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Abstract 
Background: Understanding DNA replication initiation is essential to 
understand the mis-regulation of replication seen in cancer and other 
human disorders. DNA replication initiates from DNA replication 
origins. In eukaryotes, replication is dependent on cell cycle kinases 
which function during S phase. Dbf4-dependent kinase (DDK) and 
cyclin-dependent kinase (CDK) act to phosphorylate the DNA helicase 
(composed of mini chromosome maintenance proteins: Mcm2-7) and 
firing factors to activate replication origins. It has recently been found 
that Rif1 can oppose DDK phosphorylation. Rif1 can recruit protein 
phosphatase 1 (PP1) to dephosphorylate MCM and restricts origin 
firing. In this study, we investigate a potential role for another 
phosphatase, protein phosphatase 2A (PP2A), in regulating DNA 
replication initiation. The PP2A regulatory subunit Rts1 was previously 
identified in a large-scale genomic screen to have a genetic interaction 
with ORC2 (a DNA replication licensing factor). Deletion of RTS1 
synthetically rescued the temperature-sensitive (ts-) phenotype of 
ORC2 mutants. 
Methods: We deleted RTS1 in multiple ts-replication factor 
Saccharomyces cerevisiae strains, including ORC2.  Dilution series 
assays were carried out to compare qualitatively the growth of double 
mutant ∆rts1 ts-replication factor strains relative to the respective 
single mutant strains.   
Results: No synthetic rescue of temperature-sensitivity was observed. 
Instead we found an additive phenotype, indicating gene products 
function in separate biological processes. These findings are in 
agreement with a recent genomic screen which found that RTS1 
deletion in several ts-replication factor strains led to increased 
temperature-sensitivity. 
Conclusions: We find no evidence that Rts1 is involved in the 
dephosphorylation of DNA replication initiation factors.
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Introduction
Errors during DNA replication can lead to aneuploidy and DNA 
damage (Passerini et al., 2016). An insufficient concentra-
tion of replication factors can also lead to genomic instability  
(Orr et al., 2010). Therefore, it is important that cells ensure 
that a single round of DNA replication occurs in each cell cycle.  
DNA replication initiates from DNA replication origins (origins).  
In Saccharomyces cerevisiae origins are formed of an autono-
mously replicating sequence (ARS) which contains an 11bp ARS  
consensus sequence (ACS). Origins recruit the origin recogni-
tion complex (ORC) via the ACS, which in turn facilitates origin  
licensing. Origin licensing factors (Cdc6 and Cdt1) bind at the 
origin and allow the mini-chromosome maintenance (MCM)  
proteins to also bind. Post-licensing, firing factors (Cdc45, Sld2, 
Sld3, Dpb11) recruit the loading complex which contains GINS 
(a four-subunit complex), Cdc45 and the replicative polymerases 
(Polε, Polδ and Polα) (Yeeles et al., 2015). Cdc45, MCM and  
GINS collectively form the CMG (Yeeles et al., 2015). The CMG 
melts DNA, unwinding the DNA double helix to allow load-
ing of the polymerases, to begin DNA replication. To prevent  
re-replication, origin licensing in eukaryotes is limited to G1 
phase of the cell cycle, and origin firing is restricted to S phase 
(Blow & Dutta, 2005). In S. cerevisiae, loss of DNA re-replication 
control leads to genome instability including gene amplification  
(Green et al., 2010).

The activities of licensing and firing factors are influenced by  
cell cycle kinases. For example, origin firing is dependent upon  
two kinases: the Dbf4-dependent kinase (DDK) and the  
cyclin-dependent kinase (CDK). DDK phosphorylates multiple  
chromatin-bound MCM subunits, including Mcm4 and Mcm6. 
Phosphorylation facilitates Sld3, Sld7 and Cdc45 binding.  
Subsequently, CDK phosphorylates Sld3 and Sld2, which then 
recruits the loading complex (Zegerman, 2015), which leads to  
origin firing.

