptions. The results with exponential and log-normal 
distributions are qualitatively similar to that reported in here.  These results are available from the authors. 
4 We also implemented modules that were unequal in size. However, this approach does not discriminate between 
incorrect assignment of decision variables to modules, and the incorrect choice of number of modules. Therefore, for our 
analysis we use the more controlled experiment of equal sized modules.  
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To examine the implications of over- and under-modularity, we varied the values of ‘K’ such that K 

> M and K < M respectively. Such a decomposition of a decision problem is akin to the partitioning 

of the Itanium chip design effort into a number of teams with roughly equal assignment of decision 

responsibilities. The representation is founded on the premise that designers do not have perfect 

knowledge of the true structure of the decision problem. They are making guesses about the correct 

partitioning and these guesses may be classified as over-modularized (K > M) or under-modularized 

(K < M) with reference to the true structure (M). 

3.3. Processes of adaptation 

 The literature emphasizes two main benefits of modular designs. The first is the ability to 

engage in parallel and autonomous adaptation (i.e., local search) within modules and the second is the 

ability to mix-and-match or recombine equivalent modules from different systems. We model both 

processes of adaptation with and without selection at the module and firm level respectively and 

examine their sensitivity to over- and under-modularization. 

3.3.1. Local search 

Local search or module-level innovation describes within-module or team-level innovation 

attempts. One of the primary objectives of modular designs is to facilitate relatively simple local 

innovation attempts by each team. Continuing with the Itanium chip design example, each design 

team engaged in the optimization of the module for which it was responsible. Note that such local 

search efforts, though performance-enhancing at the module-level, are not necessarily so at the 

system level. We saw from the description that several successful local search efforts indeed turned 

out to be globally dysfunctional. 

We implement such forms of local search for module improvement as follows. In each period 

of the experiment, the actors within each module attempt to enhance the performance of their 

particular module. Actors are assumed to “see” the performance of their given module and can 
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anticipate what incremental changes from the existing decision set would imply for module 

performance. Thus, adaptation occurs through a process of off-line, local search implemented 

simultaneously in each of the modules (Marengo, Dosi, Legrenzi, and Pasquali 2000, Rivkin and 

Siggelkow 2003)5. Within each module, a decision choice is selected at random and actors within 

each module evaluate the efficacy of flipping the decision choice (0,1) by the criterion of 

improvement in module performance. The innovation is implemented if there is a perceived 

performance increase in the module. On the other hand, if there is perceived degradation (or no 

improvement) in performance, then the innovation is discarded. Such innovation attempts occur in 

parallel in each of the modules6. 

More formally, consider a decision choice κMa j ∈ that is flipped to aj′. Then if, 

∑∑ ¬¬ >
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where ai is the state of decision choice ‘i’ in the module before the local search attempt, ai′ is the state 

of decision choice ‘i’ after the local search attempt, and ‘n’ is the number of decision choices in the 

module. The equation shows that the outcome of the local search attempt is retained if the 

performance of the module is higher as a result. Such a process of local search has been a central 

tenet of behavioral models of organizational learning (Cyert and March 1963, March and Simon 

1958, Nelson and Winter 1982, Vincenti 1990) and are widely used in the operations research 

literature as well, especially to tackle problems that are hard to solve optimally (Ahuja, Ergun, Orlin, 

and Punnen 2002 provide an overview, see also Rayward-Smith, Osman, Reeves, and Smith 1996). 

