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ABSTRACT

With an increasing interest in RNA therapeutics and for targeting RNA to treat disease, there is a need for the tools used in
protein-based drug design, particularly DOCKing algorithms, to be extended or adapted for nucleic acids. Here, we have
compiled a test set of RNA–ligand complexes to validate the ability of the DOCK suite of programs to successfully recreate
experimentally determined binding poses. With the optimized parameters and a minimal scoring function, 70% of the test set
with less than seven rotatable ligand bonds and 26% of the test set with less than 13 rotatable bonds can be successfully
recreated within 2 Å heavy-atom RMSD. When DOCKed conformations are rescored with the implicit solvent models AMBER
generalized Born with solvent-accessible surface area (GB/SA) and Poisson–Boltzmann with solvent-accessible surface area
(PB/SA) in combination with explicit water molecules and sodium counterions, the success rate increases to 80% with PB/SA
for less than seven rotatable bonds and 58% with AMBER GB/SA and 47% with PB/SA for less than 13 rotatable bonds. These
results indicate that DOCK can indeed be useful for structure-based drug design aimed at RNA. Our studies also suggest that
RNA-directed ligands often differ from typical protein–ligand complexes in their electrostatic properties, but these differences
can be accommodated through the choice of potential function. In addition, in the course of the study, we explore a variety of
newly added DOCK functions, demonstrating the ease with which new functions can be added to address new scientific
questions.

Keywords: scoring functions; structure-based drug design; RNA DOCKing; binding mode prediction; validation

INTRODUCTION

In the past few years, knowledge of the role of RNA in
cellular processes has greatly expanded. No longer is RNA
known simply for transporting genetic information from
the nucleus to the cytoplasm for translation. Rather, it has
been shown to be an integral part of many biological pro-
cesses. For example, in ribosomes, RNA has been shown to
be responsible for a wide range of functions including cat-
alyzing the formation of nascent peptide bonds (Polacek
and Mankin 2005; Frank and Spahn 2006). Other RNA
molecules, like TAR from HIV and bacterial riboswitches,
recruit and bind proteins to regulate reproduction of the

HIV genome and the production of various processes,
respectively (Frankel and Young 1998; Bannwarth and
Gatignol 2005; Tucker and Breaker 2005). These and other
RNA–protein interactions are critical for cellular function
and thus present potential drug targets.

Several drug design efforts for targeting RNA have
already been attempted with various levels of success (see,
for example, Johansson et al. 2005; Mayer and James 2005;
Renner et al. 2005; Yu et al. 2005; Mayer et al. 2006;
Nakatani et al. 2006). With the increasing evidence of the
importance of RNA in regulation of the cell, these efforts
will increase as well. As a result, there is a need for the same
tools that are used in drug design for protein targets, in
particular DOCKing algorithms, to be adapted and ex-
tended for nucleic acids. Some other DOCKing algorithms
have already been adapted for fast screening of small mol-
ecules against RNA targets (Filikov et al. 2000; Detering and
Varani 2004; Morley and Afshar 2004; Pfeffer and Gohlke
2007; Guilbert and James 2008). Previous studies suggest
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that poor modeling of the highly localized charges in the
polyanionic RNA targets through both the scoring function
and the estimation of charge may limit the success of
DOCKing algorithms (Lind et al. 2002; Detering and
Varani 2004). The newest release of the DOCK suite of
programs, version 6, is ideally suited to address the issues
for targeting RNA using physics-based scoring functions.

The release of DOCK, version 6, is an important ex-
tension of previous versions of the code. Version 5 was a
reimplementation of version 4 algorithms in a modular,
extendable format (Moustakas et al. 2006). This newest
release is a direct application of that extensibility with
the addition of a number of new features, including DOCK
3.5 scoring, Hawkins–Cramer–Truhlar (HCT) generalized
Born with solvent-accessible surface area (GB/SA) solvation
scoring with optional salt screening, Poisson–Boltzmann
with solvent-accessible surface area (PB/SA) solvation
scoring, and AMBER molecular mechanics with GB/SA
solvation scoring and optional receptor flexibility. All of
these new features have been added to the basic core of the
original DOCKing code. In this paper, we will focus on the
newly implemented AMBER GB/SA and PB/SA scoring
functions in addition to the previously available Grid Score;
DOCK 3.5 scoring and HCT GB/SA scoring will be
described elsewhere.