However, the kinase-driven view of replication initiation outlined 
above is now known to be incomplete (Davé et al., 2014). A role 
for dephosphorylation in controlling DNA replication initiation 
was established recently (Davé et al., 2014; Hiraga et al., 2014;  
Mattarocci et al., 2014; Poh et al., 2014). The Rap1-interact-
ing factor (Rif1) is able to recruit protein phosphatase 1 (PP1) to  
MCM subunits and dephosphorylate them (Davé et al., 2014; 
Hiraga et al., 2014; Mattarocci et al., 2014; Poh et al., 2014). 
A greater DDK concentration is therefore required to promote  
origin firing, since the MCM phosphorylation rate must exceed its  
dephosphorylation rate. Conversely, DDK can bind directly to 
Rif1 and inhibit its interaction with PP1 (Hiraga et al., 2014).  
Therefore, as DDK levels increase during S phase, MCM  
phosphorylation is promoted and dephosphorylation is inhibited. 
The resulting feedback loop allows for a rapid switch from low 
MCM phosphorylation in G1 to high MCM phosphorylation in  
S phase.

Rif1-PP1 involvement in DNA replication control appears 
to be conserved throughout eukaryotes, both Xenopus egg 
extract and HeLa cell studies support the findings in yeast (Poh  
et al., 2014; Yamazaki et al., 2012). Additionally, there is  

evidence that Rif1-PP1 controls further aspects of DNA replica-
tion initiation. For example, in yeast, Rif1-PP1 may antagonise  
CDK phosphorylation (Stark et al., 2015). In RIF1 null yeast  
strains phosphorylation of Sld3, but not Sld2, is increased  
(Mattarocci et al., 2014). Deletion of RIF1 can partially rescue 
the phenotype of temperature-sensitive (ts-) origin firing factor  
alleles including Dpb11, Cdc45 and Sld3 (Mattarocci et al.,  
2014). In human cells, Rif1-PP1 is active during mitotic exit. 
Dephosphorylation of Orc2, an ORC subunit, allows the process 
of origin licensing to start again. Human Rif1-PP1 not only  
antagonises MCM phosphorylation, but also positively promotes 
DNA replication origin licensing (Hiraga et al., 2017).

Before a role for Rif1-PP1 in DNA replication was described, 
Rif1 was known to be a telomere-associated protein, contribut-
ing to the late replication of telomeric regions (Lian et al., 2011). 
Rif1 has also been implicated in a PP1-independent role in DNA  
replication at the whole genome level. The conserved replica-
tion timing of some genomic domains is altered in RIF1 mutant  
cells due to disordered chromatin organisation. These observa-
tions led to a role for Rif1 in physically grouping similarly timed  
replication domains being described (Foti et al., 2016).

The importance of Rif1-PP1 dephosphorylation raises the ques-
tion of whether other phosphatases are implicated in DNA  
replication control. A large genomic screen for genetic interac-
tions previously identified a potential synthetic rescue of mutant 
ORC2 by additional RTS1 deletion (Costanzo et al., 2010). Rts1 
is a regulatory subunit for the PP2A phosphatase, which has been 
previously implicated in DNA replication. PP2A antagonises the 
DNA damage checkpoint protein Chk1 (Petersen et al., 2006), 
and its function is required for Cdc45 loading onto chromatin  
(Chou et al., 2002; Peplowska et al., 2014). Whether this interac-
tion is direct, occurs via dephosphorylation of Sld3 (Guo et al.,  
2015), or uses another protein complex (Chowdhury et al., 2010) 
is as yet unclear. It has also been proposed that another regulatory 
subunit of PP2A, PR48, allows it to bind to and dephosphorylate 
the licensing factor Cdc6 during mitotic exit, promoting origin  
licensing during G1 (Yan et al., 2000). Unlike PP1, which in  
humans is regulated by more than 90 different subunits, PP2A  
has only 13 regulatory subunits in humans, and 3 in yeast (Stark  
et al., 2015).

Whilst Rif1 is associated with telomeres and late-replicating  
regions of DNA, Rts1 is associated with the protection of  
centromeres, which are known to replicate early (Mccarroll 
& Fangman, 1988). Rts1-PP2A is enriched at centromeres  
pre-anaphase promoting cell cycle progression after appropri-
ate microtubule binding, and correct chromosome segregation 
(Peplowska et al., 2014).

This study investigates a putative role for Rts1-PP2A, akin to  
Rif1-PP1, in controlling DNA replication licensing and firing. 
We use a panel of ts-replication factor mutants to screen for  
synthetic rescue by RTS1 deletion. We find that RTS1 deletion using  
classical genetics does not alleviate the lethality caused by  
inactivating origin initiation factors. Whilst the published  
synthetic rescue given by rif1Δ is confirmed in these strains, we 
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find an additive effect for rts1Δ. This indicates that two separate 
pathways are compromised. Although these data contradict the 
original genetic interactions screen (Costanzo et al., 2010) they 
are in accordance with a more recent screen (Costanzo et al.,  
2016), suggesting that RTS1 deletion results in an enhanced  
(rather than alleviated) phenotype in some replication factor 
mutants.

