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Ribosomal RNA (rRNA) sequence-based molecular techniques emerged in the late 1980s, which completely
changed our general view of microbial life. Coincidentally, the Japanese Society of Microbial Ecology (JSME) was
founded, and its official journal “Microbes and Environments (M&E)” was launched, in 1985. Thus, the past 25 years
have been an exciting and fruitful period for M&E readers and microbiologists as demonstrated by the numerous
excellent papers published in M&E. In this minireview, recent progress made in microbial ecology and related fields
is summarized, with a special emphasis on 8 landmark areas; the cultivation of uncultured microbes, in situ methods
for the assessment of microorganisms and their activities, biofilms, plant microbiology, chemolithotrophic bacteria
in early volcanic environments, symbionts of animals and their ecology, wastewater treatment microbiology, and the
biodegradation of hazardous organic compounds.
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Introduction

This special minireview celebrates the twenty-fifth anni-

versary of both The Japanese Society of Microbial Ecology

(JSME) and its official journal “Microbes and Environments

(M&E)” and provides an excellent opportunity to look at

the progress that has been made over the past 25 years. Small

subunit of ribosomal RNA (rRNA) sequence-based molecu-

lar techniques for the description of microbial diversity pro-

vided the foundation for a significant step forward in micro-

bial ecology in the mid-1980s. Using culture-independent

molecular techniques, a vast number of new lineages in the

domains Bacteria and Archaea have been retrieved from

environments. It has been demonstrated that the microbial

world is genetically and functionally more complex and

diverse than previously predicted on the basis of culture-

dependent studies. However, even though new micro-

organisms continue to be isolated, it is now widely rec-

ognized that only a small fraction of extant microorganisms

have been grown in pure cultures and characterized. Con-

sequently, the majority of relevant microorganisms have not

been cultured and so their ecophysiological roles in natural

and human-made ecosystems remain largely unknown.

Therefore, concerted efforts must continue to expand our

understanding of the microbial world and to develop the

novel techniques required to elucidate the kinds of micro-

organisms out there and the roles they play.

This special minireview encompasses 8 landmark areas of

microbial ecology that have been covered in M&E. It is our

hope that this review by interdisciplinary groups of experts

will significantly improve our understanding of the current

research trends in microbial ecology and related areas.

Does the cultivation of uncultured organisms provide new 

insights into microbial ecology?

Research trends in any field of science change with time.

However, the changes in microbial ecology over the last 4–5

years have been particularly remarkable. Metagenomic,

metatranscriptomic and metaproteomic-based approaches

have impacted the whole concept of microbial ecology, and

overwhelming datasets are now being accumulated. Such

“meta” approaches are often referred to as state-of-the-art

culture-independent technologies and used to comprehen-

sively capture genes, gene transcripts, and proteins in com-

plex microbial communities.

These trends have raised questions: what is the signifi-

cance and importance of isolating yet-to-be cultured organ-

isms in the omics era of analyzing massive datasets produced

using “meta” approaches? Together with metagenomics, if

single cell genomics allows sequencing of the complete

genome of an organism, is the isolation of target organism

needed? In turn, if the “meta” approaches could decipher the
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substantial metabolism in complex communities, how could

we take advantage of such information to develop new ways

of isolating target organisms?

If scientists are interested in seeking particular molecules,

for instance, an enzyme for industrial purposes, perhaps the

isolation of organisms under selective pressure would be

canonical, but convenient. As a matter of fact, those studies

are still going on. However, if scientists are interested in the

structure and functions of a complex microbial community in

which a number of metabolic and physiological interactions

between different taxa occur, “meta” approaches might be

the most powerful way to better understand and overview the

community.

Nonetheless, it should be noted that the isolation of

organisms still needs to be done and is still a challenging

process (5, 35, 68, 74, 149). If all scientists rush to “meta”-

based research, phylogenetic trees based on rRNA or func-

tional genes would be covered with an enormous number of

sequences from uncultured organisms. This is really happen-

ing. However, if the numerous sequences from uncultured

organisms are surrounded by or juxtaposed with those of

cultured organisms, one could readily imagine, to a greater

extent, the entities of those uncultured organisms by looking

into the physiological and genetic traits of the neighboring

isolates. Without isolates, one could never guess who they

are, what they are doing, and what they could potentially do,

even though culture-independent techniques such as stable

isotope probing (SIP), fluorescence in situ hybridization

(FISH), and omics data tell us something. It should be noted

that comparing sequences with those of cultured organisms

may lead to far-fetched conclusions, so that we should keep

in mind that such a one-way approach has certain limitations.

