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In the last decade, a variety of innovations of emerging technologies in science 
have been accomplished. Advanced research environment in plant science has 
made it possible to obtain whole genome sequence in plant species. But now we 
recognize this by itself is not sufficient to understand the overall biological 
significance. Since Gregor Mendel established a principle of genetics, known as 
Mendel’s Laws of Inheritance, genetics plays a prominent role in life science, and 
this aspect is indispensable even in modern plant biology. In this review, we 
focus on achievements of genetics on plant sexual reproduction research in the last 
decade and discuss the role of genetics for the coming decade. It is our hope that 
this will shed light on the importance of genetics in plant biology and provide valu-
able information to plant biologists.
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INTRODUCTION

In the beginning of the last decade, whole genome 
sequences in plants were obtained (Arabidopsis Genome 
Initiative, 2000; International Rice Genome Sequencing 
Project, 2005). Various kinds of plant research advanced 
but now it has been recognized that it is not sufficient to 
understand the overall biological meaning in plants.
Almost 150 years have passed since Gregor Mendel estab-
lished a principle of genetics, known as Mendel’s Laws of 
Inheritance (Mendel, 1866), and a variety of plant species 
have been applied into plant science with the elements of 
genetics (Fig. 1). Although technology has been improved 
at a breakneck speed in the last decade, genetics still 
plays a prominent role in life science. Thus, understand-
ing the importance of genetics in plant biology is 
indispensable. In this review, we focus on sexual repro-
duction as one of the important points in plant genetics.
Our hope it is that the importance of genetics will be bet-
ter understood and provide clues to plant biology, taking 

full advantage of genetics, in the coming decade.

REPRODUCTIVE BARRIERS

Because plants are immovable as we know, pollination 
is an important process for plants to produce seeds. At 
the same time, plant needs to reject other or unwanted pol-
len to protect the species. This is a first step of ‘reproduc-
tive barriers.’ A good example of this is self-incompatibility 
(SI) in angiosperm. SI is a system which recognizes self/
non-self pollen at pollination to promote outcrossing 
within the same species and is widely spread over 60% of 
all angiosperm species (summarized in Allen and Hiscock, 
2008). Basically, this system is genetically controlled by 
one locus, called S locus, and male and female recognition 
factors are located tightly within this locus. There are 
two types of SI systems, gametophytic and sporophytic SI, 
based on the behavior of SI phenotype in male gameto-
phyte. Over the past quarter-century, there has been 
great progress to understand the molecular, physiological, 
and genetic mechanism in these homomorphic SI sys-
tems, although heteromorphic SI system in Primula is 
famous as a pioneer work on SI research (Darwin, 1876, 
1877) and as one of the Darwin’s glorious triumph. We 
now know the molecular systems of three types of homo-
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morphic SI; the S-Receptor Kinase (SRK)-based system in 
Brassicaceae, the S-RNase-based system in Solanaceae, 
Rosaceae and Plantaginaceae, and the S-glycoprotein-
based system in Papaveraceae. Even though overall the 
molecular mechanisms underling these systems are still 
largely unclear, sets of these male and female recognition 
factors have been identified by genetic and genomic anal-
yses of the S locus. Their details are available in recent 
publications (Franklin-Tong, 2008; Suzuki, 2009). The 
latest topics in SI research, in addition to the publication 
of the above articles, are identification of the trans-acting 
small RNA controlling dominance/recessive relationship 
in the Brassica pollen SI factor (Tarutani et al., 2010), the 
evolution of self-compatibility (SC) in Arabidopsis
(Tsuchimatsu et al., 2010), and collaborative non-self rec-
ognition system in S-RNase-based SI (Kubo et al., 2010).

In Brassica SI, the dominance/recessive relationships of 
pollen SI phenotype are often observed between two hap-
lotypes in S-heterozygous plants, and the recessive SP11/
SCR, pollen SI determinant, alleles are suppressed tran-

scriptionally (Shiba et al., 2006). Repression of recessive 
SP11 allele is a result of tapetum-specific de novo cytosine 
methylation in its promoter region, and small RNA pro-
duced from SP11-methylation inducing region (Smi), 
which is located in the flanking region of a dominant 
SP11 allele, controls this monoallelic gene silencing 
(Tarutani et al., 2010).

Arabidopsis thaliana is a self fertile plant belonging to 
Brassicaceae. From a comparative genetic analysis with 
A. lyrata, a cross relative species having SI, the trace of 
the S locus has been identified in the A. thaliana genome, 
although both male and female SI determinants are 
inactivated by gene mutations (Kusaba et al., 2001). By 
ecological and molecular analyses, pseudogenization of 
pollen determinant gene has been proven to be the first 
mutation conferring SC of A. thaliana and it is nearly 
fixed in geographically wide samples of European acces-
sions (Tsuchimatsu et al., 2010). A restoration of func-
tional pollen SI determinant, by gene transformation, 
results in SI on particular A. thaliana accession. Thus it 

Fig. 1. Plants used in genetic analysis of sexual reproduction. (A) Arabidopsis; (B) rice; (C) wheat; (D) Petunia; (E) Brassica; (F) 
Torenia; (G) tobacco. The wheat photograph is by courtesy of Professor Yasuhiko Mukai, Osaka Kyoiku University.
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is an experimental reversal of evolution of SI to SC in 
Brassicaceae (Tsuchimatsu et al., 2010).