Methods
Yeast strains and methods
Yeast strains were cultured both in liquid and on solid YPAD 
media (CCM1010 and CM0510 respectively; Formedium,  
Hunstanton, UK), and manipulated according to established  
practices (Treco & Winston, 2008). Most yeast strains used had 
a W303 background. However, strains from the S. cerevisiae  

genome deletion project (Giaever et al., 2002) had an S288c  
background. All strains used are listed in Table 1.

In order to delete S. cerevisiae genes, the appropriate KanMX 
deletion cassettes from the SGDP were incorporated into a  
recipient strain by transformation. Deletion was confirmed by  
PCR spanning the deletion site. Oligonucleotide sequences are  
listed in Table 2. Ts-initiation factor mutant strains were con-
firmed by a lack of growth on solid YPAD plates at restrictive  
temperatures. Ts-initiation factor mutations with respective 
permissive and restrictive temperatures are listed in Table 3.  
Double mutant (ts-mutant / gene deletion) strains were con-
firmed by temperature-sensitivity and G418 resistance (400 µg/ml  
G418 disulfate salt; A1720-5G, Sigma-Aldrich, St Louis, MO, 
USA), relative to wild-type sister colonies.

Table 1. List of yeast strains. A list of yeast strains used in this study.

STRAIN GENOTYPE SOURCE

T7107 MATa: RAD5, BUD4, leu2, ura3, trp1, ade2, his3 T. Tanaka lab

45-1 MATa: leu2-3, 112 ura3-52 ade2-1 lys2-801 cdc45-1 C. Nieduszynski lab

CNY167 MATa: ade2-1 his3-11,15 leu2-3,112 trp1-1 ura3-1 
can1-100 Gal+ orc5-1

C. Nieduszynski lab

AUY080 MATa: ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 
ura3 GAL+ ssd1,d2 RAD5 orc2-1

C. Nieduszynski lab

K2539 MATα: cdc9-1 Backcrossed three times to K699/K700 T. Tanaka lab

dbf4-1 MATa: ade2-1 his3-11,15 leu2-3,112 trp1-1 ura3-1 
can1-100 ssd1-d2 Gal+ dbf4-1

Tanaka & Nasmyth, 1998

YKB2 MATa: leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 
his3- 11,15, cdc7-4

Mattarocci et al., 2014

YYK32 MATa: leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 
his3- 11,15, cdc45-27, bar1Δ::hisG

Mattarocci et al., 2014

YYK14 MATa: leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 
his3- 11,15, sld3-4, bar1Δ::hisG

Mattarocci et al., 2014

YNIG63(2) MATa: leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 
his3- 11,15 , dpb11-24, bar1Δ::hisG

Mattarocci et al., 2014

YCH175 MATα: ho, ade2, trp1, can1, leu2, his3, GAL, psi + 
W303-1; cdc6-1

Mattarocci et al., 2014

YOR014W rts1∆::KanMX S288c Giaever et al., 2002

YBR275C rif1∆::KanMX S288c Giaever et al., 2002

YDR007W trp1∆::KanMX S288c Giaever et al., 2002

ACY001 W303 MATα rts1Δ::kanMX This Study

ACY004 W303 MATa rts1Δ::kanMX This Study

ACY007 W303 MATα rif1Δ::kanMX This Study

ACY010 W303 MATa rif1Δ::kanMX This Study

ACY013 W303 MATα trp1Δ::kanMX This Study

ACY016 W303 MATa trp1Δ::kanMX This Study

ACY036 W303 Diploid orc2-1 rts1Δ::kanMX This Study

ACY113 W303 MATα orc2-1 rts1Δ::kanMX This Study

ACY044 W303 Diploid orc2-1 rif1Δ::kanMX This Study

ACY100 W303 MATα orc2-1 rif1Δ::kanMX This Study
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STRAIN GENOTYPE SOURCE

