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Abstract 
Central nervous system (CNS) pericytes regulate critical functions of 
the neurovascular unit in health and disease. CNS pericytes are an 
attractive pharmacological target for their position within the 
neurovasculature and for their role in neuroinflammation. Whether 
the function of CNS pericytes also affects pain states and nociceptive 
mechanisms is currently not understood. Could it be that pericytes 
hold the key to pain associated with CNS blood vessel dysfunction? 
This article reviews recent findings on the important physiological 
functions of CNS pericytes and highlights how these neurovascular 
functions could be linked to pain states.
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Introduction
Other than the retina, the central nervous system (CNS) contains 
the highest ratio of pericytes to endothelial cells in the body1, yet 
the contribution, if any, of CNS pericytes to pain states and noci-
ception is not understood. CNS pericytes inhabit a perivascular 
niche within the neurovascular unit (NVU)2, a unique position 
interfacing the circulatory and peripheral immune systems and 
the central nervous parenchyma. CNS pericytes regulate criti-
cal functions of the NVU: blood-brain barrier/blood-spinal cord 
barrier (BBB/BSCB) integrity, cerebral (and presumably spinal 
cord) blood flow, clearance of toxic substances, angiogenesis,  
mesenchymal stem cell activity, and neuroinflammation3. As 
such, severe neuronal defects are observed with CNS pericyte 
deficiency4,5. CNS pericytes have attracted interest in neurop-
harmacology, particularly with respect to their involvement 
in neuroinflammation, yet on the basis of a scan of the pub-
lished literature on CNS pericytes, it is evident that understand-
ing of their potential influence(s) in pain states and nociceptive  
mechanisms is currently severely lacking. This article reviews 
recent literature on the physiological functions of CNS pericytes 
that, when awry, could contribute or lead to the development  
of pain.

The multipotent nature of CNS pericytes
Pericytes, first identified and labelled as Rouget cells in 1873 by 
the French physiologist Charles-Marie Benjamin Rouget, are 
a heterogeneous population of cells and, as such, have proven 
a challenge to characterise both functionally and biochemi-
cally. A lack of pericyte-specific markers has significantly hin-
dered consistency within pericyte research, and many debates 
discussing what constitutes a pericyte have played out6. Peri-
cytes are capable of self-renewal, and express markers and  
behave like mesenchymal stem cells. For example, throughout 
the body, pericytes have the ability to replace specialized tissue-
specific cells such as adipocytes7, myocytes8, myofibroblasts9 
and odontoblasts10 in repair processes. Pericytes can also facili-
tate repair processes indirectly through the release of factors11,12, 
and some of these – for example, nerve growth factor (NGF), 
vascular endothelial growth factor-A (VEGF-A), tumour 
necrosis factor-alpha (TNFα), interleukin 1 beta (IL1β), IL6,  
NAD(P)H oxidase-4 (NOX4) and matrix metalloproteinase 2 
(MMP2)13–18 – are direct neuronal sensitizers or increased lev-
els are associated with pain states. CNS pericytes have been 
shown to migrate into the cortex parenchyma and differenti-
ate into a microglia-like phenotype in a model of stroke19. The 
authors observed pericyte migration, proliferation, a morpho-
logical change resembling reactive microglia, and expression of 
IBA-1 and CD11b, the latter being an integrin strongly expressed 
by reactive microglia and macrophages in pain models20–22. 
However, it is not known whether such pericyte-to-microglia  
differentiation occurs in pain states in which microglial acti-
vation and central sensitization occur. Microglial blockage 
(with minocycline, for example) can exhibit anti-nociceptive 
actions in pain models23. A pericytic transformation into a 
pro-nociceptive microglial phenotype would present a novel 
mechanism to target for alleviation of microglial-driven  
neuroinflammation and neuronal sensitization known to underpin 
some chronic pain states, in preclinical models and in humans24–27.

