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A new method for the determination of pressure–interatomic separation–temperature relationship is inves-
tigated and applied for some alkali halides. The method is developed by using the Mie–Gruneisen equation of
state and the Anderson thermal pressure and an ionic model based on Harrison’s treatment of overlap repulsive
potential which takes into account the interactions up to second neighbors. It is found that the new method yields
satisfactory results in agreement with the available experimental data.

PACS: 64.30.−t, 65.40.De

1. Introduction

The understanding of the ionic solids at nonambient
conditions is an integral part of physical sciences. Mate-
rial scientists, solid state physicists, chemists, and solid
earth geoscientists are routinely confronted with prob-
lems involving ionic solids at high pressure and high tem-
perature [1]. In order to understand the behavior of ionic
solids under the effect of high pressure and high temper-
ature, considerable efforts have been made to determine
the relationship between interatomic separation and tem-
perature for alkali halides [2–7]. Moreover, at high pres-
sure, relatively fewer efforts have been made.

The purpose of present paper is to develop a simple
method for the determination of pressure–interatomic
separation–temperature relationship. The calculations
are performed within the framework of the Mie–
Gruneisen equation of state and Anderson thermal pres-
sure [1]. The potential model considers: (i) the long
range electrostatic interactions in terms of Madelung’s
energy; (ii) the short range overlap repulsive energy be-
tween nearest neighbors and next neighbors by adopt-
ing the analytical potential form derived by Harrison [8]
based on quantum mechanical considerations; and (iii)
the van der Waals dipole–dipole and dipole–quadrupole
interactions. The method of analysis is described in
Sect. 2. The results obtained are discussed and com-
pared with the available experimental data for some al-
kali halides in Sect. 3.

2. Theory and method of calculation

The Mie–Gruneisen equation of state (EOS) can be ex-
pressed as follows [9]:
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P = − dφ

dV
+ Pth , (1)

where φ is the lattice potential energy and V is the vol-
ume. In Eq. (1), the first term on right hand is the pres-
sure due to volume dependence of electronic ground state
energy (static pressure) and the second term is pressure
due to vibration of nuclei (thermal pressure). P is the
externally applied pressure. The correct expression for
thermal pressure Pth can be taken from calculus as fol-
lows:(

∂P

∂T

)

V

=
(

∂Pth

∂T

)

V

= αBT , (2)

where T is the temperature, α is the coefficient of volume
thermal expansion and BT is the isothermal bulk modu-
lus. Upon integration we get

Pth =
∫ T

0

(αBT ) dT . (3)

This becomes TαBT if the product αBT is indepen-
dent of T . This is approximately true above the Debye
temperature θD [10]. However, Anderson [1] pointed out
that the thermal pressure should be dependent on vol-
ume compression. It means that the product αBT may
not be a constant, so Eq. (3) should be modified as [1]:

Pth =
[
α0BT0 +

(
∂BT

∂T

)

V

ln
V0

V

]
T , (4)

where α0 and BT0 are the values of α and BT at refer-
ence temperature T0, V0 — the volume at zero pressure
and reference temperature T0. Substituting Eq. (4) into
Eq. (1), we derived the following EOS:

P = − dφ

dV
+

[
α0BT0 +

(
∂BT

∂T

)

V

ln
V0

V

]
T . (5)

Now using the relation V = xr3, Eq. (5) can be rewrit-
ten as follows:

(829)
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P = − 1
3xr2

dφ

dr
+

[
α0BT0 +

(
∂BT

∂T

)

V

ln
(r0

r

)3
]

T ,

(6)
where x is a constant which depends on the structure of
solid. x equals 2 for NaCl-type and 1.54 for CsCl-type
structures, and r is the interatomic separation.