ACY079 W303 Diploid cdc6-1 rts1Δ::kanMX This Study

ACY112 W303 MATa cdc6-1 rts1Δ::kanMX This Study

ACY081 W303 Diploid cdc6-1 rif1Δ::kanMX This Study

ACY148 W303 MATa cdc6-1 rif1Δ::kanMX This Study

ACY035 W303 Diploid cdc7-4 rts1Δ::kanMX This Study

ACY096 W303 MATa cdc7-4 rts1Δ::kanMX This Study

ACY042 W303 Diploid cdc7-4 rif1Δ::kanMX This Study

ACY139 W303 MATa cdc7-4 rif1Δ::kanMX This Study

ACY071 W303 Diploid dbf4-1 rts1Δ::kanMX This Study

ACY106 W303 MATα dbf4-1 rts1Δ::kanMX This Study

ACY073 W303 Diploid dbf4-1 rif1Δ::kanMX This Study

ACY104 W303 MATα dbf4-1 rif1Δ::kanMX This Study

ACY031 W303 Diploid cdc45-27 rts1Δ::kanMX This Study

ACY093 W303 MATα cdc45-27 rts1Δ::kanMX This Study

ACY037 W303 Diploid cdc45-27 rif1Δ::kanMX This Study

ACY142 W303 MATa cdc45-27 rif1Δ::kanMX This Study

ACY019 W303 Diploid cdc45-1 rts1Δ::kanMX This Study

ACY087 W303 MATa cdc45-1 rts1Δ::kanMX This Study

ACY051 W303 Diploid cdc45-1 rif1Δ::kanMX This Study

ACY145 W303 MATa cdc45-1 rif1Δ::kanMX This Study

ACY025 W303 Diploid cdc9-1 rts1Δ::kanMX This Study

ACY067 W303 MATα cdc9-1 rts1Δ::kanMX This Study

ACY050 W303 Diploid cdc9-1 rif1Δ::kanMX This Study

ACY120 W303 MATα cdc9-1 rif1Δ::kanMX This Study

ACY069 W303 Diploid dpb11-24 rts1Δ::kanMX This Study

ACY087 W303 MATa dpb11-24 rts1Δ::kanMX This Study

ACY046 W303 Diploid dpb11-24 rif1Δ::kanMX This Study

ACY123 W303 MATα dpb11-24 rif1Δ::kanMX This Study

Dilution series assay
Strains were inoculated into YPAD liquid medium and cultured 
for 12–16 hours. Haploid cell concentration was inferred from  
attenuance measured at 600 nm (using a BioMate3 spectropho-
tometer; Thermofisher, Waltham, MA, USA). Cells were diluted  
initially to 107cells/ml, before serial 10-fold dilutions were  
prepared. Dilution spots of 5 µl were pipetted onto YPAD agar 
plates and incubated at stated temperatures. Control strains were 
included on each plate. After two days, plates were photographed 
and images were analysed qualitatively by observation of relative 
growth of yeast strains.

Results
RTS1 deletion does not synthetically rescue orc2-1
The combination of two mutations, which individually decrease 
cell fitness, can restore fitness if the genes have opposing effects 
(Synthetic Rescue, Figure 1). In the presence of a replication fac-
tor mutant, such as orc2-1, even at the permissive temperature 

origin firing can be reduced by as much as 30% (Shimada  
et al., 2002), leading to growth deficiency. We first examined  
RTS1 deletion in an orc2-1 strain (Figure 2A), since a synthetic 
rescue phenotype has been reported (Costanzo et al., 2010). A  
dilution series viability assay was used to assess synthetic  
rescue. We found that an orc2-1 rts1Δ strain had a more severe 
ts-phenotype that either the orc2-1 or rts1Δ strains (Figure 2A).  
This additive effect indicates that the two genes are not acting 
within the same pathway. Conversely, a small synthetic rescue 
was observed in the orc2-1 rif1Δ strain (Figure 2A). It has  
previously been shown that RIF1 deletion leads to slight synthetic 
rescue in orc5-1 strains, consistent with this result (Mattarocci  
et al., 2014).

The origin licensing factor Cdc6 is not opposed by RTS1
Since Rif1 recruits PP1 to oppose DDK phosphorylation, RIF1 
deletion provides limited or no rescue to the temperature sensitiv-
ity of pre-Replication Complex (pre-RC) factors mutants, which  
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Table 2. List of oligonucleotides. A list of oligonucleotides used in this study.