One of the best examples of a how culture-dependent

strategy in connection with culture-independent strategies

has contributed to speculation on the morphotypes, functions

and genome structures of yet-to-be cultured organisms is

the study of a subgroup of the phylum Chloroflexi (165).

Organisms belonging to this phylum are cosmopolitans

found in almost all environments. Despite such ubiquity,

only a small number of cultured microorganisms were known.

In particular, subclass 1 did not have any cultured representa-

tives at all until 2001, and it had long been believed that

those organisms are difficult to cultivate. However, much

effort has been made over the last decade, and, currently, six

genera within subclass 1 of Chloroflexi have been isolated

and characterized. The genomes of the isolates are now being

studied. Isolates from five of the genera are slowly growing

fermentative organisms that favor sugars and complex

nutrients. In addition, the growth of some of them was found

to rely on hydrogenotrophic methanogens that could remove

H2 produced from the fermentative isolates forming a

syntrophic relationship. Very interestingly, all the novel iso-

lates are filamentous bacteria together with known genera

within the other subclasses of Chloroflexi except for the

genus Dehalococcoides.

Undoubtedly, isolation and cultivation are still the most

convincing way to know the entity of organisms. The most

serious problem that culture-dependent approaches are fac-

ing is that the methods currently being employed are based

on those created in the late 19th century, are very laborious,

and are far slower in accumulating data than “meta”

approaches. Such a fatal flaw cannot be readily solved. To

fill the gap, creating massive and high throughput isolation

techniques (177) and new isolation devices (5, 66) to over-

come those problems will be indispensable.

In situ identification and functional analysis of 

microorganisms tells us their true nature

Microorganisms are highly diverse and play key roles in

ecosystems. Various methods have been developed to clarify

the in situ relationships between the physicochemical and

biological characteristics and abundance, activities, diversity

and functions of microbes in environments of interest.

Determination of the abundance of microorganisms is

essential in environmental microbiology. Hobbie et al. (45)

developed the total direct counting method in 1977, whereby

microorganisms are fluorescently stained, collected onto a

polycarbonate filter and counted under a fluorescence micro-

scope. This method is rapid and simple, and subsequent

studies demonstrated that many more microorganisms exist

than expected and most (90–99%) are hard to culture under

conventional conditions.

One of the next concerns of environmental microbiologists

was phylogenetic information on these abundant micro-

organisms, and FISH was developed to answer these ques-

tions (2, 22). This method enables the in situ phylogenetic

identification of targeted microorganisms; we can know

where and how they exist from microscopic images. By

combining FISH and PCR-based approaches such as quan-

titative PCR and clone analysis, details of the ecology of

microorganisms, e.g. in symbiosis (59) and in wastewater

treatment (53), have been clarified. However, bacteria in

natural environments are often less active than cultured

forms, and the amplification of fluorescence signals from

targeted bacteria is required in such cases. Enzymatic reac-

tions such as the HNPP/Fast Red TR reaction or tyramide

signal amplification (TSA) were applied to improve the

sensitivity of FISH (88, 129, 167).

One can obtain phylogenetic information on micro-

organisms of interest by FISH, but estimations of their

activities are difficult using FISH alone. Various FISH-based

methods have been developed to obtain phylogenetic infor-

mation and also physiological and metabolic activities of

microorganisms simultaneously in environments. The micro-

colony method (132) is useful for determining bacterial

proliferative activity because most bacteria in natural envi-

ronments do not form macroscopic colonies but form micro-

colonies under general culture conditions. FISH combined

with this microcolony method (microcolony-FISH) (28, 143)

is especially suitable when a sample contains small fluores-

cent particles which inhibit reliable detection of bacteria at a

single-cell level; microcolonies are larger than these “noise”

particles and can be easily differentiated under a fluores-

cence microscope. Direct viable counts (DVCs) (84) also

enable one to detect bacteria with proliferative activity using

a rather simple procedure. Nishimura et al. (118) and Wu

et al. (164) used FISH combined with DVC (DVC-FISH) to

count viable bacteria in natural seawater samples and in cow

manure, respectively. Tada et al. (148) used the bacterial
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uptake of bromodeoxyuridine (BrdU) as a marker of meta-

bolic activity and combined this BrdU immunocytochemistry

with FISH (BIC-FISH) to determine the phylotype-specific

productivity of marine bacterial populations. A similar

approach was established using FISH combined with micro-

autoradiography (MAR-FISH) (90, 123) to detect the bacte-

rial uptake of radioisotope-labeled substrates as an indicator

of bacterial productivity. A rather simple approach is the

combination of FISH with fluorescent vital staining. 5-

cyano-2,3-ditolyl tetrazolium chloride (CTC) is widely used

as bacterial respiratory indicator (31, 133). Yamaguchi et

al. (166) detected starved fecal contamination indicator

bacteria in potable water selectively by signal-amplified

FISH following formazan formation (TSA-CTC-FISH).