                                                 
5 This capability, as suggested by Rivkin & Siggelkow (2003), may be a function of effective accounting systems that are 
able to facilitate the evaluation of module level performance. Indeed, activity based costing is widely deployed to track 
the performance of organizational sub-units (Cooper and Kaplan 1992).  
6 We also implemented a sequential innovation regime where, in each period, a single module is randomly selected for 
innovation.  The results of this experiment are qualitatively similar, though the process unfolds more slowly. We decided 
that the parallel innovation process is more appropriate since it directly exploits the benefits of modularity.  
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3.3.2. Recombination 

Recombination involves the substitution of one module with another. We explore three 

variants of recombination. First, we explored recombination in conjunction with firm selection, 

whereby, one firm copies a randomly chosen equivalent module from another firm with the 

likelihood of adopting modules from higher performing firms being higher7. This is akin to imitating 

practices from firms that are observed to be high performers. Second, we explored recombination 

with module selection. Instead of a random exchange of modules between firms, we calculate the 

fitness of the candidate modules for exchange and replace the lower performing module with the 

higher performing module. This may be seen as intelligent recombination or “transfer of best 

practices” (Szulanski 1996) where information about performance of individual modules is available 

to the designer. This is particularly relevant in cases where a firm has multiple product teams that 

work on independent designs8. Finally, we explored recombination in conjunction with both firm and 

module-level selection. In all cases, in each period, each firm has an opportunity to engage in 

recombination.  

More formally, consider two functionally equivalent modules Mα
s and Mα

t (i.e., two models 

that contain the same set of decision variables) from two different firms, ‘s’ and ‘t’ respectively. Then 

recombination in period ‘p+1’ is represented as: 

 

Recombination with firm selection was implemented as above with the condition that the 

target of replication (i.e., the firm ‘t’) was selected based on its performance. Selection processes are 

                                                 
7 Our implementation of recombination with firm selection bears a similarity with the crossover operator employed in the 
genetic algorithm (GA) literature (see Holland 1992). However, there are important differences as well. First, whereas 
crossover involves the exchange of policy variables between two firms, recombination, as we model it, involves the 
substitution of one module from one firm with a module from another firm. Second, the number of decision choices 
chosen for crossover is randomly chosen and there is no attempt to exchange only equivalent decision variables. The 
recombination implemented here substitute only functionally equivalent modules. The net effect of these two differences 
is that whereas crossover increases the policy variable diversity in the population, recombination has the opposite effect – 
it reduces the diversity of policy variables. Thus the results of recombination reported here are not strictly comparable 
with the results from the GA literature. 
8 Intel Corp., for instance, usually has multiple teams working on the next generation of their microprocessor. In such 
cases one form of learning between teams occurs through the adoption of each others’ designs. 

t
p

s
p MM )()1( αα =+
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modeled as being proportionate to fitness using the roulette wheel algorithm (Goldberg 1989).  Each 

system is mapped to a roulette wheel such that each firm’s slice is proportional to its fitness. A 

random number is drawn and the firm on the roulette wheel that spans this random number is 

selected. The probability that a firm will be selected equals its performance level divided by the sum 

of the performance of all systems in the population at that time. More formally,  

 

 

where, p(si), the probability of selecting the ith firm is given by the ratio of the performance, Ωi, of the 

ith firm to the total performance of all ‘S’ firms in the population. The cumulative probability is then 

computed as, 

 

A total of ‘S’ random numbers ‘rS’ distributed i.i.d. in the interval [0, 1] are drawn and the firms with 

cumulative probabilities that span the random numbers are selected according to the following rule9, 

 

Recombination in conjunction with selection at the module level was implemented as follows. If,  
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where, ‘nMα’ is the number of decision choices in each module.  

4.  Analysis  

4.1.  Experiment 1: Baseline results 

 The formal model outlined above includes two evolutionary processes: (1) local adaptation 

within modules; and, (2) recombination with and without selection at the module and firm level. In 
                                                 
9 Note as is standard in models of evolutionary processes a single system can be selected for replication multiple times 
(Wilson and Bossert 1971).  This property is necessary if the distribution of forms is to change in a population. 
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order to carefully examine the effects of over- and under-modularity, it is important to first 

understand the performance benefits or the power of modularity and the conditions under which they 

are realized. Toward this goal, the first set of experiments is designed to explicate the adaptive 

benefits of modularity without changing the variable of main interest in this paper, i.e., the degree of 

modularity. Thus, in the set of experiments reported in this section, we assume that the designers 

have uncovered the true underlying modular structure, i.e., the design structure maps perfectly with 

the true structure.  

