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Abstract 
Major psychiatric disorders are heritable but they are genetically 
complex. This means that, with certain exceptions, single gene 
markers will not be helpful for diagnosis. However, we are learning 
more about the large number of gene variants that, in combination, 
are associated with risk for disorders such as schizophrenia, bipolar 
disorder, and other psychiatric conditions. The presence of those risk 
variants may now be combined into a polygenic risk score (PRS). Such 
a score provides a quantitative index of the genomic burden of risk 
variants in an individual, which relates to the likelihood that a person 
has a particular disorder. Currently, such scores are quite useful in 
research, and they are telling us much about the relationships 
between different disorders and other indices of brain function. In the 
future, as the datasets supporting the development of such scores 
become larger and more diverse and as methodological 
developments improve predictive capacity, we expect that PRS will 
have substantial clinical utility in the assessment of risk for disease, 
subtypes of disease, and even treatment response. Here, we provide 
an overview of PRS in general terms (including a glossary suitable for 
informed non-geneticists) and discuss the use of PRS in psychiatry, 
including their limitations and cautions for interpretation, as well as 
their applications now and in the future.
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Introduction
The concept of polygenic risk was initially coined in clas-
sic genetics, and it has been discussed and modeled since the 
early 20th century1. With the advent of genome-wide associa-
tion studies (GWAS), it has been possible to quantify polygenic 
risk with some precision in human complex traits, including 
psychiatric disorders2. Polygenic risk scores (PRS) were first  
applied in psychiatry in 2009 by the International Schizophre-
nia Consortium3, and the approach has since revolutionized 
psychiatric genomics research. However, it is not immediately  
clear—particularly to non-geneticists—how PRS are derived, 
what their limitations and applicability might be, and how PRS 
can best be used, now and in the future. This overview is focused 
toward guiding psychiatric practitioners and trainees, or informed 
non-geneticists, on the uses, today and in the coming decades,  
of PRS in psychiatry. Terms in italics are further defined in the 
accompanying “Glossary”.

Accelerated knowledge through psychiatric 
genomics
Early genomic studies in psychiatry assumed that there might be 
one or a handful of major effect genes or loci (that is, that psy-
chiatric conditions were monogenic or oligogenic) and that iden-
tification of these key risk genes would provide clear insights 
into disease mechanisms. After decades of studies which failed 
to find a consistent signal using these simple genetic models, 
the field moved toward the understanding that most common 
psychiatric disorders are both polygenic and genetically  
heterogeneous (that is, where many tens or hundreds of genetic 
loci influence disease risk and where the combination of risk 
alleles is different in different people). This was a paradigm 
shift in the thinking of researchers4; with it came the realiza-
tion that the sample sizes which were able to be collected by a  
single investigator or group were not going to provide sufficient 
power to clearly detect genetic effects, most of which would 
be quite small individually (though substantial in combina-
tion). New and more efficient molecular technologies reduced 
the costs of genome-wide genotyping, and large-scale highly 
collaborative approaches—such as those conducted by the  
Psychiatric Genomics Consortium4 (http://www.med.unc.edu/
pgc)—are now bearing fruit. These large-scale collaborative 
genomic studies have accelerated our knowledge of the molecu-
lar architecture of many psychiatric disorders to an unprec-
edented degree in the last decade5. These studies have also 
enabled insights into the pleiotropy of genetic effects across  
disorders5, which are clinically differentiated on the basis of 
patterns of symptomatology but which often share clinical  
features.

