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Hospitals typically allocate beds based on historical 
patient volumes. If funding decreases, hospitals will 
usually try to maximize resource utilization by allocat-
ing beds to attain occupancies close to 100% for sig-

nificant periods of time. This will invariably cause days in which 
hospital occupancy exceeds capacity, at which time critical entry 
points (such as the emergency department and operating room) 
will become blocked. This creates significant concerns over the  
patient quality of care.

Hospital administrators have very few options when hospital 
occupancy exceeds 100%. They could postpone admissions 
for “planned” cases, bring in additional staff to increase ca-
pacity, or instigate additional methods to increase hospital dis-
charges such as expanding care resources in the community. 

All options are costly, bothersome, or cannot be actioned im-
mediately. The need for these options could be minimized by 
enabling hospital administrators to make more informed de-
cisions regarding hospital bed management by knowing the 
likely number of discharges in the next 24 hours.

Predicting the number of people who will be discharged in 
the next day can be approached in several ways. One approach 
would be to calculate each patient’s expected length of stay 
and then use the variation around that estimate to calculate 
each day’s discharge probability. Several studies have attempt-
ed to model hospital length of stay using a broad assortment 
of methodologies, but a mechanism to accurately predict this 
outcome has been elusive1,2 (with Verburg et al.3 concluding 
in their study’s abstract that “…it is difficult to predict length 
of stay…”). A second approach would be to use survival anal-
ysis methods to generate each patient’s hazard of discharge 
over time, which could be directly converted to an expected 
daily risk of discharge. However, this approach is complicated 
by the concurrent need to include time-dependent covariates 
and consider the competing risk of death in hospital, which 
can complicate survival modeling.4,5 A third approach would 
be the implementation of a longitudinal analysis using margin-
al models to predict the daily probability of discharge,6 but this 
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BACKGROUND: Knowing the number of discharges that 
will occur is important for administrators when hospital 
occupancy is close to or exceeds 100%. This information 
will facilitate decision making such as whether to bring 
in extra staff, cancel planned surgery, or implement 
measures to increase the number of discharges. We 
derived and internally validated the TEND (Tomorrow’s 
Expected Number of Discharges) model to predict the 
number of discharges from hospital in the next day.

METHODS: We identified all patients greater than 1 year 
of age admitted to a multisite academic hospital between 
2013 and 2015. In derivation patients we applied survival-
tree methods to patient-day covariates (patient age, 
sex, comorbidities, location, admission urgency, service, 
campus, and weekday) and identified risk strata having 
unique discharge patterns. Discharge probability in each 
risk strata for the previous 6 months was summed to 

calculate each day’s expected number of discharges.

RESULTS: Our study included 192,859 admissions. The 
daily number of discharges varied extensively (median 
139; interquartile range [IQR] 95-160; range 39-214). 
We identified 142 discharge risk strata. In the validation 
patients, the expected number of daily discharges 
strongly predicted the observed number of discharges 
(adjusted R2 = 89.2%; P < .0001). The relative difference 
between observed and expected number of discharges 
was small (median 1.4%; IQR −5.5% to 7.1%). 

CONCLUSION: The TEND model accurately predicted 
the daily number of discharges using information typically 
available within hospital data warehouses. Further study 
is necessary to determine if this information improves 
hospital bed management. Journal of Hospital Medicine 
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method quickly overwhelms computer resources when large 
datasets are present. 

In this study, we decided to use nonparametric models to 
predict the daily number of hospital discharges. We first iden-
tified patient groups with distinct discharge patterns. We then 
calculated the conditional daily discharge probability of pa-
tients in each of these groups. Finally, these conditional daily 
discharge probabilities were then summed for each hospital 
day to generate the expected number of discharges in the 
next 24 hours. This paper details the methods we used to cre-
ate our model and the accuracy of its predictions. 

METHODS
Study Setting and Databases Used for Analysis 
The study took place at The Ottawa Hospital, a 1000-bed 
teaching hospital with 3 campuses that is the primary referral 
center in our region. The study was approved by our local re-
search ethics board. 