By using FISH techniques, we can obtain phylogenetic

information on targeted microorganisms in the environment,

and can estimate their activities by the new FISH techniques

described above. The next important issue is the investiga-

tion of functions of individual cells in complex microbial

communities. FISH usually targets highly abundant rRNA in

cells, and conventional FISH is unable to detect low copy

numbers of targeted nucleic acid molecules. However,

various new FISH techniques are being developed to detect

single copy genes inside cells combined with in situ gene

amplification techniques. Tani et al. (150) determined the

dynamics of phenol-degrading bacteria in groundwater dur-

ing bioaugmentation by in situ PCR-FISH. Kenzaka et al.

(73) and Maruyama et al. (102) developed cycling primed

in situ amplification-fluorescence in situ hybridization

(CPRINS-FISH) and in situ rolling circle amplification (in

situ RCA) to examine the possible range and frequency of

gene transfer among bacterial cells. Hoshino and Schramm

(48) improved in situ RCA to detect nitrite and nitrous oxide

reductase genes (nirS and nosZ) in Pseudomonas stutzeri.

In situ targeted gene amplification improves the sensitivity

and specificity of FISH, while the design of probes and/or

primers for reactions is sometimes complicated. Kawakami

et al. (71) improved the signal intensity of TSA-FISH by

their Two-Pass TSA-FISH, which repeats TSA twice, in

order to detect single copy genes without in situ gene

amplification. On the other hand, Zwirglmaier et al. (178)

developed FISH with polynucleotide probes (RING-FISH)

for detection of the nitrite reductase gene (nirK) in

denitrifiers (130) while oligonucleotide probes are usually

used in FISH. In RING-FISH, a multiply labeled transcript

polynucleotide probe is used to intensify signals through

multiple labeling and detect a single gene on the bacterial

chromosome during FISH.

Another way to detect a single copy gene inside targeted

cells is to improve the signal detection system. Nanometer-

resolution secondary ion mass spectrometry (NanoSIMS) is a

powerful tool in environmental microbiology. This system

has unique elemental and isotopic sensitivity and accuracy,

and Behrens et al. (10) visualized the fate of substrates

labeled with 13C and 15N in a microbial consortium consisting

of filamentous cyanobacteria and Alphaproteobacteria,

while individual cells were identified simultaneously with a

covalently halogen-Cy3-labeled probe.

One can obtain large data sets of rRNA and functional

gene sequences of microorganisms from databases and these

databases are rapidly growing. New FISH techniques will

reveal the nature of microorganisms in various environments

with cultivation-independent approaches.

Life is not as simple as it seems

Bacteria have long been considered to live independently

of neighboring cells. However, recent research has changed

this view revealing an ability to form multicellular commu-

nities and to communicate with each other through signaling

chemicals.

In Pseudomonas aeruginosa, three chemically distinct

molecules that mediate cell-to-cell communication have been

well characterized (163). Two signaling systems utilizing

distinct N-acylhomoserine lactones (AHLs) which are com-

mon among Gram-negative bacteria (146), are the LasR-LasI

(las) and RhlR-RhlI (rhl) systems. Another type of signaling

molecule is 2-heptyl-3-hydroxy-4-quinolone which is referred

to as the Pseudomonas quinolone signal (PQS). These cell-

to-cell communication systems were first extensively studied

in relation to the virulence of the bacteria. Now, there is

evidence that cell-to-cell communication has more to do than

merely the regulation of virulence factors.

One example is the regulation of respiratory activity. P.

aeruginosa is capable of utilizing N-oxide as an electron

acceptor in the absence of oxygen. Denitrification is gener-

ally regulated by physicochemical conditions such as the

presence of electron acceptors through certain regulatory

proteins (106, 125). In addition, it has been demonstrated

that denitrification is regulated by AHLs and PQS in P.

aeruginosa (157, 158). While the AHL signals regulate the

transcription of the denitrifying genes, PQS is considered to

act directly on the denitrifying enzymes.