Recently, Kubo et al. (2010) showed a newly-found 
mechanism of S-RNase-based SI of petunia, solanaceous 
plant, in which cross-fertilization is achieved by collabo-
ration among pollen S genes. In the S-RNase-based SI 
system, self S-RNases entering into the self pollen tube 
prevent its elongation by cytotoxic effects, whereas non-
self S-RNases entering into the non-self pollen tube are 
degraded via the SLF (pollen S product)-mediated protea-
some pathway, securing the non-self pollen-tube growth.
In petunia, the enormous and detailed pollination assays 
using many transgenic plants with SLF transgenes 
showed that tandemly duplicated SLF genes on the S
locus produce multiple SLFs, which are collaboratively 
detoxify the non-self S-RNases, like animal immune sys-
tem (Kubo et al., 2010). This finding is definitely an 
important milestone of the SI research, and provides new 
insight into the field of plant reproductive genetics.

Genetic reproductive barriers exist at several phases in 
plant reproduction, including pollination, pollen tube 
elongation, pre- and post-zygote formation, and embryo-
genesis. Cytoplasmic male sterility (CMS) is a reproduc-
tive barrier in male gamete development. CMS is 
maternally inherited and is one of the pollen sterility sys-
tems in plants. It is regulated by interaction between 
mitochondria and nuclei, and nuclear-encoded Rf genes 
restore pollen sterility caused by mitochondrial genomic 
rearrangement (reviewed in Chase, 2007; Fujii and 
Toriyama, 2008a). Some Rf genes encode mitochondria-
targeted PentatricoPeptide Repeat (PPR) proteins, and 
PPR proteins are likely to regulate a post-transcriptional 
RNA modification of CMS-determining genes in mito-
chondria (Horn, 2006; Small and Peeters, 2000). Another 
Rf gene encoding a novel protein, RETROGRADE-
REGULATED MALE STERILITY (RMS) was also identi-
fied in rice CW-type CMS cytoplasm (Rf17) (Fujii and 
Toriyama, 2009). Although each CMS system is unique 
with respect to the mitochondrial transcript associated 
with male sterility, it seems that nuclear-mitochondrial 
gene combinations are common machinery of CMS in 
many plant species, such as maize (Wise et al., 1999), 
Brassica (Ashutosh et al., 2008), radish (Yasumoto et al., 
2009), petunia (Gillman et al., 2007), and wheat (Zhu et 
al., 2008). Similar to the known examples of retrograde 
regulation in the yeast RTG signaling, Drosophila cell 
cycle-related signaling, and Arabidopsis plastid signaling, 
the plant CMS might be elaborately regulated by typical 
retrograde signaling (Fujii and Toriyama, 2008a, 2008b; 
Fujii et al., 2009). Thus retrograde signals from mito-
chondria to nuclei are undoubtedly important machinery 
in plant reproduction.

Genomic imprinting is a postzygotic genetic barrier 
(Scott and Spielman, 2006; Kinoshita et al., 2008).
Genomic imprinting is an epigenetic system that pro-

duces unequal expression of maternal and paternal genes.
In mammals and plants, the imprinted genes are differ-
entially marked by DNA methylation and/or histone mod-
ification (Arnaud and Feil, 2006). The role of maternal 
and paternal chromosomes differs among each chromo-
some, and maternal chromosomes usually promote 
endosperm development while paternal chromosomes 
repress endosperm development in plants (reviewed in 
Kinoshita et al., 2008). In the case of plants, DEMETER
(DME) controls DNA methylation in imprinted genes, 
FWA and FERTILIZATION INDEPENDENT SEED2
(FIS2), and it erases DNA methylation of the promoter 
region in maternally expressed imprinted genes while 
methylation status is retained in silenced paternal allele 
(Kinoshita et al., 2004). A paternal allele of another 
imprinted gene, MEDEA (MEA), is silenced by the his-
tone methyltransferase activity of its maternal allele, 
referred to as self-imprinting (Gehring et al., 2006). On 
the contrary, the paternal allele of imprinted gene, 
PHERES 1 (PHE1), is expressed by methylation of its 3’-
tandem repeat region, while its maternal allele is silenced 
by de-methylation of the repeat region (Köhler et al., 
2005; Makarevich et al., 2008). Although the regulatory 
mechanism of epigenetic chromosome modifications is dif-
ferent between mammals and plants, polycomb complex 
PRC2 seems to be a common system for silencing of 
imprinted genes by DNA methylation both in mammals 
and plants. Thus, DNA methylation and repression by a 
polycomb complex are common aspects and play a key 
role in genomic imprinting in mammals and plants as a 
reproductive barrier.