For the calculation of φ, we use Harrison’s potential
form [8] for the overlap repulsive energy and also con-
sider van der Waals (vdW) dipole–dipole and dipole–
quadrupole interactions. Within the framework of Har-
rison’s model the total lattice potential energy φ is ex-
pressed as follows:

φ = −aMZ2e2

r
− C

r6
− D

r8
+ φrep , (7)

where the first term on the right-hand side of Eq. (7) is
the electrostatic Coulomb energy with aM as Madelung’s
constant which is equal to 1.7476 for NaCl-type struc-
tures and 1.7627 for CsCl-type structures, e — the charge
of the electron, and Z — the valency. The second and
third terms are van der Waals (vdW) dipole–dipole and
dipole–quadrupole energies. The constants C and D are
related to the dipole–dipole (cij) and dipole–quadrupole
(dij) interaction coefficients as follows [11]:

C = S+−c+− + S++c++ + S−c− , (8)

D = T+−d+− + T++d++ + T−d− , (9)

where Sij and Tij are lattice sums which had been given
by Tosi [12]. The subscripts + –, + + , – – rep-
resent the cation–anion, cation–cation, anion–anion in-
teractions, respectively. The values of cij and dij are
obtained from the Kirkwood–Muller formulae given be-
low [11]:

cij = −6mc2

N
XiXj

(
Xi

ai
+

xj

aj

)−1

, (10)

dij = −9mc2

Ne2
cij

(
Xi

ni
+

Xi

nj

)
, (11)

where c is the velocity of light, a and X are the polar-
isabilities and molar susceptibilities, respectively. N is
the Avogadro number. ni and nj are the number of out-
most electrons. The values of C and D calculated from
Eqs. (8)–(11) were used in the present work.

For the overlap repulsive energy, we use the analytical
form proposed by Harrison [8]. The normalized charge
density as used by Harrison from quantum mechanical
consideration is

n(r) =
6µ3

π
exp(−2µr) , (12)

where µ is related to the valence p and state energy (εp)
as follows:

εp = −~
2µ2

2m
, (13)

where ~ is Planck’s constant h divided by 2π and m is
the mass of an electron. The total overlap interaction
has been considered as arising from three contributions,

viz., (i) the kinetic energy, (ii) the exchange energy and
(iii) the Coulombian energy of electrons in the overlap
region. These contributions to the overlap repulsive po-
tential are given below [8]:

φke = 70.8εpµr exp
(
−5µr

3

)
, (14)

φex = −2.728e2µ2r exp
(
−4µr

3

)
, (15)

φcoul = −6e2µ3r2 exp(−2µr) . (16)

Harrison [8] assumed that the total overlap interaction
is of the form of the kinetic energy term and can be ex-
pressed by an equation similar to that given by Eq. (14).
So we can write the overlap repulsive potential as follows:

φrep =
n0~2

2m

[
Mµ̄3r exp(−kµ̄r)

+
1
2
M ′µ3

1r
′ exp(−kµ1r

′) +
1
2
M ′µ3

2r
′ exp(−kµ2r

′)
]
.

(17)

For NaCl-type structures, M = 6 and M ′ = 12 are the
numbers of first and second neighbor ions. Similarly, r
and r′ =

√
2r are the first and second nearest neighbor

distances. For CsCl-type structures M = 8, M ′ = 6, and
r′ = (2/

√
3)r. The values of µ1 and µ2 are calculated

using the valence p state energy (εp) given by Eq. (13),
and µ̄ is the arithmetic average of µ1 and µ2 for the cation
and anion.

In order to calculate lattice potential energy φ
from Eq. (7), there remain only two unknown parame-
ters, viz. n0 and k which are obtained from the equilib-
rium condition and the following relations:

(
dφ

dr

)

r=r0

= 0 , (18)

(
d2φ

dr2

)

r=r0

= 9xr0BT0 . (19)

The potential parameters thus calculated are assumed
to be independent of pressure. The input data required
are given in Table I. Now, the values of dφ/dr, the first
derivative of the lattice energy can be calculated using
Eq. (7) at any value of r, and finally the pressure P is
calculated using Eq. (6) at different temperature. The
values of pressure thus calculated for different values of r
are given in Tables II–VI along with the available experi-
mental data. At P = 0, Eq. (6) takes the following form:

T =
1

3xr2

dφ

dr

/ [
α0BT0 +

(
∂BT

∂T

)

V

ln
(r0

r

)3
]

. (20)

Now the values of dφ/dr are calculated for increas-
ing r and the corresponding temperature T is evaluated
from Eq. (20) for some alkali halides. The results ob-
tained are reported in Table VII along with the available
experimental data.
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TABLE IValues of input parameters used in the present work [1, 11, and 13].