The direct effect of PQS on enzymatic activity indicates a

new function of this signaling molecule suggesting a broad

impact on other bacterial species. Indeed, PQS affects the

growth of a broad spectrum of bacteria from Gram-negative

to Gram-positive bacteria (159). While PQS represses the

consumption of oxygen in some bacteria, the mechanism

by which it represses growth is still unknown. Several

mechanisms may be involved in this growth repression since

PQS has been reported to chelate iron and produce oxidative

stress (12, 26, 52) besides affecting respiratory enzymatic

activity. Nevertheless, the concentration of iron is a key

factor in determining the effect of PQS on respiratory

activity and growth indicating that the surrounding condi-

tions control the interspecies interaction (157, 159). By

tuning signal production in response to the environment,

bacteria could be more flexible in coping with neighboring

bacteria according to the change in the environment.

Another characteristic of the PQS molecule is that it could

induce the production of outer membrane vesicles that

contain active proteins and perform diverse biological pro-

cesses (103, 153). Several mechanisms have been proposed

for the biogenesis of the outer membrane vesicles (87, 152).

In P. aeruginosa, PQS is able to induce outer membrane

vesicle production and these vesicles facilitate cell-to-cell

communication by carrying PQS (103). Interestingly, PQS

also induces the production of outer membrane vesicles in

other species (154), including Gram-negative and Gram-
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positive bacteria.

These multifunctional effects of PQS on other bacteria

suggest an important role in interspecies interaction. Con-

cerning the interspecies interaction via PQS, it is important

to state that PQS production is repressed by indole com-

pounds that are produced extracellulary in many bacteria (89,

151). Moreover, Bukholderia and Alteromonas species pro-

duce PQS-related compounds that could possibly enhance

the production of PQS in P. aeruginosa (25).

As growing evidence indicates that bacteria interact

among inter and intra species (169), technical demands to

handle complex communities arise. One example of such

communities is biofilms in which bacteria are attached to a

surface and embedded in extracellular matrices forming

heterogeneous three-dimensional structures (44, 120). It has

been estimated that the majority of bacteria exist in biofilms

in nature rather in a planktonic free-living state. In order to

reveal the behavior of bacteria in their natural habitat it is

necessary to develop a nondestructive method that can moni-

tor the bacteria without fixation. Confocal laser scanning

microscopy (CLSM) combined with fluorescent protein-

tagged bacteria is one of the preferred techniques in this cate-

gory, however, its use is limited to bacteria that can express

fluorescent proteins, which makes it difficult to handle

natural samples and conditions where fluorescent proteins

are not expressed. By applying a confocal reflection micros-

copy (CRM) technique to biofilms, this problem can be

solved. Natural samples such as activated sludge were

observed with this technique as were model organisms,

resulting in a high resolution that is comparable to the

utilization of fluorescent proteins and dyes (170, 171). By

combining this technique with other techniques, it is possible

to measure gas metabolites under anaerobic conditions and

observe the correlation of the biofilm structure and material

diffusion in biofilms (170, 172).

Microbiology has classically depended on pure cultures of

single species, yet little is known of how bacteria behave in a

complex community. How bacteria interact with each other

in a complex community and what changes as a result, would

be one of the most exciting things to know about in the near

future.

Microbial diversity and functions in plant-soil ecosystems: 

how do plants select specific microbes from soil microbial 

communities?

Rhizobia are symbiotic nitrogen-fixing bacteria that form

nodules on legume roots, and include diverse phylogenetic

groups mainly within Alphaproteobacteria. Their symbiotic

interactions and survival are still crucial for plant micro-

biology and global environmental conservation. Fujihara

(30) and Lim (94) summarized recent developments in bio-

genetic amines in rhizobia and TonB-dependent receptors

based on rhizobial genomes in excellent minireviews,

respectively. Host symbiosis genes (98) and malic enzymes

(21) are involved in rhizobial infection and nitrogenase

function, respectively. Masuda et al. (104) verified that the

cbbL gene encoding ribulose 1,5-bisphosphate carboxylase/

oxygenase (RuBisCO) is required for chemoautotrophic

growth of Bradyrhizobium japonicum. Inaba et al. (58)

observed a correlation between N2O emissions from soybean

rhizospheres and microbial community changes including

rhizobia. These results show survival strategies and eco-

logical functions of free-living rhizobia in soil environments.