Hybrid necrosis (hybrid incompatibility) is an epistatic 
system of genetic barriers in plant species, and it is also 
known as a gene flow barrier between species (reviewed 
in Johnson, 2010). It has epistatic interactions which 
are observed in many intra- and interspecific plant 
hybrids, and it contributes to the maintenance of popula-
tions or species boundaries. It is caused by interactions 
between alleles in parental lineages, and a locus in one 
strain triggers necrosis when combined with a locus in 
another strain. In A. thaliana, among 861 F1 progenies 
derived from crosses between 280 parental ecotypes, 
about 2% of them showed hybrid necrosis (Bomblies et al., 
2007). In most cases, epistatic interactions of 2 to 4 loci 
are involved in this phenotype. Surprisingly, one of the 
causal genes of hybrid necrosis encodes an NB-LRR type 
protein, the most common type of disease resistance pro-
tein in plants, and activation of gene expression following 
this involving the plant immune system is also required 
for the necrosis. Because it is believed to have arisen as 
a by-product of adaptive evolution, hybrid necrosis may 
share a common mechanism with a plant autoimmune 
system in a rapid evolutionary process (Ting et al., 1998; 
Barbash et al., 2003; Presgraves et al., 2003). Hybrid 
male sterility in inter-subspecies cross in rice is also 
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caused by an epistatic interaction at 2 loci, and it is an 
example of hybrid inviability caused by deleterious 
epistatic interaction (Kubo et al., 2008). In F1 hybrid 
between two major rice subspecies,  japonica and indica, 
pollen and seed fertilities decrease to approximately 40% 
and 60% compared to those of parental lines, respectively, 
although both parental cultivars show normal pollen and 
seed fertilities. This is caused by epistatic interaction of 
two genes, S24 and S35, however in this case, it seems 
not to be a simple epistatic Dobzhansky-Muller model: 
S35 locus is dependent on S24 locus to produce male ste-
rility, but S24 produces male sterility without a genetic 
effect of S35. A classical Dobzhansky-Muller model pro-
poses a simple scenario to produce hybrid incompatibility 
between species or isolated populations and depends on 
the reciprocal genetic interaction between genes that 
have functionally diverged in the respective species 
(Brideau et al., 2006). In addition, many hybrid sterility 
genes have been identified in the inter-subspecies crosses 
in rice (reviewed in Ouyang et al., 2010). Hybrid lethal-
ity would be a severe one of hybrid inviability, leading to 
embryonic death at early embryogenesis and/or seedling 
stage. Embryonic death has been found at interspecific 
crosses in several plant genera such as Nicotiana (Zhou 
et al., 1991), Gossypium (Phillips, 1977), and wheat 
(Zeven, 1981). Although causal genes have not been 
identified yet, these genes seem to involve programmed 
cell death, along with chromatin condensation, nuclear 
fragmentation and vacuolar collapse (Mino et al., 2007; 
Tezuka et al., 2007). In Drosophila, it has been proposed 
that polygene controls hybrid male sterility (Tao et al., 
2003; Moehring et al., 2006). Thus, a variety of epistatic 
reproductive barriers would exist to maintain and protect 
a species.

MALE GAMETOPHYTE

Pollen development Pollen is a male reproductive fac-
tor to transfer genetic information to the next generation.
Many biological events are regulated by complex gene 
expression in both the gametophytic and sporophytic tis-
sues during pollen development (McCormick, 2004; Scott 
et al., 2004). After differentiation of the male germline, 
pollen mother cells (PMCs) undergo meiosis to form tet-
rad cells of haploid microspores in the anther locule. The 
microspores then maturate into pollen grains with cell 
division and formation of the complex pollen wall.
Through an asymmetric mitosis, the uninuclear 
microspore develops into the bicellular pollen with a 
larger vegetative cell and a smaller generative cell 
(McCormick, 1993, 2004). The generative cell undergoes 
a second mitosis to form two sperm cells. In the case of 
plant species with the tricellular pollen (including 
Arabidopsis and rice), the pollen grain is maturated from 
the tricellular pollen with the vegetative cell and the two 