An overview of polygenic risk scores
The methods for calculating PRS have been developed in the 
last 10 years as a tool to capture the cumulative effects of many 
genetic loci into a single quantitative metric2,3. This quantitative 
score sums the effects of individually associated single-nucleotide  
polymorphisms (SNPs) from an independent GWAS, enumer-
ates how many risk alleles are carried by that individual at each 
locus (0, 1, or 2), and weights the risk allele at each locus by  
its effect size. A risk allele is defined as a gene variant that is 

more commonly found in cases than controls (or that is associ-
ated with more severe manifestations of a quantitative trait). Effect 
sizes are typically estimated as the beta-coefficient for quantita-
tive traits and as an odds ratio for categorical binary traits (with 
logarithmic transformation of the odds ratios to center values 
around zero for use in PRS, so that PRS can be computed as a 
sum of weighted genotypes). An example of a population distri-
bution of a PRS, showing a normal distribution, is illustrated in  
Figure 1. PRS can be calculated using different sets of disease-
associated variants, and typically different P value thresholds 
for disease association are used to create a series of PRSs for a 
particular disease or trait. The P value threshold at which the 
best distinction is observed between case-control groups (or 
with variability in a quantitative trait) is selected as optimal.  
Intuition dictates that only variants that are robustly associ-
ated at genome-wide significance contain genuine disease risk 
predictors and no “noise”; however, such predictors gener-
ally explain very little variation in disease risk and therefore 
have little predictive accuracy6. The common practice, there-
fore, is to perform genetic prediction by using many independent 
risk alleles across the genome—including many hundreds of  
thousands of SNP variants, most of which show only weak 
evidence of disease association on their own—under the  
assumption that many genuine significant associations are 
potentially missed because of inadequate power in the origi-
nal GWAS. This approach yields greater predictive power 

Figure 1. An example of the population distributions of polygenic 
risk scores (PRS). The black lines represent the distribution of PRS 
for a complex genetic condition in the (top) general population and 
(bottom) a case population of individuals affected with the condition. 
At a population level, the average PRS in the case group is higher 
than the average PRS in the control group, although many cases 
will have lower scores than the average person from the general 
population. The red line indicates a single individual with a “high 
PRS” – this individual has a score which lies in the top 94% in the 
general population and the top 90% in case population.
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across many psychiatric disorders, maximizing the predictive 
power and accuracy for discrimination between cases and 
controls (as measured by predicted areas under the curve, or  
AUCs) of around 82% for schizophrenia, 68% for bipolar disorder, 
58% for major depressive disorder, and 54% for anxiety7 (com-
pared with an AUC of 50% describing a test with prediction no 
better than chance), although discrimination estimates vary con-
siderably across cohorts in “leave one out” analyses reflecting 
independent datasets8. These discrimination estimates will likely 
improve with more powerful and diverse discovery GWAS9,10 and  
improved methods for quantifying polygenic risk. Ideally, in 
order to be useful, predictive capacity would need to be at least 
moderately (that is, over 70% to 80%) but preferably highly 
(that is, over 90%) predictive. Recently, PRS reflecting a selec-
tion of SNP sets based on biological processes (for example, 
signaling pathway membership, protein–protein interactions, or 
pharmacological treatment response) have been calculated and  
applied11,12. These pathway-specific PRS may predict phenotypic 
variation more robustly than risk scores reflecting overall 
disorder risk and may be more amenable to mapping of specific 
endophenotypes or phenotypic correlates of disease (such as 
cognitive and cortical changes which are associated with the  
disorder or its symptoms)13–15.