Apart from rhizobia, diverse bacteria reside in the phyto-

sphere as endophytes and epiphytes in nature (57). However,

their ecology is largely unknown, because they do not form a

special organ in plants like the root nodules formed by

rhizobia. M&E have published many articles of bacterial endo-

phytes in agricultural settings by using culture-dependent

and -independent procedures. Mano and Morisaki (100) have

published an excellent minireview of bacterial endophytes

in rice plants based on culture-dependent analyses (67, 99).

Okubo et al. (126) also showed that communities of bacterial

endophytes are dependent on soybean nodulation genotypes

by culture-dependent analysis. These articles indicate the

significance of classical culture-dependent analyses for bac-

terial endophytes irrespective of culture biases. Interestingly,

this situation is similar to endosymbiotic bacteria in insects

(74).

Meanwhile, Saito et al. (136) emphasized the signifi-

cance of culture-independent methodologies to investigate

the diversity of plant-associated microbes (54, 55, 135).

Generally, culture-independent methods offer advantages

when observing microbial diversity because of the existence

of unculturable microbes in the phytosphere (57). In this

regard, it is important how microbial DNA is isolated from

plant tissues. Microbial DNA extraction directly from leaf

tissues (147) and bacterial cell enrichment by centrifugation

(56) were developed for this purpose.

As for functional aspects of plant-associated microbes,

nitrogen-fixing endophytes has been extensively reported in

M&E: nifH expression in field grown sweet potato (155), the

behavior of gfp-tagged Herbaspirillum sp. in sugarcane (175,

176), the effects of organic fertilizers (70), a community

analysis of the Melastoma rhizosphere (139), 15N dilution

analysis of sugarcane (110), and the effects of Azospirillum

sp. in paddy rice fields (60).

Rhizosphere bacteria reside at the interfaces between

plants and soils, and often show crucial functions in plant-

soil ecosystems, because plants excrete photosynthate from

their roots. Phytase-producing bacteria in the rhizosphere

of plants help phosphorous uptake by plants (64). One funda-

mental question of microbial ecology in plant-soil systems

is how plants select specific microbes from soil microbial

communities. What are the functions of plant-associated

microbes? Minamisawa (107) have pointed out the signifi-

cance of metagenomic analyses of plant-associated microbes

to address this issue. Strong support from bioinformatics and

rational genome databases (17) are needed to attain this goal.

Significance of chemolithotrophic bacteria in early 

volcanic environments

One major challenge in general soil microbiology is to

identify the pioneer microbes colonizing new soil substrates

such as lava, tephra, and volcanic ash and to know their

ecological roles and functions in the formation of new soils

and ecosystems. Such volcanic substrates are characterized

partly by large amounts of reduced minerals (e.g., sulfides)
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and always by little or no organic carbon and nitrogen

(13). Much of the research showed that such substrate

systems result in a rich variety of microbes independent of

organic carbon as the energy source, i.e., chemolithotrophic

microbes. According to King’s notion (80), the habitats

which support the growth of sulfur- and iron-oxidizing

chemolithotrophs can be categorized as reductant-rich

volcanic systems. In reductant-poor volcanic systems, chemo-

lithotrophs may also play significant roles in the early eco-

system’s development through the ability to use atmospheric

H2 and CO for chemolithotrophic growth (80). In situ and ex

situ assays of H2 and CO uptake by recent Kilauea volcanic

deposits in Hawaii suggested that H2 accounts for 20–25%

of respiratory reducing equivalent flow, while CO accounts

for 2–10% (78). Similarly, the consumption of H2 and CO

was detected at sites of a 23-year-old scoria deposit on

Miyakejima, a volcanic island in the Izu chain southeast of

Tokyo, Japan (81). Methane in the atmosphere is another

probable substrate for bacterial growth. King and Nanba (82)

measured the atmospheric CH4 oxidation of Hawaiian

volcanic deposits and soils. Their results indicated that

methanotrophs colonized volcanic substrates slowly and

likely depended on interactions with plants and other micro-

bial communities.

The majority of chemolithotrophs in the Hawaiian vol-

canic deposits were identified as facultative not obligate

chemolithotrophs by clone library analyses for the gene

coding for the large subunit of the form I RubisCO (rbcL)

(116). This result coincides with those of several culture-

based studies on volcanic deposits. A bacterium that

resembled Bacillus schlegelii, capable of heterotrophic

growth and autotrophic growth in the presence of hydrogen

and carbon dioxide, was isolated from geothermal soil col-

lected from Mount Erebus, Ross Island, Antarctica (49).