The Patient Registry Database records the date and time 
of admission for each patient (defined as the moment that a 
patient’s admission request is registered in the patient regis-
tration) and discharge (defined as the time when the patient’s 
discharge from hospital was entered into the patient regis-
tration) for hospital encounters. Emergency department en-
counters were also identified in the Patient Registry Database 
along with admission service, patient age and sex, and patient 
location throughout the admission. The Laboratory Database 
records all laboratory studies and results on all patients at the 
hospital. 

Study Cohort
We used the Patient Registry Database to identify all peo-
ple aged 1 year or more who were admitted to the hospital 
between January 1, 2013, and December 31, 2015. This time 
frame was selected to (i) ensure that data were complete; and 
(ii) complete calendar years of data were available for both 
derivation (patient-days in 2013-2014) and validation (2015) 
cohorts. Patients who were observed in the emergency room 
without admission to hospital were not included. 

Study Outcome
The study outcome was the number of patients discharged 
from the hospital each day. For the analysis, the reference point 
for each day was 1 second past midnight; therefore, values for 
time-dependent covariates up to and including midnight were 
used to predict the number of discharges in the next 24 hours. 

Study Covariates
Baseline (ie, time-independent) covariates included patient 
age and sex, admission service, hospital campus, whether or 
not the patient was admitted from the emergency department 
(all determined from the Patient Registry Database), and the 
Laboratory-based Acute Physiological Score (LAPS). The latter, 
which was calculated with the Laboratory Database using re-
sults for 14 tests (arterial pH, PaCO2, PaO2, anion gap, hema-
tocrit, total white blood cell count, serum albumin, total biliru-

bin, creatinine, urea nitrogen, glucose, sodium, bicarbonate, 
and troponin I) measured in the 24-hour time frame preced-
ing hospitalization, was derived by Escobar and colleagues7 
to measure severity of illness and was subsequently validated 
in our hospital.8 The independent association of each labora-
tory perturbation with risk of death in hospital is reflected by 
the number of points assigned to each lab value with the total 
LAPS being the sum of these values. Time-dependent covari-
ates included weekday in hospital and whether or not patients 
were in the intensive care unit.

Analysis
We used 3 stages to create a model to predict the daily ex-
pected number of discharges: we identified discharge risk stra-
ta containing patients having similar discharge patterns using 
data from patients in the derivation cohort (first stage); then, 
we generated the preliminary probability of discharge by de-
termining the daily discharge probability in each discharge risk 
strata (second stage); finally, we modified the probability from 
the second stage based on the weekday and admission ser-
vice and summed these probabilities to create the expected 
number of discharges on a particular date (third stage).  

The first stage identified discharge risk strata based on the 
covariates listed above. This was determined by using a survival 
tree approach9 with proportional hazard regression models to 
generate the “splits.” These models were offered all covariates 
listed in the Study Covariates section. Admission service was 
clustered within 4 departments (obstetrics/gynecology, psychi-
atry, surgery, and medicine) and day of week was “binarized” 
into weekday/weekend-holiday (because the use of categorical 
variables with large numbers of groups can “stunt” regression 
trees due to small numbers of patients—and, therefore, statisti-
cal power—in each subgroup). The proportional hazards model 
identified the covariate having the strongest association with 
time to discharge (based on the Wald X2 value divided by the 
degrees of freedom). This variable was then used to split the 
cohort into subgroups (with continuous covariates being cat-
egorized into quartiles). The proportional hazards model was 
then repeated in each subgroup (with the previous splitting 
variable[s] excluded from the model). This process continued 
until no variable was associated with time to discharge with a P 
value less than .0001. This survival-tree was then used to cluster 
all patients into distinct discharge risk strata.  

In the second stage, we generated the preliminary proba-
bility of discharge for a specific date. This was calculated by 
assigning all patients in hospital to their discharge risk strata 
(Appendix). We then measured the probability of discharge 
on each hospitalization day in all discharge risk strata using 
data from the previous 180 days (we only used the prior 180 
days of data to account for temporal changes in hospital dis-
charge patterns). For example, consider a 75-year-old patient 
on her third hospital day under obstetrics/gynecology on De-
cember 19, 2015 (a Saturday). This patient would be assigned 
to risk stratum #133 (Appendix A). We then measured the 
probability of discharge of all patients in this discharge risk 
stratum hospitalized in the previous 6 months (ie, between 
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June 22, 2015, and December 18, 2015) on each hospital day. 
For risk stratum #133, the probability of discharge on hospital 
day 3 was 0.1111; therefore, our sample patient’s preliminary 
expected discharge probability was 0.1111.