Limitations and cautions for interpretation of 
polygenic risk score
In order to effectively use PRS in the practice of psychiatry, it is 
critically important to understand the limitations of this meas-
ure and considerations for interpretation of PRS which we 
aim to highlight here. First, PRS are highly sensitive to ethnic  
background—meaning that variability in a PRS can be heav-
ily influenced by allele frequency differences, differences in 
estimated effect sizes, and differences in population structure 
across different ethnic groups16,17. For instance, if a disease-
associated risk variant is common in one population but a low 
frequency in another population (for example, the “A” allele 
frequency is 20% in the general population of ethnic group X  
versus 5% in ethnic group Y), then the likelihood of an indi-
vidual from ethnic group X carrying one or more risk alleles 
by chance is much higher than for an individual from ethnic 
group Y (that is, 36% versus 10%, based on the principles of 
Hardy–Weinberg equilibrium where f(AA+Aa) = p2+2pq).  
Furthermore, owing to differences in population history (includ-
ing effective population size and distinctive rates of immigra-
tion and inbreeding), inheritance patterns of genomic variants 
are more variable and complex in some ethnic groups than oth-
ers (for example, persons of African ancestry tend to have 
shorter haplotype blocks compared with persons of European  
ancestry)18–20. More complex inheritance patterns will require 
a greater number of gene variants to be included in the PRS, 
and because the SNPs included in PRS are often not themselves 
causal, causal variants may be “tagged” by different SNPs in 
different populations, giving rise to different detected effect 
sizes and different groups of maximally informative SNPs.  
Effect sizes are also influenced by gene-by-environment inter-
actions, which may result in population-specific variability. 
Inclusion of quantitative genetic features of ethnicity as covari-
ates in the association tests will adjust—to some degree—these  

ethnicity-specific effects in the primary GWAS, but application 
of those data to independent samples of different ethnicity 
to the discovery sample is especially prone to errors and fraught 
with potential misinterpretation16,17. For this reason (among many 
others), it is imperative that, rather than applying recent Euro-
centric approaches, future GWAS include analyses of subjects 
from diverse ethnic backgrounds, improving generalizability 
and utility of these results for all populations21, and efforts are  
under way to resolve this crucial issue.

Second, the accuracy of the PRS is dependent on the informativ-
ity of the discovery sample which is used to define the disease-
associated variants and risk alleles. Studies with larger sample 
sizes yield more power to detect small genetic effects and  
provide more accurate estimates of the effect sizes of SNPs22.  
Adequate sample sizes today typically include tens of thou-
sands of cases and a similar or larger number of controls. Sam-
ple sizes, and consequently power, are expected to increase 
over time going forward. However, large sample sizes do inher-
ently carry increased heterogeneity at both clinical and genetic  
levels and have the potential of making genetic associa-
tion signals less clear. Samples for large collaborative efforts 
are often ascertained across multiple investigator sites and in  
multiple countries, where diagnostic practices and exposure to  
demographic/epidemiological risk factors might be slightly 
different, potentially introducing artifactual associations and  
contributing to fluctuating strengths of association and effect 
size estimates across cohorts. In general, PRS based on samples 
which are from the Psychiatric Genomics Consortium and for 
which summary statistics are publically available have been  
reliably vetted and processed (but currently are based largely on 
individuals of Caucasian European descent, the implications of 
which are described above).

Furthermore, by using information from a GWAS of a sec-
ond related trait or disease, it is possible to calculate a PRS in a 
population which has been ascertained with a particular trait or 
disease in mind. An example would be the use of alcohol con-
sumption GWAS summary statistics (that is, examining units of 
alcohol consumed per week) in order to characterize risk for alco-
hol use disorders, which are related constructs but not directly 
linked. If the genetic causes of those two traits overlap and the  
predictive performance of the PRS is good, then significant asso-
ciation with the related PRS will also be observed; however, the 
SNPs providing maximal distinction between case and control 
groups in the related trait may differ from those which would 
maximally distinguish the primary trait. Hence, it is impor-
tant to identify and understand the primary GWAS which was  
used as the basis to generate the PRS before making a judgment 
on the accuracy (or lack thereof) of a PRS for a specific analy-
sis or trait. In the example above, alcohol consumption turns 
out to have only partial genetic overlap with risk for alcohol  
use disorder and thus the accuracy of prediction is limited23.