Hydrogen-oxidizing,  facultatively chemolithotrophic bacteria,

Cupriavidus pinatubonensis and Cupriavidus laharis, were

reported to be abundant in 2- to 3-year-old volcanic mudflow

deposits from Mt. Pinatubo (The Philippines) (140, 141). A

heterotrophic bacterium capable of chemolithotrophic

growth by oxidizing thiosulfate was isolated from 23-

year-old Miyakejima volcanic deposits (95). Recently, this

thiosulfate-oxidizing bacterium was characterized as a

novel species, Limnobacter litoralis (96). These observa-

tions collectively suggest that facultative chemolithotrophs

represent early colonists on organic-poor volcanic deposits.

Furthermore, many of the known CO- or H2-oxidizing iso-

lates have been reported to fix N2 or to harbor nitrogenase

genes (79, 104), and thus they may also contribute to nitro-

gen dynamics and the evolution of nitrogen cycling in vol-

canic deposits.

An iron-oxidizing chemolithotrophic bacterium, Lepto-

spirillum ferrooxidans, is known to dominate acid mine

drainage biofilms (11, 27, 161), bioleaching systems (19,

131), and metal-rich and extremely acidic river environments

(36). Very recently, it was reported that L. ferrooxidans was

abundant in 8-year-old, acidic, volcanic ash deposits near the

crater (Mt. Oyama) of Miyakejima and further, the isolates

possessed nitrogenase activity (142). The site of isolation

was frequently exposed to volcanic gases (mainly, SO2)

ejected from the crater (72) and remained essentially

unvegetated. In extreme environments, iron-oxidizing chemo-

lithoautotrophs may represent pioneer colonists and play a

significant role in the accumulation of carbon and nitrogen

and the initiation of new soils and ecosystems. The develop-

ment of a suitable SIP with 15N2 gas will give proof of the

L. ferrooxidans in situ N2-fixing activity (142).

Soil bacteria have diverse ecological functions. Nitrous

oxide (N2O) and methane (CH4) are greenhouse gases, which

are emitted from soils during microbial processes and likely

increase global warming. N2O is emitted during the micro-

bial transformation of inorganic nitrogen during nitrification

and denitrification processes. Several articles in M&E

have dealt with microbial diversity and functional genes

of nitrification (4, 65, 115) and denitrification (69, 137)

in soil environments in Asia.

Living together or separately?: ecology of animal 

symbionts

Due to technological advances in molecular microbial

ecology, researchers can now investigate individual micro-

organisms or microbial communities that are associated

with animals. In the early stages of the 25-year history of

M&E, microbial associations or symbioses were major

topics but often merely descriptive. Nowadays, advances have

changed our views to a great extent, showing that symbioses

are widespread, and offer many fascinating novelties. For

instance, until recently, human intestinal bacteria had been

considered mere commensal residents having little effect on

the host. We now have recognized that they have a profound

effect on the digestive physiology of the host (91, 93). This

kind of awareness has led to interdisciplinary research

between microbiologists and others such as animal physiolo-

gists in health and environmental science.

One of the most widespread symbioses in animals

involves obligate and facultative intracellular bacteria (endo-

symbionts) that live in special tissues of insects. Although

molecular ecological and genomic studies have revealed

their diversity, function, and adaptative evolution, some

model systems with culturable symbionts that can be engi-

neered genetically are emphasized for understanding the

molecular mechanisms for interactions with host insects

(74, 134). Another exciting example of symbioses in insects

involves termites and their microbial symbionts which play

an essential role in the digestion of recalcitrant lignocellu-

lose. There are a number of reports in recent volumes of

M&E that investigate not only the microbial symbionts of

bacteria (24, 156), archaea (23, 109), protists (83) (these

three inhabit their gut), and fungi in the nest of termites

(114), but also associations of bacteria or archaea with the

protists (37, 59, 119). Consequently, the gut microbial com-

munity of termites, though complex and highly structured,

has become an attractive model system to study microbial

diversity, structure and function of the community, and co-

evolution. Indeed, genome analyses of the symbionts have

unveiled their roles in the associations (46, 121 for reviews).