To complicate matters further, CNS pericytes can differentiate 
into a neuronal-like phenotype with basic fibroblast growth fac-
tor (bFGF) stimulation and are also capable of self-renewal28, 
indicating that pericytes may be a source of pluripotent pro-
genitor cells. Forebrain pericytes are of neuroectodermal origin29 
and it may be this pericyte subtype that gives rise to neuro-
nal phenotypes. The heterogeneous and pluripotent nature of 
pericytes appears to allow diverse differentiation responses in  
different situations. How CNS pericytes behave in pain states 
and preclinical pain models and whether they present a novel  
target for the alleviation of pain are not yet known.

CNS pericytes in vessel barrier integrity
The BBB and BSCB are selective barriers that limit cell and 
molecular access into the CNS from the blood. The barriers 
maintain the microenvironment within the CNS required for 
physiological neuronal function. The CNS microvasculature is 
comprised of endothelial cells, pericytes, perivascular macro-
phages, microglia, and astrocytic end-feet (Figure 1). Unlike 
in the periphery, CNS endothelial cells are not fenestrated but 
are connected via tight junction proteins such as occludin,  
junctional adhesion molecules (JAMs), vascular endothelial 
cadherin (VE-cadherin), and claudins, which restrict the inter-
endothelial space. Pericytes are embedded in the basement  
membrane (perivascular niche), which surrounds the endothe-
lial cells. Pericytes are polymorphs with an oval to elongated  
morphology and extend processes along capillaries, pre-capillary 
arterioles and post-capillary venules. In the CNS, these  
processes encircle the endothelium and cover endothelial tight 
junction regions30. Astrocytic end-feet wrap around the base-
ment membrane encircling perivascular cells and vessels and  
provide another barrier (glia limitans), further limiting access to  
the nervous parenchyma.

Pericytes are key modulators of the BBB/BSCB and partici-
pate in neuroinflammation3,31. Platelet-derived growth factor 
receptor-beta (PDGFRβ) is predominantly expressed by peri-
cytes in the CNS32 and, via mice with genetically disrupted 
PDGFRβ signalling, demonstrated the necessity for pericytes 
in BBB formation during embryogenesis33. In addition, in both 
development and adulthood, barrier permeability is inversely 
correlated with pericyte coverage5,33. There is lower pericyte  
capillary coverage in the spinal cord compared with the brain, 
which correlates with increased permeability, and lower expression 
of two tight junction proteins: ZO-1 and occludin34.