Finally, as GWAS typically focus on a single class of genetic 
variation—the common SNP contributions to disease risk—PRS 
typically will measure only the contribution of common  
single-nucleotide variants in an individual and not other classes 
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of variation which may also impact genetic risk and be particu-
larly relevant in certain individuals. For instance, an individual 
may carry one or more copy number variants which have  
a large impact on disease risk which will not be considered in a 
typical PRS. Also, rare pathogenic alleles are typically excluded 
from PRS derived from GWAS summary statistics, because 
GWAS typically include only “common” variants with a popu-
lation frequency of 1% or more. Furthermore, PRS assumes 
an additive effect of individual risk alleles and does not model  
complex higher-order interactive (or epistatic) relationships 
between risk variants, simplifying the genetic model under which 
PRS are calculated. As our knowledge of the contributions of 
rare variants increases with large-scale sequencing studies24,  
we may soon see the development of genomic risk predictions 
which encompass both common and rare single-nucleotide vari-
ants, structural variants, and even epigenetic factors and which 
apply more sophisticated underlying genetic models, including  
higher-order interactive effects to provide a more complete 
genomic risk prediction profile representative of the whole  
spectrum of genomic variation and its biological orchestration.

What polygenic risk scores can do now
•     Differentiate cases from controls on a population (or 

group) level3,7,9,10; cases are expected to have a significantly  
higher mean PRS than controls.

•     Inform research on psychiatric endophenotypes or biomar-
kers13–15. We expect that a true biomarker of genetic risk will 
more likely be present in persons with a high PRS than persons  
with a low PRS.

•     Provide information about phenotypic correlations3,5,25,26.  
Phenotypes that are correlated with a diagnosis because 
of overlapping genetic causes would be expected to be  
correlated with the PRS for a diagnosis as well. Those 
that are correlated because of environmental exposures or  
consequences of treatment would show low PRS correlation.

What polygenic risk scores cannot do now
•     At present, the PRS is generally not very informative of dis-

ease status (that is, case or control) for psychiatric diagnoses 
at an individual level, although PRS are showing potential 
for clinical utility25,26, as has been shown in breast cancer, 
coronary artery disease, obesity, and diabetes27,28. Refinement  
of PRS methods and expansion of the discovery datasets may 
be expected to change this. Extreme PRS may be informative  
in some cases now (see below).

•     PRS does not help with genomic testing recommended as 
standard screening for autism and developmental disorders. 
The focus in this kind of testing is primarily copy number 
variants, for which the genomic burden is high in affected 
individuals29,30. Rare pathogenic variants are also informa-
tive and can be identified by whole exome sequencing31.  
The general recommendation for clinical screening is chro-
mosomal microarray plus Fragile X testing32, although 
expansion to include PRS from GWAS and integrative  
genomics approaches may occur in the future33,34.

•     PRS does not substitute for family history in clinical assess-
ment. Family history is an informative marker of genetic 
risk and a key piece of information guiding clinical diag-
nosis and management. However, it is very non-specific, 
in terms of both individual-level risk prediction as well as  
disease specificity, particularly in the presence of heterotypic  
continuity, or variable clinical presentations at different 
ages across the life span35. A predictor based on measured 
genotypes such as PRS should provide important infor-
mation additional to family history36, as it has for some  
non-psychiatric conditions37,38. However, some fami-
lies with multiple affected members (and arguably a high 
genetic load toward illness) may have a low PRS6 – in this 
instance, disease is likely caused by other variants not meas-
ured in the PRS, such as rare pathogenic variants or struc-
tural variants, including copy number variants or cytogenetic  
rearrangements.

The future of polygenic risk scores
Ultimately, the PRS should include actionable information for 
some individuals, even while many individually associated 
variants remain to be discovered. This may aid clinicians in 
the surety of diagnosis, guide implementation of preventative 
strategies, flag individuals who are at greatest risk of suicide, 
or enable predictions of long-term prognosis or treatment  
response39–41 (Figure 2). Clinical diagnostics requires high  
precision (or positive predictive value), where the proportion 
of individuals who are predicted to be cases (and who truly are  
cases) is very high. However, the implementation of PRS  
in clinical practice may also help identify low-risk groups or 
even treatment-resistant individuals for whom alternative treat-
ment methods—including social and psychological manage-
ment—may be most beneficial42. Furthermore, PRS may guide 
patient discussions with genetic counselors to better understand 
relationships between genetic and environmental risk factors, 
providing psychotherapeutic benefits and promoting patient  
empowerment43, and has the potential to reduce stigma and feelings 
of self-blame in those with established illness, aiding emotional 
recovery.