We draw out the implications of the search processes using a series of nested models with 

increasing levels of complexity. We sequentially model the following evolutionary processes, both 

individually and in combination: (1) Recombination (see § 3.3.2.); and, (2) Off-line local search (see 

§ 3.3.1.). 

All the experiments reported here, unless specified otherwise, model the interaction among 10 

firms on a given landscape. Each of the 10 firms is represented by a row vector of 30 decision 

choices. The 10 firms have identical design structures where the number of design partitions equals 

the real underlying decomposition (i.e., 5 partitions). However, the initial settings (i.e., 1s and 0s) for 

the decision choices for each of the 10 firms are independently specified by random assignment.  

Figures 2 and 3 present the results for different models, based on the average of 100 independent runs 

of these populations of ten organizations.  

4.1.1. Recombination 

Figure 2 presents a series of models that examine the value of recombination in conjunction 

with selection at the module and firm level respectively. From Figure 2 we see that recombination 

with firm selection (thin, dotted line), surprisingly, provides only marginal performance 

improvement. Recombination, potentially, can serve two purposes. One, it can provide a new starting 

point for processes of local search especially when firms are stuck on local peaks (Kauffman 1993). 

Two, it can also create a new organizational form, and in turn generate greater diversity for selection 

processes (Levinthal 1997). The first effect is not present here, since there is no local search in this 
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initial analysis. The second effect is also muted since recombination acts on a relatively modest 

population of 10 firms. With only 10 firms in the population, selection quite rapidly reduces the 

diversity of firms by picking the higher performing ones. With the selection process rapidly reducing 

diversity, the subsequent random exchange of modules between homogeneous firms adds little to 

performance. We see in Figure 2 that as we expand the number of firms in the population from 10 to 

100 (thick, straight line), performance is superior to that of the 10-firm model, thus amplifying the 

positive variation creation role of recombination. 

Modularity not only offers the possibility of recombination with firm selection, but also the 

possibility of substituting one, apparently superior module, with another. The thick dotted line in 

Figure 2 plots the results of recombination with module level selection without firm selection. 

Contrasting this model with recombination with firm selection (thin, dotted line in Figure 2) 

demonstrates the superiority of recombination with module selection over recombination with firm-

level selection. Interestingly, however, recombination with module selection does worse as the 

number of firms in the population increases (thin, straight line).  The results from recombination with 

firm selection with 100 firms indicate that the value of recombination, which contributes to firm 

adaptation by adding variety to the population, is enhanced by an increase in the size of the relevant 

population. However, in the case of recombination with module selection with 100 firms, the 

challenge of winnowing out inferior modules via module selection is compounded by the increase in 

the number of firms. The selection force at the module level essentially operates at the dyadic level, 

i.e., comparing pairs of modules of two firms. Such dyadic selection performs well when the size of 

the population is relatively small (10 firms), but when the number of firms increases (100 firms), 

selection at the dyadic level is relatively weak and results in poor performance.  

Finally, the contrast between recombination with module and firm selection (grey line in 

Figure 2) and recombination with module selection (thick, dotted line) indicates that the introduction 

of firm selection provides little performance benefits to recombination with module selection alone.  

However, when the diversity of firms in the population increases, then the complementary nature of 

recombination and module and firm selection is again enhanced (see thin, dashed line).  
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4.1.2. Local search  

 In Figure 3, the thin, dotted line presents the results of the local search process alone (see § 

3.3.1.). Note that in the absence of selection or interaction among the 10 firms, the average 

performance of any single firm is unrelated to the number of firms in the population. We see that the 

process of local search yields steady system performance improvements with a rapid increase in the 

first 25 periods and a subsequent slow down as the firms climb to local peaks on the landscape. 