In addition to insects, various associations with animal

hosts have been dealt with in M&E. Probable chemo-

autotrophic endosymbionts are reported to associate with a

marine beard worm, and because of the occurrence of the
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related free-living species in the surrounding environment,

the hosts are suggested to acquire the symbionts horizontally

every generation (1, 86). Meanwhile, some Vibrio species

are important pathogens of marine fishes and invertebrates or

involved in the poisoning of marine foods. Contamination of

drinking water and food with fecal bacteria of animals is of

great significance to public health. Therefore, the detection

and enumeration of the species responsible or indicator

species like Escherichia coli are anticipated. A series of

reports have contributed to the rapid and accurate detection

of target species in environments (14, 32, 33, 61, 62, 128,

144, 164, 166) particularly by developing new methods, as

well as to the detailed taxonomy of related species (62, 145).

These studies have had a considerable impact on the ecology

of animal-associated microorganisms by demonstrating that

they likely share other ecological niches in natural environ-

ments, and represent the exciting recent research activities

found in M&E.

Biological wastewater treatment systems: excellent teachers 

of microbial ecology

Biological wastewater treatment is undoubtedly one of

the most important and largest of the biotechnological pro-

cesses, which have been used for over a century to treat

municipal and industrial wastewaters. It is now recognized

that wastewater treatment processes harbor a vast variety of

microorganisms, most of which are still yet-to-be cultured,

and hence uncharacterized (3, 39, 168, 173). However, a

number of new exciting insights into microbial structure

and function in wastewater treatment processes have been

recently gained by applying culture-independent molecular

approaches, which has significantly expanded our under-

standing of process design, operation and control.

Various molecular techniques [ex. quinone profiling,

FISH, denaturing gel gradient electrophoresis (DGGE), and

DNA microarray (92, 162)] have been developed and applied

to nitrification-denitrification (47, 105, 122), enhanced bio-

logical phosphorus removal (EBPR) (34, 160), anaerobic

digestion (6, 117), scum-forming (42), microbial fuel cells

(18, 38), reverse-osmosis water purification (8), membrane

bioreactors (97, 108) and compost (31).

Molecular techniques have revealed that microbial com-

munities are composed of a great variety of microorganisms.

Narihiro et al. (117) collected granular sludge samples

from twelve full-scale UASB plants and examined bacterial

and archaeal populations based on a 16S rRNA gene cloning

analysis. Their community structures were composed of 41–

65 bacterial and 6–12 archaeal phylotypes, and the microbial

composition differed among the twelve UASB plants. Iguchi

et al. (53) further examined the distribution of uncultured

members of the phylum Nitrospirae in those UASB plants by

quantitative PCR. The members of the Nitrospirae group

were commonly found and accounted for up to around 10.9%

of all 16S rRNA genes, though their ecological function in

granular sludge is unclear.

In addition, molecular techniques revealed that most of the

model organisms suggested based on the outcome of culture-

dependent methods are of minor relevance. One example is

polyphosphate-accumulating organisms (PAOs). Until to the

1990s, the members of Acinetobacter sp. are thought to be a

dominant PAO because they were frequently isolated from

the activated sludge of EBPR processes and accumulated

intracellular polyphosphate granules (29, 63). However,

FISH analysis combined with chemical staining for intra-

cellular polyphosphate granules revealed that the dominant

PAOs were Candidatus ‘Accumulibacter phosphatis’ and

Actinobacteria (20, 34, 85). Furthermore, Okunuki et al.

(127) determined the abundance of Candidatus ‘Accumuli-

bacter phosphatis’ and actinobacterial PAOs by quantitative

PCR and found that the copy number of 16S rRNA genes of

Candidatus ‘Accumulibacter phosphatis’ correlated with the

phosphorus removal performance. Nowadays, the contribu-

tion of Candidatus ‘Accumulibacter phosphatis’ and actino-

bacterial PAOs to biological phosphorus removal is widely

accepted.

Furthermore, MAR-FISH (123) allows us to observe

ecophysiological interactions among community members.

Kindaichi et al. have clearly indicated that heterotrophs in

the nitrifying biofilm utilized soluble microbial products

secreted from nitrifiers, using MAR-FISH with 14CO2 as a

tracer to nitrifying biofilms (77, 124).

A more comprehensive understanding of microbial struc-

ture and function is required to design microbial consortia

having high treatment stability and efficiency. For this pur-

pose, ‘omics’ technologies such as metagenomics (75) have

recently been applied (101). The metagenomic approach

represents a snapshot of microbial community structures,

their potential function and interactions. Furthermore, highly

sensitive FISH technology will be a powerful tool to study

the phylogeny of particular genes found in metagenomic

libraries.