Crystal r0

[Å]
α0

[10−4 K−1]
BT0

[kbar]
(∂BT /∂T )V

C

[10−60 erg cm6]
D

[10−76 erg cm8]
n0 k

µ1

[10 nm−1]
µ2

[10 nm−1]
LiF 2.013 0.999 665 −0.051 46 26 3 1.34 3.962 2.112
LiCl 2.570 1.32 297 −0.027 317 221 11.6 1.41 3.962 1.799
LiBr 2.751 1.50 235 −0.025 594 286 9.5 1.34 3.962 1.716
LiI 3.006 1.80 172 −0.023 1265 584 61.6 1.57 3.962 1.619
NaF 2.317 0.96 465 −0.025 139 98 11.5 1.54 3.087 2.112
NaCl 2.820 1.19 240 −0.017 561 455 19.6 1.49 3.087 1.799
NaBr 2.989 1.26 199 −0.016 930 537 30.7 1.52 3.087 1.716
NaI 3.236 1.37 151 −0.013 1755 942 48.3 1.53 3.087 1.619
KCl 3.146 1.11 175 −0.012 607 285 70.9 1.67 2.487 1.799
KBr 3.289 1.16 148 −0.010 1854 962 112 1.71 2.487 1.716
KI 3.525 1.23 117 −0.008 2745 1430 64.5 1.57 2.487 1.619

RbCl 2.570 1.32 297 −0.011 317 221 11.6 1.41 3.962 1.799
RbBr 2.751 1.50 235 −0.009 594 286 9.5 1.34 3.962 1.716
RbI 3.006 1.80 172 −0.008 1265 584 61.6 1.57 3.962 1.619
CsCl 3.571 1.37 180 −0.015 333 357 974 2.08 2.116 1.799

TABLE II

Values of pressure (P in kbar) vs. interatomic separation for LiF crystal at different temperatures.
The available experimental data [15] are given within parentheses.

298 K 573 K 873 K 1073 K
r P r P r P r P

2.013 0(0) 2.035 0(0) 2.066 0(0) 2.093 0(0)
2.003 9.98(10) 2.024 9.98(10) 2.053 9.99(10) 2.077 10.01(10)
1.994 19.94(20) 2.014 19.87(20) 2.041 19.91(20) 2.063 19.94(20)
1.985 29.72(30) 2.004 29.87(30) 2.030 29.96(30) 2.050 30.04(30)
1.977 39.84(40) 1.995 39.64(40) 2.019 39.84(40) 2.037 39.91(40)
1.969 49.88(50) 1.986 49.56(50) 2.009 49.72(50) 2.026 49.75(50)
1.961 59.59(60) 1.977 59.77(60) 1.999 59.47(60) 2.015 59.79(60)
1.954 69.75(70) 1.969 69.15(70) 1.944 69.23(70) 2.004 69.58(70)
1.946 79.46(80) 1.961 78.99(80) 1.982 79.45(80) 1.994 79.46(80)
1.940 89.16(90) 1.953 88.75(90) 1.973 88.97(90) 1.985 89.03(90)

3. Results and discussions

In order to judge the influence of the volume inde-
pendence of thermal pressure of presented results, we
have compared the values of pressure obtained by Eq. (3)
and Eq. (4) with the experimental data [14] for NaCl
crystal at 573 K (Table VIII). We note that the values
of P calculated through Eq. (4) are in close agreement
with experimental data. Thus, Eq. (4) proposed by the
Anderson, seems to be more suitable for the thermal pres-
sure than Eq. (3).

We have proposed a simple method to investigate
the pressure–interatomic separation–temperature rela-
tionship in the wide range of temperatures and pressures.
It is clear from Tables II–VII that the calculated values
for all alkali halides are in good agreement with the ex-
perimental values [14–18], supporting the validity of the
simple method.