PRIMER 1 PRIMER 2 PRODUCT

AC0003 

TTTTCAGTTCTTTGTGTTTTTCCTC

AC0004 

TGATCCTTTAGAATGGAGAAGATTG

rif1Δ::kanMX

AC0005 

TAAACCATCGTCGCCGTAA

AC0006 

GGAAGAAGGAAAGCGAAAAGA

rts1Δ::kanMX

CA1118 

CCATTACGCTCGTCATCAAA

AC0010 

AAGAAACAAGAAGTCAACAGAAGG

Confirms 5’ insertion 
of rif1Δ::kanMX

CA1117 

GATAATGTCGGGCAATCAGG

AC0009 

GCGGTAGCATTTCCATCATAA

Confirms 3’ insertion 
of rif1Δ::kanMX

CA1118 

CCATTACGCTCGTCATCAAA

AC0011 

GGCATGTCAATACGTCTCGTT

Confirms 5’ insertion 
of rts1Δ::kanMX

CA1117 

GATAATGTCGGGCAATCAGG

AC0012 

GGCAAGGTTTACGGAAAAGA

Confirms 3’ insertion 
of rts1Δ::kanMX

Table 3. Temperature-sensitive mutation strains used in this study. Mutant forms of replication 
initiation factors, temperatures at which we observed phenotypes, and the study that originally 
reported each strain.

TS-REPLICATION 
FACTOR 
MUTATION

TEMPERATURE AT 
WHICH PHENOTYPE 
OBSERVED

TEMPERATURE AT 
WHICH NO PHENOTYPE 
OBSERVED

REFERENCE

orc2-1 30 23 Foss et al., 1993

cdc6-1 33 30 Hartwell et al., 1973

cdc7-4 30 23 Hartwell et al., 1973

dbf4-1 32 30 Johnston & Thomas, 1982

cdc45-27 32 30 Kamimura et al., 2001

cdc45-1 23 30 Moir et al., 1982

cdc9-1 30 23 Hartwell et al., 1973

dpb11-24 37 32 Tanaka et al., 2007

function prior to DDK (Mattarocci et al., 2014). Given that this 
study aimed to investigate a role for Rts1 in opposing the action 
of Orc2, we next looked for a genetic interaction between RTS1  
and another origin licensing factor: CDC6, which loads MCM. 
Deleting RTS1 in the context of cdc6-1 showed no rescue rela-
tive to the original ts-strain (Figure 2B). Similarly, deletion of 
RIF1 gave no synthetic rescue, consistent with published data  
(Mattarocci et al., 2014). It has previously been shown that rts1Δ 
yeast strains are ts at 37°C (Auesukaree et al., 2009; Shu &  
Hallberg, 1995), while rif1Δ strains are not (Mattarocci et al.,  
2014). Our study confirmed both these phenotypes (Figure 2B).

Rts1 does not antagonise DDK phosphorylation
A potential role for Rts1-PP2A phosphatase in DNA replica-
tion initiation could be to oppose the action of a kinase. The 
established role for Rif1-PP1 in opposing DDK activity indi-
cates that regulation of phosphorylation is key during this step of  

replication initiation. Therefore, RTS1 was deleted in combination 
with ts-forms of both subunits of DDK (Cdc7 and Dbf4). How-
ever, rts1Δ had a slightly additive effect on temperature-sensitivity 
in both cdc7-4 (Figure 3A) and dbf4-1 (Figure 3B) strains. This 
was in stark contrast to the strong restoration of cell growth at  
elevated temperatures in cdc7-4 rif1Δ (Figure 3A) and dbf4-1 rif1Δ 
(Figure 3B) strains. This suggests that Rif1 and Rts1 do not have 
analogous roles in control of DNA replication initiation, and that 
Rts1-PP2A does not antagonise DDK activity.

Replication firing factors are not opposed by Rts1
MCM phosphorylation by DDK recruits the firing factor, Cdc45. 
The sequential recruitment of further firing factors (e.g. Dpb11) 
relies on phosphorylation by CDK. Therefore, Rts1-PP2A activity 
could be important following DDK activity, to limit CDK-induced 
origin firing. In order to test this hypothesis, RTS1 was deleted in 
the context of ts- cdc45-1 and dpb11-24 firing factors. Unlike rif1Δ, 
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Figure 1. A summary of genetic interactions. Two genes, A and B, show genetic interactions as a result of the interacting functions of their 
products: A and B. When A and B function in different cellular processes, the relative fitness of an A-B- double mutant is a product of the 
relative fitness of the two single mutants (no genetic interaction). If the double mutant strain has a lower than expected viability, it is described 
as synthetic lethality, indicating redundant functions for the two gene products in one cellular process. In contrast, a greater than expected 
viability (synthetic rescue) indicates that the gene products have opposing roles in a cellular process.

rts1Δ did not rescue cdc45-27 or dpb11-24 temperature-sensitivity 
(Figure 4AI, 4B). Conversely, rts1Δ led to an increased lethality 
in these strains, suggesting either an additive or synthetic lethality 
effect (Figure 1).