To attain stable daily discharge probability estimates, a 
minimum of 50 patients per discharge risk stratum-hospital-
ization day combination was required. If there were less than 
50 patients for a particular hospitalization day in a particular 
discharge risk stratum, we grouped hospitalization days in that 
risk stratum together until the minimum of 50 patients was col-
lected.    

The third (and final) stage accounted for the lack of granular-
ity when we created the discharge risk strata in the first stage. 
As we mentioned above, admission service was clustered into 4 
departments and the day of week was clustered into weekend/
weekday. However, important variations in discharge probabili-
ties could still exist within departments and between particular 
days of the week.10 Therefore, we created a correction factor to 
adjust the preliminary expected number of discharges based 
on the admission division and day of week. This correction fac-
tor used data from the 180 days prior to the analysis date within 
which the expected daily number of discharges was calculated 
(using the methods above). The correction factor was the rela-
tive difference between the observed and expected number of 
discharges within each division-day of week grouping. 

For example, to calculate the correction factor for our sam-
ple patient presented above (75-year-old patient on hospital 
day 3 under gynecology on Saturday, December 19, 2015), we 
measured the observed number of discharges from gynecol-
ogy on Saturdays between June 22, 2015, and December 18, 
2015, (n = 206) and the expected number of discharges (n = 
195.255) resulting in a correction factor of (observed-expect-
ed)/expected = (195.255-206)/195.206 = 0.05503. Therefore, 
the final expected discharge probability for our sample patient 
was 0.1111+0.1111*0.05503=0.1172. The expected number of 
discharges on a particular date was the preliminary expected 
number of discharges on that date (generated in the second 
stage) multiplied by the correction factor for the correspond-
ing division-day or week group. 

RESULTS
There were 192,859 admissions involving patients more than 
1 year of age that spent at least part of their hospitalization 
between January 1, 2013, and December 31, 2015 (Table). Pa-
tients were middle-aged and slightly female predominant, with 
about half being admitted from the emergency department. 
Approximately 80% of admissions were to surgical or medical 
services. More than 95% of admissions ended with a discharge 
from the hospital with the remainder ending in a death. Almost 
30% of hospitalization days occurred on weekends or holidays. 
Hospitalizations in the derivation (2013-2014) and validation 
(2015) group were essentially the same, except there was a 
slight drop in hospital length of stay (from a median of 4 days 
to 3 days) between the 2 periods. 

Patient and hospital covariates importantly influenced the 
daily conditional probability of discharge (Figure 1). Patients 

admitted to the obstetrics/gynecology department were nota-
bly more likely to be discharged from hospital with no influence 
from the day of week. In contrast, the probability of discharge 
decreased notably on the weekends in the other departments. 
Patients on the ward were much more likely to be discharged 
than those in the intensive care unit, with increasing age asso-
ciated with a decreased discharge likelihood in the former but 
not the latter patients. Finally, discharge probabilities varied 
only slightly between campuses at our hospital with discharge 
risk decreasing as severity of illness (as measured by LAPS)  
increased. 

TABLE. Description of Study Cohort

Cohort

Derivation 
(2013–2014)

Validation (2015)

HOSPITALIZATIONS N = 143,894 N = 48,965

BASELINE COVARIATESa

Mean age (SD)
   Overall
   Obs/Gyn
   Psychiatry
   Surgery
   Medicine

57.0 ± 20.5
33.6 ± 9.5
41.9 ± 17.4
58.7 ± 18.4
66.3 ± 17.8

57.6 ± 20.5
33.9 ± 9.7
41.9 ± 17.6
59.0 ± 18.2
66.5 ± 17.9

Female 81,449 (56.6%) 27,503 (56.2%)

Median LAPS (IQR) [range] 11 (0-38) [0-183] 15 (0-39) [0-180]

Campus
  General
  Civic
  Heart Instititute

69,098 (48.0%)
58,479 (40.6%)
16,317 (11.3%)