AMBER Score implements molecular mechanics GB/SA
simulations with the traditional all-atom AMBER force
fields and the generalized AMBER force field (Wang et al.
2004; Case et al. 2005). This method calculates the energy
terms for the entire AMBER force field, including bond,
angle, and dihedral terms, as well as Coulomb’s Law and
the Lennard-Jones potential for the ligand, receptor, and
complex. The solvation energy can be calculated using one
of several generalized Born (GB) solvation models. The
surface area term is derived using a fast linear combination
of pairwise overlap (LCPO) algorithm (Weiser et al. 1999).
Because the internal energy is calculated, a full thermody-
namic cycle is employed (i.e., Score = Ecomplex – [Ereceptor +
Eligand]). Minimization via the conjugate gradient method is
also available in lieu of the simplex minimizer used with
other scoring functions. In addition, Langevin molecular
dynamics (MD) simulations at constant temperature can be
performed. As a result of both the new minimizer and the
molecular dynamics capabilities, the AMBER Score function
now allows for both ligand and receptor flexibility during
scoring.

PB/SA is an implicit solvent model that uses the
Poisson–Boltzmann equation to account for the hydro-
philic effect on electrostatic screening and the exposed sur-
face area of the complex as an approximation of the
hydrophobic effect. In DOCK 6, the van der Waals
(VDW) component of the scoring function is computed
between the ligand and receptor using a grid-based form of
the Lennard-Jones potential as implemented in the Grid
Score from previous versions (Moustakas et al. 2006). For

the electrostatic and surface area portion of the energy
function, the Zap Tool Kit from OpenEye has been
employed. ZAP uses Gaussian-based maps, which preserves
the speed of grid-based solutions to PB but avoids the
pitfalls of discrete dielectrics (Grant et al. 2001).

There have been several studies published that explore
DOCKing libraries of small molecules to RNA targets
(Filikov et al. 2000; Lind et al. 2002; Detering and Varani
2004; Morley and Afshar 2004; Pfeffer and Gohlke 2007;
Guilbert and James 2008). As in this prior work, we have
developed a structure-based test set of both X-ray crys-
tallographic and NMR structures of ligand–RNA com-
plexes, which was used to optimize the sampling methods
and compare various scoring functions. A combination of
optimized ligand sampling and more advanced scoring
functions has vastly improved DOCK’s ability to predict
binding poses for RNA.

RESULTS

Designing the structure-based test set

The initial structure-based test set of 70 complexes was
compiled from coordinates deposited in the Protein Data
Bank (see Table 1; Materials and Methods). We included
aminoglycosides in our test set because they are an im-
portant class of RNA binders. However, as a result of these
large, floppy molecules, the number of rotatable bonds in
our test set covered a very wide range. We examined the
ability of DOCK to reproduce the experimental binding
pose within 2 Å heavy-atom RMSD with flexible ligand
DOCKing as well as the cumulative average time of the
calculations (Fig. 1). The success rate dropped off dramat-
ically from 100% after three rotatable bonds and then
leveled off just under 20% after 12 bonds. However, when

TABLE 1. List of PDB codes for all RNA–ligand complexes in test set

PDB codes for test set

1AKX 1NTA 1Y26 2FCZ
1AM0 1NTB 1YRJ 2FD0
1BYJ 1NYI 2AU4 2G5Q
1EHT 1O15 2BE0 2JUK
1EI2 1O9M 2BEE 2O3V
1F1T 1PBR 2ESJ 2O3W
1F27 1Q8N 2ET3 2O3X
1FMN 1QD3 2ET4 2OE5
1FYP 1TOB 2ET8 2OE8
1J7T 1U8D 2F4S 2TOB
1LC4 1UTS 2F4T 3C44
1LVJ 1UUD 2F4U
1MWL 1UUI 2FCX
1NEM 1XPF 2FCY

Codes in bold indicate complexes with multiple active sites, which
were modeled independently. Codes in italics are structures
determined by X-ray crystallography; others were determined using
NMR.
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looking at the average length of the calculation, the less
floppy molecules’ time increased relatively linearly with the
number of rotatable bonds, whereas the additional sam-
pling required for ligands with more than 12 rotatable
bonds results in an increase that was greater than linear.
Because the length of time was so much greater for the
larger molecules, we chose to focus on the subset of the test
set with less than 13 rotatable bonds (L13, total of 38
complexes), which is a reasonable limit for current sam-
pling strategies.