4.1.3. Relationship among Adaptive Processes 

The results from the models that include both processes of adaptation – local search and 

recombination – reveal important relationships among them (see Figure 3). First, we find that local 

search and recombination with firm selection (thin, straight line) does not perform significantly better 

than local search alone (thin, dotted line). Consistent with the results reported above, recombination 

with firm selection does not yield significant benefits when the diversity of firms in the population is 

low. This finding is replicated when local search is included in the model. In contrast, local search 

and recombination with module selection (thick, straight line) outperforms local search (thin, dotted 

line) alone. There appear to significant complementary benefits of recombination with module 

selection and local search. Whereas recombination enhances the rate of improvement in performance, 

generating steep increases in the initial periods, local search helps attain incremental improvements in 

the later periods of the experiment.  

 This complementary role of local search and recombination with module selection is robust to 

the inclusion of firm-level selection.  This property is seen by contrasting local search and 

recombination with module selection (thick, straight line) and local search and recombination with 

module and firm selection (thick, dotted line). On the face of it, the inclusion of firm-level selection 

appears to be marginally dysfunctional.  That is, recombination without firm selection obtains a 

higher level of performance than recombination with firm-level selection. In the latter case, the 

operation of selection on the 10 firms tends to prematurely destroy valuable module diversity in the 

population of firms. On the other hand, without firm selection this diversity is preserved, providing a 
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richer, and more varied context for the processes of recombination and local search to operate. 

However, as before, we see that as we expand the number of firms in the population to 100 (thick 

grey line), firm-level selection again plays a useful and complementary role.  

To summarize, in the first set of experiments we assumed that the designer has solved the 

problem of discovering the real underlying decomposition of the firm’s decision problem (i.e., design 

structure of five modules). Given this assumption, we sought to evaluate the conditions under which 

the benefits of modularity are realized. Our results on the different models suggest that local search 

alone is quite effective in improving firm performance over time. However, its benefits are 

incremental and take relatively long for fruition. Recombination, on the other hand, provides rapid 

and steep increases in performance, provided the designer can make informed decisions about the 

mixing-and-matching based on module level performance information. We also find that firm 

performance information seems to be less useful when there are few firms from which to choose. 

However, when the number of firms increases, recombination with module selection alone will tend 

to be an inefficient route to performance improvement. As the number of firms increase, it is more 

efficient to screen poor performing firms without examining their module performance. As the 

number of candidate firms in the population increase, firm- and module-level performance 

information respectively are complements rather than substitutes. 

4.2. Experiment 2: Degree of modularity and effectiveness of adaptation 

 Having examined the power and benefits of modularity and the conditions under which they 

are realized, we now turn to the central question of interest in this paper, i.e., whether and how the 

degree of over- or under-modularity reinforces or undermines the benefits of modularity observed in 

experiment 1. We retain the same true structure as described in experiment 1, but relax the 

assumption that designers have uncovered the true structure. We set up several alternative design 

structures that vary along the continuum of over- and under-modularized and examine the 

implications of the search processes in each of the design structures. We sequentially report the 

results of the experiments, first with local search only and subsequently with local search, 

recombination, and selection in conjunction.  
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4.2.1.  Local search 

 We first explore the question of how the degree of modularity affects the rate and 

effectiveness of within-module local search. In other words, given the underlying real decomposition 

of the decision problem (5 modules in the experiments described here), how does over- or under-

modularization affect local adaptation outcomes and firm performance over time?  