However, recent research has indicated the importance of

bacteriophages and protozoa to the performance or stability

of wastewater treatment processes. Barr et al. (9) indicated

that a bacteriophage infection of Candidatus ‘Accumuli-

bacter phosphatis’ caused a deterioration of phosphorus

removal. Moreno et al. (111) examined a predator-prey

relationship between autotrophic bacteria and protozoa by

RNA stable isotope probing method and showed the impor-

tance of protozoa to study microbial population dynamics.

This clearly indicated that the ecophysiology of not only

bacteria or archaea but also of bacteriophages and protozoa

must be studied to expand our understanding of process

design, operation and control.

Biodegradation of hazardous chemicals: one of the fastest 

growing applications of environmental biotechnology

The biodegradation of hazardous or persistent organic

compounds in the environment by soil microorganisms and

enriched microbial consortia has been well documented in

connection with natural attenuation and bioremediation.

Huong et al. (50) isolated and characterized bacteria capable

of degrading 2,4-dichlorophenoxyacetic acid (2,4-D) and

2,4,5-trichlorophoxyacetic acid (2,4,5-T) from Vietnamese

solids historically exposed to Agent Orange. They also

characterized a 2,4-D- and 2,4,5-T-degrading enrichment

culture by 16S rRNA and benA gene-targeted PCR-DGGE,

and suggested the major role of Burkholderia species in
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degrading these chemicals (51). Sakai et al. (138) reported

that the Burkholderia cepacia RASC type 2,4-D-degrading

genes harbored on large plasmids spread out among 2,4-

D-degrading bacteria isolated from soil in Japan. A soil

bacterial community capable of degrading 3-chlorobenzoate

was characterized by 16S rRNA and benA gene-targeted

PCR-DGGE (112, 113). The bacterial community diversity of

anaerobic fluidized bed bioreactors treating some aromatic

compounds, such as phenol (15) and 2,4-dinitroaniaole (7),

was studied. Kimura et al. (76) applied a metagenomic ap-

proach to the characterization of a 4-nitrotoluene-oxidizing

enzyme from an activated sludge.

Bioremediation technology using specific microorganisms

and microbial consortia has gained momentum as a cost-

effective and ecologically sound approach to the remediation

of environments contaminated with hazardous chemicals.

Large numbers of structurally diverse haloorganic com-

pounds, such as chloroethenes, polychlorinated dibenzo-p-

dioxins/furans (PCDD/Fs), and polychlorinated biphenyls

(PCBs), are common contaminants in soil, sediment, and

groundwater. Anaerobic microbial redox processes can

work effectively in the engineered bioremediation of these

haloorganic contaminants (40, 41). Anaerobic microbial

consortia with “Dehalococcoides” species as potent dechlori-

nators were enriched from a PCDD/F-contaminated micro-

cosm (43). One of these dehalogenating cultures, designated

TUT2264, dechlorinated tetrachloroethene to form dichloro-

ethenes with the transcription of multiple reductive dehalo-

genase genes (35). Yoshida et al. (174) reported that an

enrichment culture containing Dehalobacter species was

able to reductively dechlorinate PCDDs and PCBs. In addi-

tion, Chiba et al. (16) reported that a Bacillus strain isolated

from a marine sediment core had a haloacid dehalogenase

that catalyzed the dehalogenation of monobromoacetic acid,

monochloroacetic acid, and 2-chloropropionic acid.

Conclusions

The past quarter century was undoubtedly a golden era

of culture-independent small subunit of rRNA gene-based

analyses in all areas of microbial ecology. The advent of

this technical breakthrough provided new insights into the

composition and structure of microbial communities and

revealed a remarkably vast microbial diversity including

many hitherto-recognized and yet uncultured species in

various microbial habitats. However, some challenges

remain, for example, the significance of this microbial

diversity and its relation to function is not fully understood.

Fortunately, new powerful tools including metagenomic,

metatranscriptomic and metaproteomic-based approaches are

now available to confront such challenges. Since we are

facing serious environmental issues that threaten our lives,

a better understanding of the ecophysiology of environmen-

tally relevant microorganisms is essential to solve problems

such as global warming and environmental pollution, by con-

verting anthropogenic waste into clean renewable energy.

Therefore, the future of molecular-based microbial ecology

seems to be bright and promising, but requires continuous

efforts and works in collaboration with multiple disciplines.
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