For estimating the values of dφ/dr at r, we have
used the potential energy expression given in the form
of Eq. (7). Within the framework of this model, we have
considered vdW dipole–dipole and dipole–quadrupole in-
teractions. The dipole–dipole energy term, which arises
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TABLE III

Values of pressure (P in kbar) vs. interatomic separation for NaF crystal at different temperatures. The available
experimental data [15] are given within parentheses.

298 K 473 K 673 K 873 K 1073 K
r P r P r P r P r P

2.317 0(0) 2.331 0(0) 2.349 0(0) 2.369 0(0) 2.392 0(0)
2.301 9.99(10) 2.314 10.03(10) 2.331 9.98(10) 2.348 9.99(10) 2.370 10.00(10)
2.286 19.91(20) 2.299 19.89(20) 2.314 19.94(20) 2.330 19.95(20) 2.349 19.98(20)
2.273 29.88(30) 2.285 29.91(30) 2.299 29.95(30) 2.314 29.94(30) 2.331 29.94(30)
2.260 39.82(40) 2.272 39.71(40) 2.285 39.88(40) 2.299 39.92(40) 2.315 39.96(40)
2.249 49.65(50) 2.259 49.64(50) 2.272 49.81(50) 2.285 49.85(50) 2.300 49.87(50)
2.238 59.47(60) 2.248 59.51(60) 2.260 59.60(60) 2.273 59.71(60) 2.286 59.84(60)
2.228 69.21(70) 2.237 69.21(70) 2.249 69.37(70) 2.261 69.58(70) 2.273 69.55(70)
2.218 78.74(80) 2.226 78.96(80) 2.238 79.11(80) 2.250 79.30(80) 2.261 79.37(80)
2.210 88.80(90) 2.217 88.72(90) 2.228 88.99(90) 2.240 89.18(90) 2.249 89.44(90)

TABLE IV

Values of pressure (P in kbar) vs. interatomic separation for NaCl crystal at different tem-
peratures. The available experimental data [14] are given within parentheses.

298 K 473 K 673 K 773 K
r P r P r P r P

2.820 0(0) 2.840 0(0) 2.868 0(0) 2.885 0(0)
2.801 5.0(5) 2.819 5.0(5) 2.844 5.0(5) 2.839 5.0(5)
2.784 10.0(10) 2.801 10.0(10) 2.821 10.0(10) 2.814 10.0(10)
2.769 14.9(15) 2.785 14.9(15) 2.804 14.9(15) 2.796 14.8(15)
2.754 19.8(20) 2.769 19.7(20) 2.788 19.8(20) 2.781 19.8(20)
2.740 24.6(25) 2.755 24.6(25) 2.771 24.5(25) 2.763 24.6(25)
2.728 29.8(30) 2.742 29.7(30) 2.755 29.7(30) 2.750 29.8(30)
2.717 34.6(35) 2.730 34.5(35) 2.745 34.7(35)

TABLE V

Values of pressure (P in kbar) vs. interatomic separation for CsCl crystal at different temperatures.
The available experimental data [15] are given within parentheses.

298 K 473 K 673 K 873 K
r P r P r P r P

3.571 0(0) 3.603 0(0) 3.646 0(0) 3.696 0(0)
3.514 9.96(10) 3.537 9.97(10) 3.568 9.99(10) 3.600 10.01(10)
3.468 19.91(20) 3.485 19.92(20) 3.509 19.25(20) 3.532 19.37(20)
3.430 29.33(30) 3.443 29.45(30) 3.462 29.47(30) 3.479 29.37(30)
3.397 38.98(40) 3.407 39.41(40) 3.422 39.29(40) 3.435 39.50(40)
3.368 48.72(50) 3.376 48.99(50) 3.388 49.25(50) 3.398 49.24(50)
3.343 58.97(60) 3.348 59.02(60) 3.358 58.97(60) 3.366 59.13(60)
3.319 68.58(70) 3.323 68.96(70) 3.332 69.01(70) 3.337 68.92(70)
3.298 78.66(80) 3.301 78.49(80) 3.307 78.58(80) 3.311 79.56(80)
3.279 88.29(90) 3.280 88.84(90) 3.284 88.97(90) 3.287 89.10(90)
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TABLE VI

Values of pressure (P in kbar) vs. interatomic separation
for some alkali halides at room temperature. The available
experimental data [14, 16] are given within parentheses.