23,714 (48.4%)
20,024 (40.9%)
5227 (10.7%)

Patient admitted from emergency department 73,145 (50.8%) 25,931 (53.0%)

Department
  Obs/Gyn
  Psychiatry
  Surgery
  Medicine

23,171 (16.1%)
6370 (4.4%)

56,084 (39.0%)
58,269 (40.5%)

7557 (15.4%)
2171 (4.4%)

18,640 (38.1%)
20,597 (42.1%)

Median hosptial length of stay (IQR) 4 (2-8) 3 (2-8)

Outcome
  Discharge
  Death

138,456 (96.2%)
5438 (3.8%)

Yes

47,156 (96.3%)
1809 (3.7%)

No

HOSPITAL DAYS N = 1,284,226 N = 398,683

TIME-DEPENDENT COVARIATESb

Weekend or holiday 382,466 (29.8%) 116,905 (29.3%)

Patient in ICU 38,673 (3.0%) 10,244 (2.6%)

a Unit of analysis = hospitalization.
b Unit of analysis = hospital-day.

NOTE: Data from the derivation cohort were used to create the discharge risk strata (Ap-
pendix A). These were used to cluster patients in the validation cohort to predict the daily 
number of discharges. Abbreviations: ICU, intensive care unit; IQR, interquartile range; LAPS, 
Laboratory-based Acute Physiological Score; Obs/Gyn; obstetrics/gynecology; SD, standard 
deviation.
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The TEND model contained 142 discharge risk strata (Ap-
pendix A). Weekend-holiday status had the strongest asso-
ciation with discharge probability (ie, it was the first splitting 
variable). The most complex discharge risk strata contained 
6 covariates. The daily conditional probability of discharge 
during the first 2 weeks of hospitalization varied extensively 
between discharge risk strata (Figure 2). Overall, the condition-
al discharge probability increased from the first to the second 
day, remained relatively stable for several days, and then slow-
ly decreased over time. However, this pattern and day-to-day 
variability differed extensively between risk strata.

The observed daily number of discharges in the validation 
cohort varied extensively (median 139; interquartile range [IQR] 
95-160; range 39-214). The TEND model accurately predicted 
the daily number of discharges with the expected daily number 
being strongly associated with the observed number (adjust-
ed R2 = 89.2%; P < .0001; Figure 3). Calibration decreased but 
remained significant when we limited the analyses by hospital 
campus (General: R2 = 46.3%; P < .0001; Civic: R2 = 47.9%; P 
< .0001; Heart Institute: R2 = 18.1%; P < .0001). The expected 
number of daily discharges was an unbiased estimator of the 
observed number of discharges (its parameter estimate in a lin-

FIG 1. Influence of patient and hospital factors on the daily probability of 
hospital discharge. These 3 plots illustrate the influence of 6 factors (service, 
weekday, patient location, patient age, hospital campus, and LAPS) on the 
daily probability of discharge (conditional on the patient being alive and still in 
hospital on that day).

NOTE: Abbreviations: HI, heart institute; ICU, intensive care unit; LAPS, Laboratory-based 
Acute Physiological Score; Ob/Gyn; obstetrics-gynecology; Psych, psychiatry.
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ear regression model with the observed number of discharges 
as the outcome variable was 1.0005; 95% confidence interval, 
0.9647-1.0363). The absolute difference in the observed and 
expected daily number of discharges was small (median 1.6; 
IQR −6.8 to 9.4; range −37 to 63.4) as was the relative difference 
(median 1.4%; IQR −5.5% to 7.1%; range −40.9% to 43.4%). 
The expected number of discharges was within 20% of the ob-
served number of discharges in 95.1% of days in 2015. 

DISCUSSION
Knowing how many patients will soon be discharged from the 
hospital should greatly facilitate hospital planning. This study 
showed that the TEND model used simple patient and hospi-
talization covariates to accurately predict the number of pa-
tients who will be discharged from hospital in the next day.  