sperm cells. During pollen maturation, the sporophytic 
tapetum acts as nurse cells for providing nutrition and 
materials of the pollen wall, and disintegrates in the later 
stage of the pollen development (Goldberg et al., 1993; 
Scott et al., 2004). Gene expression in the anther has 
been intensively studied in important crops and model 
plants by using conventional cDNA cloning, promoter 
analysis and microarray (Borg et al., 2009; Honeys and 
Twell, 2004; Koltunow et al., 1990; Scott et al., 1991; 
Hihara et al., 1996; Rubinelli et al., 1998; Jeon et al., 
1999; Endo et al., 2002, 2004; Amagai et al., 2003; 
Masuko et al., 2006). In mature pollen grain, pollen-
specific transcripts related to cell cytoskeleton, cell-wall 
re-organization, methionine metabolism, proton pump, 
and sugar transporter have been detected, whereas as 
tapetum-specific transcripts related to second metabo-
lisms, fatty acid biosynthesis, protein secretion, and gib-
berellin signaling cascade have been detected. These 
different characteristics of gene contents between pollen 
and tapetum would reflect their different functions in pol-
len development. In addition, as a recent achievement of 
a precise transcriptome analysis of pollen and tapetum 
using laser microdissection-mediated microarray (see 
below for details), about 38% of anther-expressed genes 
(10,810/28,141) were synchronized with their expression 
profiles between pollen and tapetum (Hobo et al., 2008; 
Suwabe et al., 2008). It is believed that the tapetum acts 
as a nutritive tissue for pollen development, owing to its 
high metabolic activity (Scott et al., 2004) and correlation 
to male sterility (Wilson et al., 2001; Sorensen et al., 
2003; Yui et al., 2003; Ariizumi et al., 2004; Yang et al., 
2007) and sporophytic self-incompatibility (Takayama et 
al., 2000; Watanabe et al., 2001). However, this result 
suggests that tapetum has an identical function with pol-
len at an earlier stage of pollen development, and after 
that, it acts as a nurse cell for providing nutrition and 
materials for pollen wall formation. Thus the tapetum 
may have dual functions for pollen development and mat-
uration, although this is still speculation.

Because pollen development is carefully orchestrated 
by the complicated and precise gene networks as men-
tioned above, it is understandable that pollen develop-
ment is sensitive to environmental conditions, such as 
high and low temperatures (Oliver et al., 2005; Endo et 
al., 2009; Oda et al., 2010), and physiological conditions, 
such as deficiency of nutrients (Lee and Tegeder, 2004; 
Kato et al., 2009; Yuan et al., 2009).

Formation of the surface structure (pollen walls) of pol-
len grains is also an important process for successful pol-
len development and maturation (Scott et al., 2004). The 
outermost architecture of pollen walls acts as a kind of 
protection from the environmental stresses and a pollen-
stigma adhesion (Zinkl et al., 1999). The pollen wall con-
sists of inner intine, produced mainly from cellulose and 
pectin, and outer sporopollenin-based exine. The exine 
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is further divided into two layers, inner nexine and outer 
sexine, and provides the species-specific pollen surface 
structure and cavities storing the pollen coats including 
lipids and proteins, which are mainly supplied from the 
tapetum. Through a screening of abnormal exine 
structure in Arabidopsis, 4 types of defective mutants, 
kanonashi (kns) series, have been identified (Suzuki et 
al., 2008). All types of mutant lines have exine-defective 
phenotypes, such as an abnormality of callose wall and 
thin exine structure. Along with reports of many other 
kinds of Arabidopsis exine mutants (Ariizumi et al., 2008; 
Guan et al., 2008; Dobritsa et al., 2009; Morant et al., 
2007; Paxon-Sowders et al., 1997, 2001; Zhang and 
McCormick, 2007), it is obvious that the surface architec-
ture of pollen grain is one of the critical factors for pollen 
development which leads to a successful reproduction.

Recently, epigenetic gene regulation by small RNA has 
been suggested in pollen development and function 
(Fujioka et al., 2008; Takeda et al., 2008; Tarutani et al., 
2010). Small RNAs of 18–24 nucleotides are classified 
into two major classes, microRNA (miRNA) and small 
interfering RNA (siRNA) (Bartel, 2004; Vazquez, 
2006). The miRNAs are processed from single-stranded 
hairpin-folded precursor RNAs by Dicer ribonuclease, 
DICER-Like 1 (DCL1). Dicer-generated small RNA then 
associates with Argonaute (AGO) protein, and the RNA-
induced silencing complex (RISC) along with the AGO-
small RNA complex regulate their target gene expression 
accurately by a cleavage of target mRNA, repression of 
translation, and modification of chromatin structure, in a 
sequence-specific manner (Brodersen and Voinnet, 2006; 
Zhang et al., 2006; Tolia and Joshua-Tor, 2007; Kurihara 
et al., 2009). The list of miRNAs identified to date is 
available in the miRBase database (http://microrna. 
sanger.ac.uk/sequences/index.shtml). Meanwhile, siRNAs 
are derived from longer double-stranded RNAs and are 
generated through the transcription of inverted repeats or 
converted from single-stranded RNAs by RNA-dependent 
RNA polymerases (RDRs). The dsRNAs are then pro-
cessed into multiple siRNAs through the action of one or 
more of the DCL proteins. Several distinct classes of 
siRNAs have been discovered in plants, such as the RDR-
dependent siRNA, trans-acting siRNA (ta-siRNA), the 
repeat associated siRNA (ra-siRNA), and the natural 
antisense siRNA (nat-siRNA) (Ramachandran and Chen, 
2008; Chen, 2010). Large numbers of endogenous siR-
NAs have been discovered in plants for regulation of gene 
expression at the transcriptional and post-transcriptional 
levels, and the regulatory functions of these endogenous 
siRNAs range from genome stability, environmental 
stress response, and developmental patterning (Kasschau 
et al., 2007; Nobuta et al., 2007). Thus, further study will 
lead to better identification of gene networks regulated by 
small RNAs in plant reproductive development.