LiCl LiBr LiI
r P r P r P

2.570 0(0) 2.751 0(0) 3.006 0(0)
2.557 5.0(5) 2.733 5.0(5) 2.978 5.0(5)
2.545 10.1(10) 2.717 10.2(10) 2.954 10.0(10)
2.533 15.2(15) 2.700 15.2(15) 2.931 15.1(15)
2.522 20.5(20) 2.685 20.0(20) 2.911 20.0(20)
2.511 25.5(25) 2.672 24.9(25) 2.893 25.1(25)
2.501 30.5(30) 2.658 29.9(30) 2.876 30.6(30)
2.491 35.6(35) 2.646 34.7(35) 2.860 35.5(35)
2.481 41.0(40) 2.634 39.5(40) 2.847 40.5(40)
2.473 45.8(45) 2.624 44.3(45) 2.833 45.5(45)

NaBr NaI
r P r P

2.989 0(0) 3.237 0(0)
2.966 5.0(5) 3.203 5.0(5)
2.945 10.0(10) 3.173 9.9(10)
2.925 14.8(15) 3.147 14.9(15)
2.908 19.9(20) 3.124 19.9(20)
2.892 24.6(25) 3.103 24.8(25)
2.877 29.7(30) 3.084 29.8(30)
2.863 34.6(35) 3.067 34.8(35)
2.849 39.9(40) 3.049 39.9(40)
2.837 44.6(45) 3.03 45.2(45)

from the interaction between induced dipole moments of
different atoms, is actually the first term in an infinite se-
ries of rapidly converging terms. The dipole–quadrupole
term is interpreted as arising from the interaction of a
dipole moment on one atom with a quadrupole on the
other. Actually, there exists a third term, which varies
inversely as the tenth power of interatomic distance,
which is called the quadrupole–quadrupole term. In
the present article we discuss only the dipole–dipole and
dipole–quadrupole interactions because the quadrupole–
quadrupole term is negligible in ionic crystals.

It should be mentioned that the overlap potential forms
as given by Eq. (17) are based on Harrison’s quantum
mechanical formulation and differ from the traditional
Born–Mayer exponential forms [19, 20] in some impor-
tant aspects. First, the pre-exponential factors appearing
in Eq. (17) also depend directly on the interionic separa-
tion whereas in the Born–Mayer exponential forms, only
the exponential factors depend on r. Secondly, ionic radii
have been introduced arbitrarily as adjustable parame-
ters in the Born–Mayer exponential forms. On the other
hand, in Eq. (17) the pre-exponential as well as exponen-
tial factors depend on fundamental factors like Planck’s

TABLE VII

Values of temperature (T in K) vs. interatomic separation
for some alkali halides at atmospheric pressure (P = 0).
The available experimental data [17, 18] are given within
parentheses.

KCl KBr KI
r T r T r T

3.116 0(0) 3.26 0(0) 3.489 0(0)
3.12 39(39) 3.28 173(175) 3.50 88(90)
3.14 220(222) 3.30 346(349) 3.52 225(230)
3.16 391(395) 3.32 507(512) 3.54 349(355)
3.18 490(492) 3.34 647(650) 3.56 466(475)
3.20 641(645) 3.36 777(780) 3.58 569(576)
3.22 775(778) 3.38 894(894) 3.60 669(680)
3.24 893(894) 3.40 1013(1015) 3.62 754(760)
3.26 1000(1002) 3.64 837(850)
3.27 1049(1052) 3.66 908(915)

RbCl RbBr RbI
r T r T r T

3.259 0(0) 3.41 0(0) 3.628 0(0)
3.26 36(40) 3.42 92(95) 3.64 101(105)
3.28 211(215) 3.44 231(235) 3.66 206(205)
3.30 316(320) 3.46 324(330) 3.68 326(315)
3.32 421(430) 3.48 418(425) 3.70 402(410)
3.34 539(550) 3.50 508(512) 3.72 470(475)
3.36 629(635) 3.52 693(699) 3.74 542(545)
3.38 754(770) 3.54 784(788) 3.76 613(615)
3.40 879(900) 3.56 872(880) 3.78 781(780)
3.42 1008(1020) 3.58 961(970) 3.80 850(845)