Mice with deficient PDGFRβ signalling (pdgfrβF7/F7) dem-
onstrated region-dependent losses in pericytes that related to 
BBB breakdown35. Conversely, disrupted PDGFRβ signalling 
through a mutation in the retention motif of PDGF-B (pdgfbret/ret), 
one of two ligands for the receptor, caused homogenous peri-
cyte loss across the brain, but the extent of pericyte loss in this 
experiment did not correlate with increased BBB permeability36. 
The authors hypothesise that this may be due to the  
phenotypic diversity of pericytes and alternative local signalling 
mechanisms controlling BBB permeability. In addition, the dif-
ference in mutation strategy (receptor versus ligand) could  
have contributed to the contrasting results.
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Figure 1. A diagrammatic overview of the physiological roles of central nervous system (CNS) pericytes and possible links of pericyte 
function to neuronal sensitization and pain. (A) Under physiological conditions, the high pericyte-vessel coverage in the CNS promotes 
high tight junction protein expression, consequently maintaining vessel integrity and reduced vessel permeability. Pericytes influence the low 
level of blood cell transmigration into the parenchyma under physiological conditions. (B) Reduced pericyte coverage in many CNS diseases 
leads to decreased tight junction protein expression, loss of vessel integrity, and increased vessel permeability. Ensuing pro-nociceptive 
molecule extravasation and pro-nociceptive and pro-inflammatory immune cell transmigration are likely to lead to neuronal sensitization. In 
addition, there is emerging evidence that multipotent CNS pericytes are able to migrate out of their peri-vascular niche and differentiate into 
a microglia-like phenotype in preclinical pain models, which in turn could have a neuronal sensitizing effect. A, astrocyte; BM, basement 
membrane; EC, endothelial cell; L, leukocyte; M, microglia; N, neuron; P, pericyte.
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Foxf2, a transcription factor, is specifically expressed in  
cerebral pericytes derived from the neural crest (neuroecto-
dermal cells)37. Loss of Foxf2 caused cerebral haemorrhage, 
increased pericyte densities in embryonic cerebral capillaries, 
and induced BBB disruption in both development and adult-
hood. There was also a decrease in PDGFRβ and transforming 
growth factor beta (TGFβ) (implicated in pericyte and endothelial  
proliferation, migration and differentiation) signalling despite 
an increased number of pericytes37. This suggests that the  
correct differentiation of pericytes is key to BBB develop-
ment and maintenance, and there are cues other than PDGFRβ 
which are involved in pericyte recruitment to the endothelium.  
For example, loss of glial laminin resulted in BBB breakdown, 
concluded to be due to the observed altered pericytic differen-
tiation into a contractile phenotype, consequently disrupting 
the barrier38. In addition, CD146 has been implicated in regu-
lating PDGFRβ/PDGF-B and TGFβ signalling in barrier  
formation and maintenance. Pericyte-secreted CD146 acts as a 
co-receptor for PDGFRβ during pericyte-vascular recruitment, 
and in the mature barrier, endothelial cell–secreted CD146  
is downregulated by pericyte production of TGFβ39.

Pericyte-endothelial cell signalling is paramount in the mainte-
nance of the BBB/BSCB, especially through PDGFRβ/PDGF-B 
signalling40. However, many of the specific mechanisms of how 
pericyte-endothelial cell signalling affects barrier function are 
still largely unknown. In vitro culture techniques offer the abil-
ity to study pericyte function in detail. Indeed, much of the  
knowledge gained about pericytes has been from combined  
in vivo and in vitro techniques. Recently, Herland et al.41 developed 
a dynamic flow model within a microfluidic device that permits  
co-culturing human endothelial cells in an engineered lumen 
with pericytes or astrocytes embedded in the surrounding 
extracellular matrix. In this model, the presence of pericytes 
reduced the permeability of the engineered vessel and increased 
the production of both basal and TNFα-induced cytokines 
compared with endothelial cells alone. The development  
of sophisticated in vitro models of the BBB/BSCB will allow 
more detailed and specific research into the contribution of  
pericytes and other cell types to barrier permeability and function.

In many preclinical models of painful neuropathy, the BBB/
BSCB is altered42–46. Leakage of neurotoxic blood-derived mol-
ecules into the nervous parenchyma (for example, erythrocytic 
free iron, fibrinogen, plasminogen and thrombin) can lead to 
a detrimental neuronal response, including sensitization, and 
may contribute to an increased pain state in various painful  
diseases (Figure 1b). Gaining a better understanding of pericytic 
function (or indeed pericytic dysfunction) in the loss of barrier 
integrity in the context of pain may present an opportunity  
to intervene and limit the possibly painful consequences.

Pericytes in haemodynamic regulation
The precise roles of contractile pericytes, despite their isolation 
and identification in the 1870s, in regulating haemody-
namic control of CNS blood flow are only now being probed  
effectively. Smooth muscle cell (SMC) contraction in pial and 
penetrating arterioles is, as in other tissues, the primary control  

on CNS blood flow47. Capillaries are devoid of SMC and evi-
dence indicates that pericytes contribute to blood flow regula-
tion in capillaries, most likely through electrical coupling with 
capillary endothelial cells48,49. Pericytes are able to regulate 
bi-directional control of CNS capillary diameter independ-
ent of arterioles50, and pericyte stimulation propagates signals 
that cause downstream pericytes to constrict, indicative of a  
pericyte-pericyte signalling network51. Furthermore, there is  
evidence of an electrical endothelial network: CNS capil-
lary endothelial cells expressing the potassium channel K