Pollen germination and pollen tube elongation for 
fertilization In pollination, pollen grain is hydrated, 
germinates, and elongates the pollen tube into the style 
toward the ovule for fertilization at the adhesive region 
between the pollen and papilla cells of the stigma surface 
(Taylor and Hepler, 1997). In this biological event, many 
mechanisms such as water and ion channels, protein syn-
thesis, and metabolism are involved. Especially, in most 
species, an earlier event from hydration to germination 
occurs very quickly within a couple of minutes when pol-
len arrives on the stigma surface, thus it has been 
believed that mature pollen grains store RNAs and pro-
teins required for germination and early tube elongation.
Although it is still a matter of debate, many reports sup-
port this hypothesis, from the viewpoint of transcriptome, 
proteome, mutant analysis, and protein/RNA synthesis 
inhibitor analysis (Becker et al., 2003; Honys and Twell, 
2003; Holmes-Davis et al., 2005; Noir et al., 2005; Wang 
and Okamoto, 2009).

The tip region of the pollen tube has 4 distinct zones: 
an apical region (clear zone), a subapical organelle-rich 
zone, a nuclear zone, and a vacuolated zone (Li et al., 
1997; Taylor and Hepler, 1997; Hepler et al., 2001; Cheung 
and Wu, 2008). A striking feature of the pollen tube is 
an accumulation and fusion of Golgi-derived secretory 
vesicles at the apical region in the pollen tube apex (Steer 
and Steer, 1989). The vesicles contain components for 
cell wall expansion and produce new segments of plasma 
membrane for tube elongation.

Oscillating growth, typical of fungal hyphae and pollen 
tubes of lily, is characterized by a periodic oscillatory pat-
tern in which the rate changes in a smooth wave. On the 
other hand, pulsating growth, typical of petunia and 
tobacco, is characterized by slower phases of growth fol-
lowed by growth spurts (pulses) (Picton and Steer, 1982).
It seems that the periods of slow growth coincide with the 
increased thickness by deposition of pectins and arabi-
nogalactan proteins (AGPs) (Li et al., 1992, 1994), and the 
periods of pulse correspond to thinner cell wall formation 
(Li et al., 1995, 1997; Pierson et al., 1995), although lily 
pollen tubes show a uniform deposition of these wall com-
ponents in the tube, even though they show a marked 
oscillation in growth rate. The mechanisms underlying 
the oscillating, or pulsating, growth are not completely 
understood yet, but it is clear that many important fac-
tors contribute to this process. For example, Ca2+ and H+

in the cell wall space play a crucial regulatory role in con-
trolling the yield properties of the wall and in elevating 
Ca2+ flux involved in the regulation of self-incompatibility 
in Papaver rhoeas (Franklin-Tong et al., 1993). At the 
tube tip, an influx of K+ ions has also been observed.
Thus the tip-focused ion gradients would regulate the 
internal structural zonation for cytoplasmic streaming as 
well as the vesicle fusion. Actin microfilaments accumu-
late in the apical region of the growing pollen tube and 
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seem to be involved in the transport of secretory vesicles 
essential for cell elongation (Derksen et al., 1995). Actin-
binding proteins such as myosin, spectrin, profilin, and 
Rho GTPases have been identified from many plant spe-
cies, suggesting that they participate in regulation of 
actin microfilaments and membrane-associated signal 
transduction.

After pollination and germination, the emerging pollen 
tube makes contact with the extracellular matrix of the 
pistil and grows into the transmitting tract of the style to 
deliver the male gametes to the ovary. The transmitting 
tract plays an important role in the extension or move-
ment of the pollen tube to the ovary, and stylar compo-
nents may serve several functions during pollen tube 
growth including guidance, nutrition, and structural 
integrity (Cheung et al., 1995; Wu et al., 1995; Jauh and 
Lord, 1996). A good example of this is a gametophytic 
self-incompatibility system in Solanaceae, Rosaceae, and 
Plantaginaceae. In Solanaceae and Rosaceae, as we 
mentioned above, it is triggered by interaction between 
stylar and pollen SI factors, S-RNase and SLF/SFB, and 
tube growth of self-incompatible pollen is arrested by the 
following ubiquitin-mediated protein degradation system, 
26S proteasomal pathway (Hua et al., 2008; Sassa et al., 
2010). In the case of Plantaginaceae, in a SI specific 
manner, the Ca2+-dependent signaling network triggers 
programmed cell death, resulting in the inhibition of 
incompatible pollen tube growth (de Graaf et al., 2006; 
Wheeler et al., 2009). As another example, HT-B, 120K, 
and transmitting tissue-specific (TTS) proteins, a variety 
of AGPs, have been isolated from stylar tissues (Du et al., 
1994, 1996; Lind et al., 1996). HT-B and 120K proteins 
are suggested to be necessary for functioning of the S-
RNase (McClure et al., 1999; O’Brien et al., 2002; Schultz 
et al., 1997; Hancock et al., 2005). TTS proteins are 
incorporated into the pollen tube surface and wall, and 
the glycosylated TTS protein promotes pollen tube 
growth. It has also been reported that SKP1 (S-phase 
kinase-associated protein 1)-like genes, one of the major 
components of SCF complex, are essential for normal lily 
pollen tube growth (Chang et al., 2009). In all cases, sty-
lar proteins, together with basic biological machineries, 
are essential for pollen tube growth and may contribute 
to the guidance of the pollen tubes to the ovary.