Figure 4 plots the average performance level of firms that vary in their degree of modularity 

over 100 periods. First, examining just the performance trends, we find that structures with less than 

or equal to 5 modules (i.e., the real decomposition) exhibit a monotonically increasing performance 

trend over time. On the other hand, for designs with greater than 5 modules, performance is non-

monotonic over time and the maximum performance level declines with increasing degree of 

modularity. At the extreme, when the number of modules is equal to the number of decision choices 

(i.e., 30 modules), performance over the simulated time period cycles up and down with little 

improvement in performance after period 10. Indeed, for an individual firm, we see a relatively 

dramatic, sine-wave like cycling up and down in performance that, in Figure 4, is “smoothed” 

through averaging across the 100 runs. 

The monotonic performance increase in the case where the structure corresponds to the real 

decomposition is not surprising since design decisions are nearly, though not fully, aligned with the 

performance outcome. The results on the over- and under-modularized structures are less self-

evident. In the case of the under-modularized structures (i.e., less than 5 partitions), the gradual 

monotonic increase is driven by two considerations. First, and more straightforward, the rate of 

progress is gradual since larger modular structures allow for fewer parallel innovations in each 

period, i.e., a 2-module structure will attempt only two local innovations in each period as opposed to 

a 4-module structure that will attempt twice that number. Consequently, we observe a slower but 

increasing performance level over time for the under-modularized designs. Second, making 

innovation decisions on larger modules creates greater constraints on innovation due to the 

potentially larger number of interactions of each decision variable with other decision variables in the 
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same module.10 This not only reduces the frequency of successful local search, but also reduces the 

likelihood of adopting innovations that would reduce overall performance as a result of ignoring the 

presence of interactions among decision choices.  

In the case of the over-modularized designs, the graphed lines in Figure 4 reflect a jagged 

performance curve over time. With greater modularity, designers tend to ignore the interactions 

among the decision choices. For instance, if a module of six decision choices is split into two 

modules, the innovation decision in each module is made contingent only on the interaction with two 

other decision choices rather than five. Ignoring these interactions results in innovations that may 

enhance local (within module) performance, but may degrade global performance. With increasing 

modularity, the performance degradation gets magnified by increasing the number of apparent local 

innovation opportunities in each period and increasing the likelihood that these innovations, while 

locally attractive, may be dysfunctional for the firm.  

 We carried out t-tests11 of differences in average performance over the 100 independent runs 

comparing each of the modular design decisions with the real underlying decomposition (5 modules). 

At the beginning of the simulation, there were no differences in the performance of the different 

design structures (-1.177 < t < -0.058). However, by period 25, there are significant differences 

between the performance of the 5-module design and the over- and under-modularized designs (1.739 

< t < 17.265). As expected, the differences were larger at the tails (t = 17.265 for modularity of 1 and 

15.992 for modularity of 30). At the end of the 100th period, the 5-module design asymptotes at an 

average performance level of 0.680. On the other hand, the fully integrated system (i.e., one module) 

reaches a performance of 0.66312 by the 100th period and the maximally modularized design (i.e., 30 

modules) cycles between an average performance of 0.565 and 0.575. At the end of the simulation, 

the performance differences between the 5-module design and the 10-, 15- and 30-module designs 

respectively are statistically significant (t > 2.12). The 3-module and 6-module design performance is 
                                                 
10 A decision variable need not interact with all other variables within the same module.  However, a larger module 
increases the likelihood of within module interaction. 
11 The Scheffe tests which correct for multiple comparisons were also significant. 
12 The fully integrated design does not reach its asymptote by period 100, though its subsequent rate of progress is quite 
modest.  By the 1000th period a performance level of 0.6847 is obtained. 
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statistically no different from that of the 5-module design (t < 0.89), suggesting that small deviations 

from the real decomposition are less damaging. 

 We also examined the robustness of the results to changes in N (the number of decision 

variables), M (the number of true underlying modules), and K (the extent of over- and under-

modularity). In particular, we implemented local search with N=48 (M=6, 12 and 2≤ K≤ 24) and 

N=60 (M=10, 12 and 2≤ K≤ 30). The results were quite similar to that with N=30 and M=513.  