Ir
2.1 

caused vasodilatation of distant upstream arterioles in the CNS 
microvasculature in the absence of pericytes52. The authors 
conclude that a hyperpolarising signal is transmitted through 
endothelial gap junctions, inhibiting calcium influx, and 
causes SMC relaxation and vessel dilation. Evidence points  
towards pericytes being electrically coupled to capillary 
endothelial cells and therefore possibly being able to regulate 
this novel electrical endothelial network47,48. Further evidence 
of the intricate relationship between pericytes and capil-
laries being responsible for control of cerebral blood flow  
(CBF) following neuronal innervation derives from knock-
out animals, in which decreased pericyte numbers resulted 
in a reduction in capillary coverage and dysregulation of the 
microvasculature35,53,54. Potential signalling networks between 
pericytes and myocytes in uterine smooth muscle also point 
to multi-cellular interactions in blood flow control, as pericyte  
constrictions persist longer following stimulation compared 
with myocytes55. Exaggerated pericyte constriction, persist-
ing longer than SMC constriction, has been linked to a loss 
of reperfusion in ischaemia and stroke, even when occluded 
arteries have been dilated56–60. This supports the role of  
pericytes having an influence on CBF which can be detrimental.

In keeping with a pericyte contribution to the NVU47, several 
neuro-glial transmitters modulate pericyte influence on microv-
asculature in cerebellar slices. Pericyte populations are heterog-
enous depending on pericyte locus in the microcirculation6,40,53,61,62. 
Pericyte constriction is stimulated by noradrenaline and blocked 
by glutamate, transmitters involved in neurovascular cou-
pling. HETE-20 is a known CNS vasoconstrictor that is inhib-
ited by glutamate-driven nitric oxide (NO) release. Block 
of synthesis of both HETE-20 and NO resulted in pericyte  
dilation, mediated by prostaglandin E

2
, a known CNS  

vasodilator50.

Although the exact contribution of pericytes in maintaining and 
altering CBF requires further elucidation, evidence suggests that 
they have a much more significant role in CBF than assumed 
since their initial discovery. Emerging evidence points to peri-
cytes acting as major players in the NVU which involved a “sen-
sory web” of microvasculature52. Pericytes preside over profound 
changes in capillary tone and may be able to initiate upstream 
effects on arteriolar smooth muscle, contrary to initial opinion.  
These findings implicate pericytes as key players in pain 
that arises from altered CBF, for example in migraine and 
chronic pain conditions associated with altered blood vessel 
function63. Blood oxygen level-dependent technology has 
linked generalised cerebral hypoperfusion with severe pain in  
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migraineurs, which was associated with concurrent vasospasm64. 
Induced hypoxia worsened pain in response to stimuli designed 
to invoke an episode. Such stimuli could be linked to aber-
rant neuronal signalling causing detrimental pericytic action65. 
These intriguing studies highlight how aberrant neurovascular  
coupling and detrimental pericytic function could contribute to 
pain.

Pericytes in CNS angiogenesis
Pericytes are vital for vascular function, including the con-
trol of angiogenesis. Angiogenesis is important in the develop-
ment and maintenance of CNS function and involves several 
cell types in the NVU. Developmental CNS angiogenesis is ini-
tially dependent on neural VEGF-A expression leading to the 
formation of endothelial-derived tip cells and enhanced endothe-
lial cell survival. Pericytes form part of the NVU66. They are  
recruited to sprouting vessels through endothelial secretion 
of PDGF-β, promote tube formation, and later secrete angi-
ostatic substances that contribute to the termination of CNS 
angiogenesis and vascular stabilisation67. The reduced perme-
ability of the BBB compared with the systemic vasculature 
is not intrinsic to endothelial cells; the presence of neuronal  
precursors is required for BBB induction, and CNS pericytes and  
astrocytes are required for BBB maturation66.