When the pollen tube arrives at the embryo sac of the 
ovule, it enters into the embryo sac through the micropy-
lar end, the entrance of tube for fertilization, and subse-
quently two sperm cells are dispersed for embryogenesis 
with the egg cell and endosperm development with the 
central cell, the so called double fertilization. It has long 
been suggested that the pollen tube is guided by diffusible 
attractants produced by the ovule, and recently two 
attractant proteins were identified from Torenia fourneri
and maize (Okuda et al., 2009; Márton et al., 2005).
Attractant molecule LUREs (LURE1 and LURE2) in T. 

fourneri are expressed in the synergid cell and are 
secreted to the micropylar end of the filiform apparatus 
of the embryo sac. These are small cystein-rich peptides 
of ~9.8 kDa, belonging to a subgroup of defensin-like pro-
teins, and recombinant proteins of LUREs attract pollen 
tube within a ~50 μm range. Similarly, Zea mays EGG 
APPARATUS1 (ZmEA1) has been identified as a micro-
pylar guidance factor. It is a small plasma membrane 
protein and belongs to the EA1-like gene family (Gray-
Mitsumune and Matton, 2006). It is expressed in syner-
gid cell and the egg cell, and it can attract the pollen tube 
at the micropyle of the ovule. In Arabidopsis, synergid 
cell-factors, MYB98 (Kasahara et al., 2005; Punwani et 
al., 2007) and FERONIA/SIRENE (Escobar-Restrepo et 
al., 2007), have also been identified for their micropylar 
pollen tube guidance and pollen tube reception. In all 
cases, the synergid cell is likely to be a key player for suc-
cessful guidance of the pollen tube into the female game-
tophyte for successful fertilization. In addition, other 
guidance factors, such as magatama (Shimizu and Okada, 
2000; Shimizu et al., 2008), central cell guidance (Chen et 
al., 2007), and gex3 (Alandete-Saez et al., 2008), have 
been suggested, thus a variety of factors would be 
involved in a pollen tube guidance.

FEMALE GAMETOPHYTE

In angiosperms, the female gametophyte, a.k.a. mega-
gametophyte, develops within the ovule. In the most 
common form, called Polygonum type, megaspore mother 
cell undergoes production of seven cells belonging to four 
identical cell types: an egg cell, two synergids, a central 
cell, and three antipodals, through megasporogenesis and 
megagametogenesis. The cellular structure and organi-
zation of the female gametophyte have been well studied 
since the mid 20th century (Maheshwari, 1950), however, 
few studies have focused on the molecular and genetic 
mechanisms underlying this biological event because of 
the inaccessibility and small size of the female 
gametophyte. Therefore it was referred to as “the forgot-
ten generation” (Brukhin et al., 2005). Although a tech-
nical difficulty, it is obvious that the Polygonum type 
female gametophyte contains essential reproductive func-
tions such as pollen tube guidance, reception of pollen 
tube, fertilization, and embryogenesis, with only seven 
cells. Thus, it is important to understand its function at 
the molecular level. For this, molecular genetic analysis 
of the female gametophyte is one of the choices to dissect 
these functions and their underlying molecular 
mechanisms. In a screening of gametophytic mutants, 
simple Mendelian rules cannot be applied in the genetic 
analysis of the progeny, but female gamete-defective 
mutants can be identified by a combination of character-
istic features, reduced seed set and a segregation distor-
tion in F2 progeny on reciprocal crosses with the wild type 
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plants (Christensen et al., 1998; Howden et al., 1998; 
Page and Grossniklaus, 2002). By this screening strat-
egy, a larger number of female gamete-defective mutants 
have been identified (summarized in Yadegaria and 
Drews, 2004). A similar strategy can be applied to a 
screening of defective mutants in the later stage of female 
gametophyte development, such as embryogenesis and 
the early stage of seed development (Shimizu et al., 2008; 
Hakozaki et al., 2008). Development of a female game-
tophyte and embryo occurs within the ovule, with a col-
laboration of gametophytic and sporophytic tissues, and 
moreover, reproductive specific mechanisms such as mei-
osis and unequal cell division are involved. In the recent 
mutant analysis, T-DNA insertion of AGO9 (ARGO-
NAUTE 9) gene in Arabidopsis resulted in abnormal 
ovule development, indicating that sporophytically-
expressed AGO9 protein plays an important role in female 
gametophyte development via a small RNA pathway 
(Olmedo-Monfil et al., 2010). Thus the isolation of game-
tophytic female mutants can be a resource to pave the way 
for dissecting the molecular mechanisms involved in 
gametophyte development and basic biological machiner-
ies underlying embryogenesis and seed development.