 In sum, the results of the first set of experiments suggest several general findings. First, there 

is a systematic relationship between degree of modularity and innovation outcomes. In particular, 

consistent with prior work (Marengo, Dosi, Legrenzi, and Pasquali 2000), the effectiveness of 

innovation is lower, or even disruptive, the greater is the deviation of the design structure from the 

true underlying structure. Second, and more surprising, we find that, in the long run, erring on the 

side of greater integration poses lower performance penalties than erring on the side of greater 

modularity. Greater levels of modularity offer not only the advantages of higher levels of parallelism 

in search, but, in a world of imperfect modularization, also increases the degree to which innovation 

efforts in one module perturb the performance of other modules, often in dysfunctional ways. This 

cross-module perturbation is a variant of what Kauffman has termed “dancing landscapes” 

(Kauffman 1993).  In moderation, this perturbation of the performance landscape of one partition by 

changes in another may facilitate long-run adaptiveness of the system by preventing it from locking 

into inferior local optima. However, at higher levels of modularization, and in turn cross-module 

perturbation, the system is unable to exploit effective configurations previously identified. The 

system tends to engage in excessive, and largely ineffective, search based on local perceptions of 

what constitutes progress.    

4.2.2.  Local search and recombination  

 The experiment above explored the implications of varying degrees of modularity in the 

context of local adaptation. In the second set of analyses, we considered the effectiveness of 

                                                 
13 These results are not reported due to space constraints, but they are available with the authors on request. 
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recombination for modules that may not correspond to the true decomposition of the firm. A question 

remains as to whether the prior results regarding the dangers of over-modularity suggested by the 

initial analysis carryover when processes of recombination are incorporated as well.14   

With recombination but no local search, we observe the opposite of our prior results --- erring 

on the side of greater modularity appears to be preferred to erring on the side of under modularity 

(see Figure 5).  While the model structure with the correct decomposition (5 modules) outperforms 

all models (t > 2.00), the performance degradation is higher in the case of under-modularized designs 

compared with the corresponding over-modularized designs.  Recombination aids in the rapid 

increase in performance. By the 15th period, all models approach their maximum performance. The 

results suggest that selection-based recombination favors over-modularized rather than under-

modularized designs. The process of recombination accounts for this result. Recombination helps 

firms avoid local peaks, since improvement in several decision choices occur simultaneously. 

However, this also suggests that as the size of each module gets larger, a greater number of decision 

choices will get replaced and increase the likelihood of incorrect changes in decision choices. This 

reduces the chances of firm-level performance improvement.  

 However, introducing local search into this structure, as illustrated in Figure 6, demonstrates 

that the dangers of over-modularity identified in the initial analysis remain.  As expected, the 5-

module design, corresponding to the true decomposition, outperforms all other design structures, 

asymptoting at 0.718. By the 100th period, the difference between the real decomposition and the 

over-modularized designs is statistically significant (t > 2.40), while the difference between the 5-

module and 3-module designs is not significant. The 15-module and 30-module designs exhibit a 

small improvement in performance over the starting value, while the remaining design choices 

exhibit fairly similar patterns, asymptoting between 0.69 and 0.71.  

                                                 
14 As in the analysis in Section 4.1, we again assessed robustness of the results by varying N (48 and 60), M (6 and 8), K 
(ranging from 2 to 30), and the number of firms in the population (10 and 100). The overall pattern of results was 
essentially the same with the actual asymptotes being higher in the case of a population of 100 systems. These results are 
available with the authors. 
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 This finding is indicative of an interesting interaction between the processes of local search 

and recombination. When the designs are under-modularized, there is a positive relationship between 

recombination and local search. Local search compensates for the relative ineffectiveness of 

recombination in the case of an under-modularized system. On the other hand, under very high levels 

of modularity, local search and recombination appear to be counteracting each other with each 

process tending to reverse the innovative outcomes of the other. For module selection to be a useful 

mechanism of adaptation, the modules themselves need to be relatively fixed and interchangeable 

between firms. With local search in the context of small sized modules, the process of change within 

the module and across modules via module selection conflict with each other. Thus, our initial 

finding of an asymmetric performance penalty for over- versus under- modularized systems is robust 

to the inclusion of the full set of adaptive processes. 