We believe that this study has several notable findings. First, 
we think that using a nonparametric approach to predicting 
the daily number of discharges importantly increased accura-
cy. This approach allowed us to generate expected likelihoods 
based on actual discharge probabilities at our hospital in the 
most recent 6 months of hospitalization-days within patients 
having discharge patterns that were very similar to the patient 
in question (ie, discharge risk strata, Appendix A). This ensured 
that trends in hospitalization habits were accounted for with-
out the need of a period variable in our model. In addition, the 
lack of parameters in the model will make it easier to transplant 
it to other hospitals. Second, we think that the accuracy of the 
predictions were remarkable given the relative “crudeness” 
of our predictors. By using relatively simple factors, the TEND 
model was able to output accurate predictions for the number 
of daily discharges (Figure 3). 

This study joins several others that have attempted to ac-
complish the difficult task of predicting the number of hospi-
tal discharges by using digitized data. Barnes et al.11 created 
a model using regression random forest methods in a single 
medical service within a hospital to predict the daily number 
of discharges with impressive accuracy (mean daily number of 
discharges observed 8.29, expected 8.51). Interestingly, the 
model in this study was more accurate at predicting discharge 
likelihood than physicians. Levin et al.12 derived a model us-
ing discrete time logistic regression to predict the likelihood 
of discharge from a pediatric intensive care unit, finding that 
physician orders (captured via electronic order entry) could be 
categorized and used to significantly increase the accuracy of 
discharge likelihood. This study demonstrates the potential 
opportunities within health-related data from hospital data 
warehouses to improve prediction. We believe that continued 
work in this field will result in the increased use of digital data 
to help hospital administrators manage patient beds more ef-
ficiently and effectively than currently used resource intensive 
manual methods.13,14 

Several issues should be kept in mind when interpreting our 
findings. First, our analysis is limited to a single institution in 
Canada. It will be important to determine if the TEND model 
methodology generalizes to other hospitals in different juris-
dictions. Such an external validation, especially in multiple hos-

pitals, will be important to show that the TEND model meth-
odology works in other facilities. Hospitals could implement 
the TEND model if they are able to record daily values for each 
of the variables required to assign patients to a discharge risk 
stratum (Appendix A) and calculate within each the daily prob-
ability of discharge. Hospitals could derive their own discharge 
risk strata to account for covariates, which we did not include 
in our study but could be influential, such as insurance status. 
These discharge risk estimates could also be incorporated into 
the electronic medical record or hospital dashboards (as long 
as the data required to generate the estimates are available). 
These interventions would permit the expected number of 
hospital discharges (and even the patient-level probability of 
discharge) to be calculated on a daily basis. Second, 2 poten-
tial biases could have influenced the identification of our dis-
charge risk strata (Appendix A). In this process, we used surviv-
al tree methods to separate patient-days into clusters having 
progressively more homogenous discharge patterns. Each split 
was determined by using a proportional hazards model that 
ignored the competing risks of death in hospital. In addition, 
the model expressed age and LAPS as continuous variables, 
whereas these covariates had to be categorized to create our 
risk strata groupings. The strength of a covariate’s association 
with an outcome will decrease when a continuous variable is 
categorized.15 Both of these issues might have biased our fi-
nal risk strata categorization (Appendix A). Third, we limited 
our model to include simple covariates whose values could be 
determined relatively easily within most hospital administrative 
data systems. While this increases the generalizability to other 
hospital information systems, we believe that the introduction 
of other covariates to the model—such as daily vital signs, lab-
oratory results, medications, or time from operations—could 
increase prediction accuracy. Finally, it is uncertain whether or 
not knowing the predicted number of discharges will improve 
the efficiency of bed management within the hospital. It seems 
logical that an accurate prediction of the number of beds that 
will be made available in the next day should improve deci-
sions regarding the number of patients who could be admit-
ted electively to the hospital. It remains to be seen, however, 
whether this truly happens. 

In summary, we found that the TEND model used a hand-
ful of patient and hospitalization factors to accurately predict 
the expected number of discharges from hospital in the next 
day. Further work is required to implement this model into our 
institution’s data warehouse and then determine whether this 
prediction will improve the efficiency of bed management at 
our hospital. 

Disclosure: CvW is supported by a University of Ottawa Department of Medi-
cine Clinician Scientist Chair. The authors have no conflicts of interest. 
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