However, the cold-sensitive cdc45-1 strain (restricted at 15°C)  
had no phenotypic rescue by either rif1Δ or rts1Δ (Figure 4AII). 
Instead, an additive effect was observed for both gene deletions, 
which was stronger in the case of RTS1. This additive effect of  
rif1Δ in cold-sensitive cdc45-1 contradicts the known rescue of  
ts-cdc45-27 by rif1Δ (Mattarocci et al., 2014), a finding repeated 
in this study. Therefore, the significance of an additive effect of  
rts1Δ with cdc45-1 is unclear.

Synthetic lethality of RTS1 and CDC9 ligase
Since the detrimental effect of RTS1 deletion alongside ts-DNA 
replication initiation factors appeared to be most severe in factors 
which function later in the firing process, we hypothesised 
that Rts1 could play a role in DNA replication post-firing.  
Therefore, RTS1 was deleted alongside a ts-CDC9 ligase allele 
(cdc9-1). Cdc9 ligates lagging strand Okazaki fragments, aid-
ing in DNA replication during elongation. RTS1 deletion in a  
cdc9-1 strain led to the greatest synthetic lethality, relative to  
RTS1 deletion in the other ts-strains examined. No effect of rif1Δ 
was seen in cdc9-1 cells. This was anticipated, since Rif1 is  
known to function during replication initiation. These data show 
that, if Rts1 plays a role in DNA replication, it is not akin to that 
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Figure 2. RTS1 deletion does not suppress temperature-sensitivity of DNA replication origin licensing factor mutants. Budding yeast 
strains with ts-mutants of replication factors, together with either wild type, rts1Δ or rif1Δ were characterised by dilution viability assays. Wild 
type strains, without ts-replication factors, are shown at the top of each panel, as a control. (A) ORC subunit (orc2-1) is assayed. (B) A second 
pre-RC component, cdc6-1 is assayed.

Figure 3. Unlike rif1Δ, rts1Δ cannot synthetically rescue ts-forms of DDK subunits. Budding yeast strains with ts-mutants of replication 
factors, together with either wild type, rts1Δ or rif1Δ were characterised by dilution viability assays. Wild type strains, without ts-replication 
factors, are shown at the top of each panel, as a control. Ts-forms of DDK subunits, Cdc7 (A) and Dbf4 (B) are assayed.

played by Rif1, and does not appear to oppose critical events  
leading to origin licensing or origin firing.

Discussion
In this study, RTS1, which encodes a regulatory subunit for 
the PP2A phosphatase, was deleted in the context of a range of 
ts-replication factor mutants. At no stage of DNA replication  
initiation (licensing, DDK-phosphorylation, and origin firing) 
did deletion of RTS1 lead to synthetic rescue of ts-phenotypes. In  
contrast, deletion of RIF1 was able to rescue ts-mutants of  
replication firing factors, and some replication licensing factors. 
Rif1 recruits PP1 phosphatase to DNA replication origins where 

it counteracts MCM phosphorylation by DDK. When replication 
origin firing is limited by mutant replication factors, removing  
this negative regulation allows more replication origins to fire,  
giving synthetic rescue. In contrast, rts1Δ leads to increased  
temperature-sensitivity when combined with orc2-1, cdc7-4, 
cdc45-1 and dpb11-24 mutant replication factors. The lack of  
synthetic rescue given by rts1Δ in these strains indicates that  
there is no evidence for a role for Rts1 in limiting origin firing, 
analogous to that played by Rif1.

Without a genetic interaction, combining mutations in genes 
involved in separate pathways will give an additive effect.  
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However, alone, rts1Δ has no growth inhibition at temperatures 
below 34°C. Therefore, the extent of reduced cell viability seen 
in some double mutant strains, such as dpb11-24 rts1Δ at 32°C  
(Figure 4), suggests synthetic lethality. This may be the result of 
non-specific protein instability after heat stress, in rts1Δ strains. 
Over-expression of RTS1 can partially rescue lethality of a  
ts-HPS60 allele (Shu & Hallberg, 1995). Hps60 is a mito-
chondrial protein that aids in protein refolding after heat stress  
(Shu & Hallberg, 1995). A reduced capability to maintain protein  
structure in heat stress conditions could explain the increased  
temperature sensitivity of unstable replication factor forms in 
rts1Δ cells. This could be analogous to the partial rescue of the 
ts-phenotype of orc2-1 by mutations in the ubiquitin ligase UBA1  
(Shimada et al., 2002). Therefore, investigation of heat stress 

in rts1Δ strains would be needed to elucidate the molecular  
mechanism.