In order to provide systematic evidence of performance differences between under-

modularized and over-modularized designs, we performed two sets of regressions. First, we regressed 

performance in the 100th period in the analyses presented in Figure 6 against a dummy variable 

“UNDER”, where the variable is coded 1 if it is under-modularized with respect to the true structure 

and coded 0 if it is over-modularized. The coefficient on “UNDER” was positive and significant (β = 

0.0751; t = 12.28) suggesting that under-modularized designs have significantly higher performance 

than over-modularized designs.  

In a second set of regressions, we sought to estimate the penalty (slope) for deviation in 

modularity. First, we regressed performance in the 100th period on “UNDER-MOD” – the deviation 

from the true structure for the under-modularized designs. Thus, the value of “UNDER-MOD” is 

either -4 (1-module design), -2 (3-module design) or 0 (5-module design). The results indicate that a 

unit increase in under-modularity reduces performance by 0.0059. Similarly, we regressed 

performance in the 100th period on “OVER-MOD” – the deviation from the true structure for the 

over-modularized designs. Thus, the value of “OVER-MOD” is either 25 (30-module design), 10 

(15-module design), 5 (10-module design), or 0 (5-module design). The results indicate that a unit 

increase in over-modularity reduces performance by 0.0075. If we assume that the two regressions 
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are independent, we can compute the statistical significance of the difference in the two coefficients 

(Difference in coefficients / Difference in standard errors). Such a computation yields a t-value of 

2.34, thereby providing robust support for our argument about the asymmetric performance effects of 

over- and under-modularity. 

5.  Discussion 

 The analysis reported above has yielded several general findings. First, we find that given an 

unknown underlying decomposition of a system, designers are better off erring on the side of 

integration rather than on the side of greater modularity. This finding is robust to the introduction of 

module recombination between systems and is consistent with models of complexity theory that have 

shown systems to exhibit chaotic behavior when modularity is taken to the extreme (Kauffman 1995: 

258-264). This finding is also consistent with the experience of the Itanium chip design team 

described in the introduction. The design team began with an architecture that they believed was an 

appropriate modularization of the chip’s functions. However, the presence of significant cross-

module interdependencies hampered and disrupted the local module-level innovation and refinement 

efforts of the autonomous teams. The gains from parallelism seem to encounter a trade-off with the 

increased time spent in testing and integration of the system. The only circumstance under which 

over-modularity might be marginally preferred is when a firm decides to pursue innovation only 

through recombination and is not engaged in any local adaptation, which is clearly not the case in the 

Itanium example and, more generally, instances of such behavior are difficult to identify.  

 Second, effective recombination requires complementary selection processes.  Recombination 

carried out in the presence of information about module performance yields tangible gains. For 

recombination based on firm-level selection to be an effective source of adaptive change, ex ante 

heterogeneity in designs and modules is a necessary condition. In the absence of such variety, as our 

experiments demonstrate, recombination based on firm-level selection can destroy valuable diversity 

in the population of design choices and result in inferior performance outcomes. The interesting 

implication here is that when there is a limited diversity of available designs, there are significant 

performance benefits from recombining high performing modules even when the overall system or 
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organization designs are not necessarily high performing. However, when there is a high level of 

heterogeneity in design choices, firm-level selection becomes a necessary condition for effective 

adaptation through recombination. Filtering high performing designs as candidates for recombination 

generates significant performance benefits.   