TABLE VIII

Values of pressure (P in kbar) obtained by Eq. (3)
(column (a)) and Eq. (4) (column (b)) for NaCl crystal
at 573 K. The experimental values (column (c)) are
taken from Ref. [14].

r
P

(a) (b) (c)
2.831 0 0 0
2.811 5.0 5.0 5
2.794 10.0 10.0 10
2.780 14.7 14.9 15
2.764 19.7 19.8 20
2.750 24.6 24.7 25
2.738 29.4 29.8 30

percentage deviation
at 30 kbar

2% 0.67%
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constant, electronic mass, and energy term values. More-
over, the exponential factors are different in different pair
interactions, whereas in the Born–Mayer potential a com-
mon value of hardness parameters has been taken for
the cation–anion, cation–cation, and anion–anion inter-
actions. This is not justified for the reasons discussed by
Shanker and Agrawal [11]. If one takes unequal values
of hardness parameters for the crystal, then the number
of parameters becomes too large to be determined from
the input data for the lattice parameter and bulk modu-
lus. Thus, the Harrison potential form is superior to the
Born–Mayer exponential forms.

Finally, it should also be mentioned that the formula-
tions proposed in the present study is of general nature
and therefore its application may be extended to different
classes of solids. The results of the present investigation
also lead to the understanding of the equation of state
based on the microscopic details of the theory of inter-
ionic potentials.

Acknowledgments

This work was supported by the Anhui Provin-
cial Natural Science Foundation (No. 090416235 and
No. 11040606 M07), the Talent Foundation of High
Education of Anhui Province for Outstanding Youth
(2011SQRL014), and the Youth Science Foundation of
Anhui University (No. 2009QN024B).

References

[1] O.L. Anderson, Equations of State of Solids for
Geophysics and Ceramic Science, Oxford University
Press, New York 1995.

[2] L.L. Boyer, Phys. Rev. B 27, 1271 (1983).

[3] M. Kumar, Physica B 205, 175 (1995).
[4] R.K. Pandey, J. Phys. Chem. Solids 59, 1157 (1998).
[5] Q. He, Z.T. Yan, Phys. Status Solidi B 223, 767

(2001).
[6] Z.H. Fang, Phys. Status Solidi B 241, 2886 (2004).
[7] Manoj Kumar, M. Kumar, Physica B 403, 3672

(2008).
[8] W.A. Harrison, Phys. Rev. B 23, 5230 (1981).
[9] M. Born, K. Huang, Dynamical Theory of Crystal Lat-

tices, Oxford University Press, Oxford 1954.
[10] S.K. Srivastava, S.K. Sharma, P. Sinha, J. Phys.

Chem. Solids 70, 255 (2009).
[11] J. Shanker, G.G. Agrawal, Phys. Status Solidi B 123,

11 (1984).
[12] M.P. Tosi, in: Solid State Physics, Vol. 16, Eds.

F. Seitz, D. Thurnbull, H. Ehrenreich, Academic
Press, New York 1964, p. 1.

[13] O.L. Anderson, D.G. Isaak, in: Mineral Physics and
Crystallography, A Handbook of Physical Constants,
AGU Reference Shelf 2, Washington (DC) 1995, p. 64.

[14] R. Boehler, G.C. Kennedy, J. Phys. Chem. Solids 41,
517 (1980).

[15] T. Yagi, J. Phys. Chem. Solids 39, 563 (1978).
[16] S.N. Vaidya, G.C. Kennedy, J. Phys. Chem. Solids

32, 951 (1971).
[17] K.K. Srivastava, H.D. Merchant, J. Phys. Chem.

Solids 34, 2069 (1973).
[18] J.L. Tallon, J. Phys. Chem. Solids 41, 837 (1980).
[19] X.Q. Deng, Z.T. Yan, High Temp. High Press. 34,

387 (2002).
[20] F.D. Stacey, Rep. Prog. Phys. 68, 341 (2005).