The extent of the additional lethality given by rts1Δ alongside 
mutant ts-replication factors is inconsistent. If added lethality of 
rts1Δ depends on the function of the ts-factor, this could indicate 
a functional genetic interaction between that replication factor and 
RTS1. In DDK and pre-RC factor mutants (cdc7-4, dbf4-1, cdc6-1) 
there is either mildly increased temperature-sensitivity or no effect 
given by rts1Δ (Figure 2B, Figure 3). However, in post-DDK  
acting firing factors cdc45-1 and dpb11-24, the observed increase 
in the ts-phenotype is larger (Figure 4). We cannot exclude the  
possibility that this effect is due to greater heat-instability of the 
cdc45-1 and dpb11-24 mutant replication factors. However, these 

Figure 4. RTS1 causes synthetic lethality with DNA replication firing factors and a DNA replication progression factor. Budding yeast 
strains with ts-mutants of replication factors, together with either wild type, rts1Δ or rif1Δ were characterised by dilution viability assays. Wild 
type strains, without ts-replication factors, are shown at the top of each panel, as a control. (A) Ts- (I) and cold- sensitive (II) forms of Cdc45, 
(B) the replication firing factor Dbp11, which functions post-DDK, and (C) Cdc9 ligase, are assayed.
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data may suggest a role for Rts1 late in DNA replication initia-
tion, demonstrating a genuine negative genetic interaction between  
RTS1 and post-DDK replication firing factors.

Interestingly, the greatest synthetic lethality is seen between  
RTS1 and a replication elongation factor: CDC9. Cdc9 is  
important for DNA replication progression and elongation rather 
than initiation. Accordingly, we find no synthetic rescue by rif1Δ 
in the cdc9-1 strain (Figure 4). The observed synthetic lethality 
of RTS1 deletion in a cdc9-1 strain may provide evidence for a  
complementary role for Rts1 function in allowing replication fork 
progression. In cdc9-1 strains, increased DNA damage is seen 
due to the collapse of replication forks. This results in double  
strand breaks (DSBs), and the DNA damage response (DDR) 
being activated. One of the ways to repair DSBs is via break-
induced replication (BIR), which is activated in cdc9-1 cells  
(Vasianovich et al., 2014). A role for Rts1 in recruiting PP2A  
phosphatase to control phosphorylation steps in the DDR, poten-
tially in BIR, could be hypothesised. In this instance, rts1Δ in a 
cdc9-1 background would give increased lethality, since there 
would also be an impaired capacity for cells to repair cdc9-1  
dependent DSBs.

Evidence in support of the synthetic lethality of RTS1 and DNA 
replication factors can be found on BioGRID, a summary of  
published genetic interactions in budding yeast. A combination 
of high and low throughput genetic interaction screens show that  
RTS1 exhibits negative genetic interactions (a term reserved for 
genetic screens which show a more lethal phenotype in strains 
where two mutations are combined than in the respective sin-
gle mutant strains) with DBF4, CDC6 and ORC6 and DPB11  
(Archambault et al., 2005; Collins et al., 2007; Costanzo et al., 
2016). However, we show here, for the first time, negative genetic 
interactions of RTS1 with CDC45 and CDC9.

Conclusions
Given the wealth of recent literature outlining the importance 
of Rif1 in opposing the actions of DDK kinase, it is clear that  
phosphatases play an important role in controlling DNA replication 
origin firing. However, we do not find evidence for an  
analogous role for PP2A, specifically via its regulatory subunit 
Rts1. Deletion of RTS1 in combination with mutations in origin 