Translating these results into implications for product design, we can expect that in an internal 

selection environment (i.e., product development and innovation within an organization), the 

requisite high levels of heterogeneity may not be present. Organizations do not typically have more 

than a handful of teams working on alternative designs. In the case of Itanium chip project, both Intel 

and Hewlett-Packard bet on only one design. Given that the project outlay in this case was estimated 

to be $5B (Markoff and Lohr 2002), it is unrealistic to expect firms to pursue multiple system designs 

from which to select. Consequently, within the firm, the value of recombination may be limited. In a 

market context, we can expect a greater degree of system and module variety and the possibility of 

realizing the benefits of recombination is higher. However, performance information at both the 

module- and system-level is a jointly necessary condition for realizing the benefits of recombination. 

For products such as the PC where there are independent markets for modules (e.g., microprocessor, 

disk drive etc.) the value of recombination is undisputed. However, for products such as the Windows 

Operating System, there are no independent markets for the individual modules making it difficult to 

obtain module performance information. Thus, the value of market-based recombination is also 

contingent on the existence of markets for modules.  

 In sum, while we acknowledge the benefits of modularity, we caution against unabashed 

enthusiasm for ever increasing degrees of modularity in design decisions.  Modularity, like any 

design variable, involves tradeoffs (Alexander 1964). Consistent with the presence of such tradeoffs, 

Fleming and Sorenson (2001) show that intermediate levels of modularity tend to produce the most 

useful inventions. The apparent clarity of module-level innovative effort may mask, in dysfunctional 

ways, the broader system complexity. Excessive modularization may blind the designer to potentially 

important interactions between decision choices and result in dysfunctional perturbations in module 

and system level performance that constrain evolution to inferior designs. The speed and efficiency 
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gains from modularization will be offset by the increased time spent in the testing and integration 

phase, where the consequences of ignored dependencies will come to the fore.  

Designers engage in an act of creation, but unlike a divine creator they lack omniscience.  

Choices of modules are guesses about appropriate decompositions; decompositions, which even in 

reality, are only partial (i.e., nearly decomposable).  In making these guesses, our analysis suggests 

that there should be no presumption of a “pro-modularity” bias.   

Ultimately, we need to model the evolution of modularity itself. We have begun to explore the 

trade-offs in making these choices, but a fuller examination of their dynamics is yet to be explored. 

How do designers decide on the number of modules and how do they map decision choices to 

modules? How do independent choices of designers affect the social interaction of products in the 

marketplace, i.e., the ability to mix-and-match modules and the degree of module compatibility? In 

several aspects, our analysis is only partial and incomplete. We examined the implications of modular 

design choices on innovation. However, modularity has other important implications for strategy, 

organizational coordination, incentives and so on. Understanding the full implications of modular 

designs require a better understanding of the trade-offs among these various objectives. We hope the 

present analysis helps us move along this trajectory.  
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Figure 2  Power of Modularity: Recombination with module and firm selection N=30, M=5 
(100 runs)
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Figure 1 Interaction matrix of decision choices within the complex system 

 a1 a2 a3 a4 a5 a6 b1 b2 b3 b4 b5 b6 c1 c2 c3 c4 c5 c6 
a1   x x x x x             
a2 x  x x x x             
a3 x x  x x x             
a4 x x x  x x             
a5 x x x x  x             
a6 x x x x x               
b1      x   x x x x x       
b2       x  x x x x       
b3       x x  x x x       
b4       x x x  x x       
b5       x x x x  x       
b6       x x x x x         
c1            x   x x x x x 
c2             x  x x x x 
c3             x x  x x x 
c4             x x x  x x 
c5             x x x x  x 
c6             x x x x x   
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Figure 3  Power of Modularity: Local search and recombination with firm and module 
selection N=30, M=5 (100 runs)
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Figure 4  Local search N=30, M=5 (N=100)
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Figure 5  Recombination without local search N=30, M=5, 10 firms (100 runs)
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Figure 6  Recombination with local search N=30, M=5, 10 firms (100 runs)
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