A promising method for optimizing PRS was recently reported 
by Khera et al. (2018)28. In this study, three large independ-
ent patient samples were used for each of five common medi-
cal conditions (coronary artery disease, atrial fibrillation, type 2 
diabetes, inflammatory bowel disease, and breast cancer). The 
first sample was the discovery sample. A GWAS was performed, 
and a series of PRS was produced by using multiple P value  
thresholds, “pruning” for non-independence, and optimal number 
of variants for the final dataset. The second sample was used 
as a validation dataset, in which each of the PRS was applied 
to find the one that best discriminated cases from controls for 
that disease. The third sample was the testing dataset, in which 
only the best validated PRS was used. Using this method, the 
authors were able to generate good predictive ability (with 80% 
accuracy for coronary artery disease, for instance). Notably,  
they were also able to identify subsets of the testing sam-
ple with odds ratios of 3, 4, or 5 for having illness. This is  
comparable to the predictive ability of many monogenic mutations 
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in Mendelian diseases. The group of subjects this applied  
to was small (for the five diseases, the size of this risk group 
ranged from the top 1.5% to the top 8.0% of subjects with the high-
est PRS), but for those groups the PRS might have some clinical 
utility even now. There is no reason that this method cannot be  
applied to common psychiatric disorders and it is supported 
by data showing that subjects with a top-decile PRS for 
schizophrenia have a threefold increased risk of psychosis25  
and a further study showing that the top-decile PRS for major 
depressive disorder was associated with a 2.5-fold increased 
risk of major depression26. Of course, the relevant question in 
a clinical situation is usually not to differentiate between typi-
cal cases and symptom-free controls but to identify individual 
cases who might benefit from specific treatments. We would 
anticipate that young at-risk individuals with a high PRS might  
benefit from psychoeducation, introduction of lifestyle changes 
to reduce stress and promote stability of social and personal 
rhythms, and increased clinical monitoring and access to sup-
port services, particularly as they transition through the peak 
period of symptom emergence. Early identification of those with 
an extremely high PRS may eventually lead to early pharmaco-
logical treatments. For adult individuals with established illness,  
specific PRS profiles may potentially indicate those more or 
less likely to respond to pharmacological treatments or those 
who would benefit from specialized alternative therapies (such  
as electroconvulsive therapy).

One might also anticipate that methodological developments 
in computing PRS may lead to better polygenic risk mod-
els and predictors. Competitors to the standard thresholding  
PRS, incorporating information about underlying linkage  
disequilibrium structure, are actively being developed (for exam-
ple, LassoSum, LDpred, and PRS-CS)44–46. Such improvements 
may include the incorporation of information about the rela-
tionship of genotype to gene expression in the brain, a rapidly 
developing knowledge base, which would have beneficial  
effects in optimally weighting and calibrating the calculation 

of the PRS. In fact, the PsychENCODE Consortium recently 
showed that incorporation of information from an expression 
database may increase the predictive power of genotypic data by 
over threefold47. One may expect a new generation of PRSs based  
on methods such as this.

Polygenic scores may aid patient stratification and facilitate 
subphenotyping: for instance, among bipolar disorder cases 
polygenic scores for schizophrenia have been shown to distin-
guish schizoaffective cases from others48. A large Psychiatric 
Genomics Consortium study recently demonstrated that a PRS 
derived from a study of schizophrenia predicted psychotic symp-
toms in patients with bipolar disorder49, a finding replicated in 
an independent study50. A further study showed that schizo-
phrenia PRS was inversely correlated with response to lithium  
treatment41. Recent research has also shown that PRS may be 
useful in predicting future psychiatric diagnoses, such that  
individuals with first-episode psychosis who subsequently 
developed schizophrenia had significantly different PRS from  
those who did not become chronically ill, although the discrimi-
native accuracy is not yet sufficient for clinical utility51. Fur-
thermore, higher PRS in patients with first-episode psychosis 
significantly predicted higher post-treatment symptom scores  
after 12-week follow-up, indicating that patients with low PRS 
were almost twice as likely to be treatment responders than 
patients with high PRS (that is, based on a median split into two  
categories)52.