licensing factor genes, ORC and CDC6, showed little or no  
genetic interaction, providing no genetic evidence for Rts1-PP2A 
controlling DNA replication origin licensing. Further, we found 
no role for Rts1 in opposing DDK phosphorylation. However, 
we observed some level of increased temperature-sensitivity  
phenotype when RTS1 was deleted in many of the replication 
initiation factor mutant strains, alluding to a potential synthetic  
lethality phenotype. Increased temperature-sensitivity was most 
pronounced in late-acting DNA replication firing factors Cdc45 
and Dpb11. Additionally, an increased requirement for RTS1 in a  
cdc9-1 background was found. We speculate that a functional over-
lap between Rts1-PP2A and Cdc9 may exist via replication fork 
progression mechanisms. Rts1 may recruit PP2A during BIR,  
or the DDR, in response to DSBs. Over-expression of RTS1 
could potentially compensate for the increased replication fork 
collapse seen in cdc9-1 mutants, giving synthetic rescue of  
temperature-sensitivity. Further studies would be needed to  
confirm this hypothesis.
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Curiously, the Costanzo et al., 2016 study and BioGRID do not detect/contain data on 
negative genetic interactions of rts1Δ (nor pph21Δ/22Δ) with cdc45-ts. There are slight 
negative interactions for rts1Δ with either cdc9-1 or dpb11-1, but these were also reported to 
contain suppressor mutations that might complicate the picture (see TheCellMap web site). 
Could it be because the above studies used other alleles of these genes? The authors may 
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interactions of rts1Δ. Since the authors claim in the Discussion section that this is the main 
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is advised to make this point stronger. 
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As Cdc9 participates in lagging strand DNA synthesis while Dpb11 works at the leading 
strand, other mutants affecting leading and lagging strand synthesis should be checked in 
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pathways. 
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The proposition to overexpress RTS1 in cdc9-1 should be directly carried out by the authors 
of this study. 
 

6. 
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The hypothesis that underlies this work is that RTS1, the regulatory unit of the PP2A phosphatase, 
could counteract the initiation of DNA replication through dephosphorylating initiation factors, in 
a way similar to the action of  RIF1-PP1 on MCM. However, this hypothesis is very fragile as it solely 
relies on a positive interaction between rts1-delta with a ts-orc2 mutant, which was previously 
reported in a large-scale genomic screen for genetic interactions (Constanzo et al., 2010). Firstly, 
the score actually reported in the CellMap website (thecellmap.org) for this positive interaction is 
very low (0.07), below the default confidence threshold set for this study (0.08). Secondly, such 
large-scale genomic screens are often populated with a large number of weakly supported false 
positives. Therefore, it is not very surprising that a careful examination of an originally weakly 
supported interaction could lead to a different result. Thirdly, the authors also mention that more 
a recent screen reported opposite observations (enhanced phenotype in some replication 
mutants). Finally, the authors also indicate in the introduction that Rts1 is required for Cdc45 
loading onto chromatin, which is not very compatible with their initial hypothesis that Rts1 could 
counteract replication initiation. Altogether these elements show that the initial hypothesis onto 
which the manuscript is constructed is not really reliable. I would suggest reformulating the 
manuscript and presenting equitably to two alternative hypotheses in the introduction, namely 
Rts1 is promoting or opposing replication initiation. I would also clearly state that Rif1 is used as a 
control to discriminate between the 2 hypotheses because as it is now presented, the reason why 
a parallel is made between the role of Rif1 and that of Rts1 is not really evident. 
  
I have few other minor concerns. I found the title to be a bit misleading because this work does 
not directly assess the role of RTS1 in DNA replication initiation per se but rather at the genetic 
interactions between this gene and other initiation factors. 
 
I had a hard time trying to understand the logic of Fig 1. I think the legend could be more explicit 
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to guide the reader through the different cases. 
 
I would also suggest to replace throughout the text 'synthetic lethality' by 'negative interaction' 
because synthetic lethality is generally considered as an extreme case of a negative interaction 
where two mutations, each causing limited fitness defect on their own, result in a inviable 
phenotype. I would also replace 'synthetic rescue' by 'positive interaction' for the same reason. 
This would allow avoiding turn of phrases such as 'greater synthetic lethality'. 
 
In the first paragraph of the result section, the authors mention that an orc2-1 mutant was 
reported to show growth deficiency even at permissive temperature. However, the spotting assay 
in Fig. 2A does not show any growth defect at restrictive temperature for the single orc2-1 mutant. 
  
In its entirety, this study confirms a number of phenotypes previously described, including the 
opposing actions of RIF1 and DDK on replication initiation, which confirms that the experiments 
are carefully performed. It also highlights some new observations such as a small positive 
interaction between orc2-1 and rif1. The controls are adequate (comparison of WT and all single 
and double mutants) and the described data are convincing. The introduction section is really well 
written and give a very good overview of the interplay between the various actors involved in 
replication initiation. All in all, the study is a valuable additional contribution to the field of DNA 
replication.
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