On the other hand, genetic analysis of apomixis is not 
easy. Apomixis is a well-known plant reproductive sys-
tem of asexually-reproduced seed formation (Bicknell and 
Koltunow, 2004). From the point of view of plant breed-
ing, molecular understanding of apomixis is no doubt 
important for future introduction of apomixis into sexual 
crops to produce “clone seeds” maintaining heterosis (van 
Dijk, 2008). Needless to say, apomixis research is closely 
related to female gametophyte development. Apomixis 
consists of apomeiosis (avoidance of meiosis), partheno-
genesis, and endosperm development with or without 
fertilization. Although many researchers have extensively 
studied apomixis in Boechera, Hieracium, Hypericum,
Pennisetum, and Taraxacum plants (Catanach et al., 
2006; Huo et al., 2009: Schallau et al., 2010; Sharbel et 
al., 2010; Vijverberg et al., 2010), a precise understanding 
of genetic regulation of apomixis still remains veiled. In 
addition to the difficulty of dissection of the phenomena 
in ovules, a genetic approach (such as map-based cloning 
and a transgenic experiment) is difficult or time-consuming 
because most of these apomicts are not model plants and 
have a heteromorphic or hemizygous chromosome with 
the apomixis locus, whose recombination is frequently 
suppressed. It is noteworthy that mutation of DYAD
gene in Arabidopsis causes apomeiosis (Ravi et al., 2008).
Although the apomixis phenotype of DYAD is recessive, 
and natural apomixis is fundamentally regulated by dom-
inant loci, genetic regulation of apomeiosis in Arabidopsis
has made an impact in plant reproductive science (Noyes, 
2008). For a tool of future understanding of genetic reg-
ulation of apomixis, deletion mutants for apomeiosis and 
parthenogenesis in Hieracium are expected to be used in 

efficient map-based cloning of apomixis-related genes 
(Catanach et al., 2006).

ADVANCED TECHNOLOGY AND INFORMATION 
FOR GENETICS

In the last decade, full-genome nucleotide sequencing of 
the model plants A. thaliana and rice was completed in 
2000 and 2005, respectively (Arabidopsis Genome 
Initiative, 2000; International Rice Genome Sequencing 
Project, 2005). Soon after, the innovation of the next 
generation sequencing platform (the second generation 
sequencer), such as Genome Analyzer (Illumina), 454 
Genome Sequencer FLX (Roche), and SOLiD (Life 
Technologies), has extensively improved the research 
environment for nucleotide sequencing. Such recent 
advanced technology makes it possible to obtain a large 
number of nucleotide sequences and various kinds of fun-
damental data sets, such as genes, cDNAs, ESTs, DNA 
markers and gene expression profiles. This is referred to 
as omics technologies.

As we mentioned above, plant male and female repro-
ductive organs are embedded and surrounded by sporo-
phytic organs. Thus, a precise isolation of targeted cells 
is a critical challenge in plant reproduction research. To 
overcome this difficulty, a laser microdissection (LM) 
technology is a case in point. LM is a powerful tool for 
isolating specific cell types from sectioned specimens of 
heterogeneous tissues (Asano et al., 2002; Kerk et al., 
2003; Nakazono et al., 2003; Day et al., 2005; Nelson et 
al., 2006; Ohtsu et al., 2007a). A tissue section that con-
tains the cell type of interest is placed on a microscope 
stage, and a laser beam separates the target cells from 
the rest of the tissue. A current LM system, such as 
Veritas Laser Microdissection System (Molecular 
Devices), is capable in collecting the target cells/tissue 
with high precision and efficiency, without low contami-
nation rate of other unwanted cells/tissues. Recently, 
many microarray analyses using cell types isolated by LM 
have been conducted in plant biology. Targeted plant 
cell types of the LM-microarray include embryos (Casson 
et al., 2005; Spencer et al., 2007), coleoptile epidermis and 
vascular tissues (Nakazono et al., 2003), shoot apical mer-
istems (Ohtsu et al., 2007b; Zhang et al., 2007), root peri-
cycles (Woll et al., 2005; Dembinsky et al., 2007), silique 
replums (Cai and Lashbrook, 2006), and stamen abscis-
sion zones (Cai and Lashbrook, 2008). In reproductive 
organs, such analysis has been conducted in pollen and 
tapetum cells of rice (Hobo et al., 2008; Suwabe et al., 
2008; Watanabe, 2008; Fujita et al., 2010). Using this 
transcriptome data, gene expression profiles in pollen and 
tapetum, along with developmental stages, have been elu-
cidated independently, and phytohormone biosynthesis 
and cis-regulatory elements underlying male gameto-
phyte development have been investigated (Hirano et al., 