Another avenue where PRS may be useful in clinical practice 
in psychiatry is in the prediction of risk of commonly comor-
bid general health conditions, which impact treatment options 
and treatment adherence, as well as long-term health outcomes 
for people with psychiatric illness. For instance, a depression 
PRS has been associated with higher risk of ischemic stroke,  
such that stroke risk increased by 3.0% for every one- 
standard-deviation increase in PRS for those of European ancestry 
and by 8% for those of African ancestry53.

Figure 2. Potential clinical uses of polygenic risk scores. BP, bipolar disorder; BP1, bipolar disorder - type 1, BP2, bipolar disorder - type 
2, ECT, electroconvulsive therapy; MDD, major depressive disorder; SA, schizoaffective disorder; SZ, schizophrenia.

Page 6 of 11

F1000Research 2019, 8(F1000 Faculty Rev):1293 Last updated: 22 APR 2023



Conclusions
Increasing discovery sample sizes and ethnic diversity for 
GWAS, potentially leveraging large populations represented in 
national biobanks and disease consortia, will improve the predic-
tion models for PRS considerably, including improvements in 
both the positive and negative predictive value22,42. Other meth-
odological changes in PRS calculation, particularly machine  
learning approaches which may simultaneously examine both 
clinical and genetic heterogeneity54, may be expected to have 
an impact on predictive power as well. Thus, although PRSs are 
not routinely used in clinical practice in psychiatry at this time, 
the great advances afforded by current genomics research may  
reveal avenues for personalized medicine which will drastically 
change the way that psychiatric disorders are treated clinically in 
the years to come.

Glossary
Monogenic: Monogenic disorders are caused by a muta-
tion in a single gene, which has a one-to-one correspondence 
with disease and is said to be causative. The mutation may be 
present on one or both chromosomes (where one chromosome is  
inherited from each parent).

Oligogenic: Oligogenic inheritance represents an intermediary 
between monogenic inheritance (in which a trait is determined 
by a single causative gene) and polygenic inheritance (in which 
a trait is influenced by many genes and often environmental fac-
tors as well). It describes a condition where a small number of 
genes determine the trait, linkage is not detected using Mendelian 
models, and phenotype–genotype correlation can be improved  
by inclusion of genotypes from another locus (or loci).

Polygenic: A polygenic disorder is one whose phenotype is 
influenced by more than one gene. Therefore, polygenic disor-
ders are not inherited as simply as single-gene diseases where 
there is a one-to-one ratio between inheritance of a disease gene 
and presentation of the disease. Traits such as height or skin  
color are examples of polygenic traits and often display a  
continuous distribution.

Polygenic risk score: A numeric measure of genomic burden 
of genetic variants which increase risk of disease or vari-
ability in a quantitative trait on the basis of variation in multiple  
genetic loci and their associated effect sizes.

Heterogeneous: Genetic heterogeneity can be defined as muta-
tions or risk variants at two or more genetic loci that produce 
the same or similar phenotypes. A heterogeneous disorder is a  
disorder which can be caused by mutations at two or more loci 
but with the same clinical presentation. In the context of poly-
genic disease, different combinations of variants in different genes  
may result in the same or similar clinical presentation.

Pleiotropy: Where one gene (or genetic variant) influences 
two or more seemingly unrelated phenotypic traits, the gene is  
described as pleiotropic.