The contribution of pericytes to BSCB and angiogenesis is less 
well understood, but evidence suggests that it is important as 
activated pericytes stimulate increased vascular density (inter-
preted as angiogenesis) in spinal cord explant cultures68. Altered 
BSCB function is evident both in people with amylotrophic  
lateral sclerosis (ALS) and in animal models of ALS69. Patients 
with ALS have increased spinal cord ventral horn microvascular  
density (also interpreted as angiogenesis) with decreased  
spinal cord pericyte coverage; those patients requiring respira-
tory support displayed an increased incidence of spinal cord 
angiogenesis27. These human observations imply that spinal 
cord vascular dysfunction, with increased angiogenesis and  
decreased pericyte function, contribute to the disease.

Do pericytes contribute to migration of immune cells 
into the CNS and the generation of pain?
The BBB/BSCB normally restricts leukocyte entry and as a 
result the CNS is considered an immune-privileged site under 
normal conditions. However, under many pathological condi-
tions, leukocyte transendothelial migration into the CNS occurs 
and pericytes contribute to this process. First, pericyte dilata-
tion increases blood flow to specific areas, thereby increasing 
leukocyte delivery to the NVUs in question. Second, pericytes 
are able to release factors into the circulation which promote  
leukocyte chemoattraction, including TNFα, interleukins 
(including IL-1β, IL-6 and IL-10), interferon gamma (IFNγ), 
TGFβ1, and members of the CC (denoting 2 adjacent cysteines) 
chemokines, including monocyte-chemoattractant protein-1 
(MCP-1)70,71. Pro-inflammatory secreted factors are, however,  
species-dependent, and rodents differ significantly from human 
pericytes in their secretome3. Third, CNS pericyte-derived 

chemokines stimulate leukocyte integrins, allowing interaction  
with endothelial adhesion molecules in the vascular lumen, and 
pericytes also express intercellular adhesion molecule-1 (ICAM-1) 
and vascular cell adhesion molecule-1 (VCAM-1) contribut-
ing to leukocyte transmigration into the perivascular space3. 
Lastly, once leukocytes are in the perivascular niche, with-
out pericyte-mediated adhesion molecule guidance, leukocytes 
can be cleared by a perivascular clearance mechanism and  
not breach the astrocytic end-feet (glia limitans) and reach the  
nervous parenchyma2.

In preclinical models of painful neuropathy such as peripheral 
nerve injury model, there is evidence that immune cells trans-
migrate into the CNS and these may contribute to the develop-
ment of CNS neuronal sensitization (central sensitization)72–74. 
A recent report shows that peripheral nerve injury results in dis-
ruption of the BSCB, and loss of both tight junction proteins 
and spinal pericyte coverage75. Therefore, if pericytes regulate 
the passage of immune cells into the nervous tissue parenchyma  
(Figure 1), then altering this process may be a viable interven-
tion with the aim of lessening central sensitizing processes 
that lead to increased pain. Pericytes are crucial to the  
development of the CNS and in central neurodegenerative disor-
ders, and these findings suggest that they also contribute to spinal  
processing of sensory information and pain.

Summary
This article highlights the key areas of CNS pericyte physiol-
ogy that, when dysregulated in pathology, could lead to neu-
ronal sensitization and an increased pain state (Figure 1b). 
Pericytes are a more attractive pharmacological target than 
those that are beyond the second barrier of the BBB/BSCB, the 
glia limitans. An agent targeting CNS perivascular cells will  
not need to penetrate the glia limitans thereby reducing pos-
sible off target and detrimental side effects within the CNS 
parenchyma. However, whether CNS pericytic actions affect 
pain is currently severely under-researched; more focussed  
research into the actions of pericytes in the context of neuronal 
sensitization and pain could present many potential therapeutic  
opportunities.
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