304 K. SUWABE et al.

2008; Mihara et al., 2008). Such achievement can be 
accomplished only by precise cell type-specific transcrip-
tome. More recently, the LM-microarray was also applied 
to the cell-type-specific transcriptome of female gameto-
phyte cells; synergids, egg and central cells, showing sim-
ilar transcriptomes between Arabidopsis and human 
gametes (Wuest et al., 2010).

A combination of LM and the second generation 
sequencer is a better way for a whole transcriptome anal-
ysis, but now the third generation sequencer is becoming 
more available. The concept of the third generation is 
different from that of the second generation, and the most 
striking feature of the third generation is single molecule 
sequencing at high accuracy. The second generation 
sequencer focuses on the quantity and rapidity of nucle-
otide sequencing, and on the other hand, the third one 
focuses on the quality and preciseness of the data. This 
means that a very small number of DNAs from a tiny cell 
is sufficient for sequencing, and not much artificial ampli-
fication of DNA samples is necessary. Thus native whole 
transcriptome information of the tissue/cell of interest 
can be obtained by a combination of LM and the third 
generation sequencer technologies. At moment, three 
platforms, Genetic Analysis System (Helicos), Single 
Molecule Real Time technology (Pacific Biosciences), and 
nanopore sequencing (Oxford Nanopore technologies), 
comprise this third generation sequencer, and other types 
of platforms will also be launched in the near future.

With an increasing number of comprehensive genomic, 
transcriptomic and proteomic analyses, large-scale text-
based omics data are rapidly accumulating. In addition, 
numerical-based and phenotype-based databases are 
becoming more established (Kuromori et al., 2009; Kojima 
et al., 2009; Mano et al., 2009; Ogata et al., 2009). This 
situation indicates the necessity of an integrated data-
base among various types of omics data (Swarbreck et al., 
2008; Rice Annotation Project, 2008; also reviewed in 
Shinozaki and Sakakibara, 2009). This wealth of com-
prehensive resources and web databases allow us to 
extract essential new biological information beyond a 
dataset obtained from an individual study. For effective 
and efficient handling of such large data sets, various 
kinds of bioinformatics tools are being developed for plant 
biosciences and systems biology (Obayashi et al., 2007; 
reviewed in Suwabe and Yano, 2008).

In addition to a light microscope and electron micro-
scope, the bio-imaging system is also critical to grasp 
appropriate subcellular structure and cytological charac-
teristics of complex plant reproductive tissues. In living 
pollen, visualization of mitochondria and plastids has 
been established (Matsushima et al., 2008; Tang et al., 
2009), and precise monitoring of actin dynamics in papilla 
cells and Ca2+ dynamics in pollen tubes is also successful 
in pollination studies (Iwano et al., 2007, 2009). Thermal 
and fluorescence imaging of chlorophyll is also a well 

established technique as a non-destructive method in veg-
etative tissues (reviewed in Chaerle et al., 2007). These 
kinds of visual imaging technologies in living cells have a 
particular advantage of examining spatial and temporal 
information dynamism of the cell, along with growth and 
development of plants.

FUTURE PERSPECTIVE OF GENETICS

As mentioned above, innovation of emerging technolo-
gies and accumulation of omics data are a treasure-trove 
for biologists, but at the same time, this by itself tells us 
nothing about biology. To take full advantage of them, a 
collaboration of a variety of research studies, such as 
molecular biology, physiology, biochemistry, epigenetics, 
and bioinformatics, is one of the keys for successful 
achievement in plant science. A cooperative relationship 
among every research area of expertise will make it pos-
sible to understand complex biological phenomena from 
all angles, and such endless scientific trials will lead to 
the next advance in plant reproduction research. Of 
course, needless to say, genetics is one of the most impor-
tant collaborators of the integrated research system.

Importance of genetics never changes since Mendel 
found that each character is governed by specific factor, 
which is known as ‘gene’ today. Using the Mendelian 
genetics with a theoretical concept of biological functions 
regulated by genes, we have effectively studied various 
plant phenomena as described above. Although it is 
impossible to achieve comprehensive analysis of the 
entire gene networks by classical genetics, the emerging 
new technologies will continuously help our understand-
ing of complex genetic phenomena as in the last decade.
The mysteries of yet-to-be-defined mechanisms of plant 
reproductive phenomena, such as apomixis, polyploidy, 
heteromorphic incompatibility, unilateral incompatibility, 
inter-species incompatibility, and incongruity, are 
expected to be solved by genetics together with unborn 
technologies in the coming decade.
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