Genomic variant: Genomic variation describes the differences 
between our genomes, which may or may not have an impact 
on our health. These can vary in size, and may impact the DNA 
sequence within protein coding sequence of genes, may lie 
in introns (i.e. the nucleotide sequence within a gene that is  
removed by RNA splicing before the mature RNA is formed, 
and which may be transcribed into protein) or intergenic 
regions (i.e. the nucleotide sequence between genes). A genome 
contains millions of genetic variations, or variants, which  
make each person unique.

Single-nucleotide polymorphism (SNP) or single-nucleotide 
variant: A very common type of genetic variation, represent-
ing a difference in a single-nucleotide building block in the DNA  
sequence, which may or may not have any effect on gene 
function or any trait. Each SNP variation is present to some  
appreciable degree (for example, >1%) within a population.

Risk allele (or risk variant): A risk allele is defined as a 
gene variant that is more commonly found in cases than con-
trols but is not observed exclusively in either group. This is in  
contrast to a mutation, which has a one-to-one relationship to  
disease, and is described as disease-causing.

Independent risk allele (or risk variant): A risk variant which 
is inherited independently of other risk variants in a population 
because of random assortment and recombination. Identifica-
tion of independent risk alleles requires a process known as 
“pruning”, in which variants close to each other on a chromo-
some, which are frequently transmitted together and therefore 
said to be in “linkage disequilibrium”, are removed until the  
remaining variants are effectively statistically independent.

Causal variant: Causal variants have a direct biological effect 
and a direct effect on the phenotype. Causal variants are respon-
sible for the association signal at a locus, although the asso-
ciation may be identified by using other non-causal variants in  
linkage disequilibrium with the causal variant.

Effect size: A quantitative measure of the magnitude of a 
genetic association, determined by its contribution to the total 
genetic variance of the trait as well as the statistical power to 
detect it in an association study. Effect sizes are also influ-
enced by gene-by-environment interactions, which may result 
in population-specific variability when a specific environmen-
tal exposure is more common, increasing the apparent strength  
of a genetic association. For most types of effect size with a 
center around zero (for example, a beta-coefficient), a larger 
absolute value always indicates a stronger effect; the main 
exception is if the effect size is an odds ratio (which centers  
around one).

Additive effect: Describes the condition where the joint effect 
of two or more independent variables on an outcome is equal 
to the sum of their individual effects. This is in contrast to 
a synergistic (or epistatic) interaction, where the combined 
effect of two or more independent variables on an outcome is  
greater than the sum of their individual effects.
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Copy number variant (CNV): Copy number variation is a 
phenomenon in which sections of the genome are deleted, 
repeated, or inverted and the number of repeats in the genome  
varies between individuals in the population. CNVs can contain 
whole genes or crucial regulatory elements which influence gene  
expression or may have no appreciable functional effect.

Pathogenic variant: A genetic alteration that increases an indi-
vidual’s susceptibility or predisposition to a trait, disease, or 
disorder. When such a variant (or mutation) is inherited, the  
development of symptoms is more likely but not certain.

Endophenotype: Also known as intermediate phenotype, this 
genetic epidemiology term is used to separate behavioral symp-
toms into more stable phenotypes, which may reflect more 
elementary processes with a clear genetic connection. A quan-
titative biological trait that is reliable in reflecting the function 
of a discrete biological system and is reasonably heritable may 
be more closely related to the root cause of the disease than the 
broad clinical phenotype or complex psychiatric phenomena,  
typically defined by exceeding a symptom threshold.

Epigenetic: Relating to or arising from non-genetic influences 
on gene expression (or a heritable phenotype) that do not involve 

alterations in the DNA nucleotide sequence. Such changes 
can include chemical modifications of the DNA sequence or 
changes in chromatin structure which alter the accessibility of 
the DNA to proteins involved in gene expression, thus provid-
ing a mechanism for turning on or off expression in response to  
environment.

Heterotypic continuity: The prediction of a disorder by 
another disorder or disease55, where disease A would be the 
cause of disease B, people with disease B would often present 
with disease A first, or that disease A and B share a common  
vulnerability factor.
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