Modification and optimization of ligand
sampling algorithms

DOCK 6 uses a sampling algorithm called anchor-and-
grow to flexibly build ligands into the active site of the
biomolecular target (Fig. 2). In anchor-and-grow, the
largest rigid portion of the ligand (anchor) is identified
and oriented in the active site. The flexible portions of the
ligand are then systematically grown from the anchor,
clustering at each layer of growth to maximize geometric
diversity, until a full molecule is formed. Previous studies
indicated that this clustering-based algorithm could be
improved by modifying the number and quality of anchors
and layers to be brought to the next stage of growth
(Moustakas et al. 2006). To address this problem, we
modified the sampling algorithm by softening the VDW
interaction energy during the sampling procedure and by
ranking only, skipping clustering, when layers are selected
for the next stage of growth (see Materials and Methods for
more details). We hypothesize these modifications, which
we term the ranking-based sampling algorithm, guide the
sampling algorithm to identify the correct pose, while
avoiding other traps on the surface of the receptor. We
then reoptimized the sampling parameters for the ranking-
based algorithm to obtain maximal success rates, where
success is defined as the highest ranking pose being within

2.0 Å RMSD of the experimentally determined structure.
Both the clustering-based and ranking-based sampling algo-
rithms are included in the DOCK 6 code base.

To reduce the length of the calculation, we then applied a
bump filter, which quickly filters anchor orientations and
layer growths with exceptionally high clashes with the
receptor. Improvements to where and when the clash check-
ing occurs resulted in a useful restriction of the search (see
Modification of bump filter in Materials and Methods). By
modification and optimization of the sampling algorithm
in conjunction with the bump filter, for the L13 test set we
improved success rates and length of calculation from 18%
(7/38) in 32 min to 26% (10/38) in 16 min.

In drug design efforts targeting proteins, the number of
rotatable bonds in the ligand is typically limited to 6–10 to
reduce the loss of entropy upon binding and to increase the
possibility that the molecule will be bioavailable (Lipinski
2000; Wunberg et al. 2006). In addition, a preliminary
analysis of ligands that were unable to be reDOCKed in-
dicated that there was a sharp decrease in success rate for
ligands with less than seven rotatable bonds (Fig. 3A).
Therefore, we subdivided the L13 subset into a set includ-
ing only those compounds with less than seven rotatable
bonds (L7, total of 10 complexes). With the modification
and optimization of the sampling algorithm in conjunction
with the bump filter for the L7 test set, we were able to
increase the success rate from 60% (6/10) to 70% (7/10).
There was no significant change for the average length of
the calculation (5 min) between either of the sampling
methods.

Examination of ensemble of generated orientations

To explore the variety of conformations generated by each
sampling method, we also looked at the entire list of con-
formations that were generated by both the clustering- and
ranking-based sampling algorithms. The more advanced
scoring functions now available in DOCK take a nontrivial
amount of processor time to score even a single pose. We
were also, therefore, interested in determining if the sam-
pling algorithm generated conformations close to the ex-
perimental orientation, regardless of how the conformation
scored, and, thus, how many ranked conformations would
need to be rescored to access the experimental confor-
mation. Finally, we compared the effect of reDOCKing
of Gasteiger–Hückel, AM1-BCC, and RESP methods for

FIGURE 1. Effect of number of rotatable bonds on DOCKing success
rate (d) (defined as the percent of test set with best scoring pose
reproducing the experimental structures with 2 Å heavy-atom RMSD)
and average length of DOCKing calculation (s) using sampling
parameters optimized for proteins in DOCK 5.

FIGURE 2. Diagram identifying rigid anchor (Layer 1) and flexible
layers for growth.
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computing ligand charges as well as use of explicit water
molecules and counterions.

First, we examined results obtained without explicit
waters or ions. For the clustering-based method, we first
looked at the highest-ranking poses. For the various charge
models, the highest success rate was 60% (6/10) for the L7
test set (AM1-BCC and RESP) and 18% (7/38) (Gasteiger–
Hückel and AM1-BCC) for the L13 test set (Fig. 4, 1A–1C).
If we look at all of the conformations generated, the success
rate improves, reaching a maximum of 70% (7/10) (all
three charge models) for the L7 set and 34% (13/38)
(Gasteiger–Hückel and AM1-BCC) for the L13 set. For
the ranking-based sampling method, the success rate for
the best-scoring pose is 70% (7/10) for the L7 test set
(AM1-BCC and RESP) and 26% (12/38) for the L13 test set
(Gasteiger–Hückel) (Fig. 4, 2A–2C). While these rates (70%/
26% versus 60%/18%) are better than the clustering-based
sampling method, the range of conformations generated
was less diverse. Here, the success rates reach a maximum
at 70% (7/10) for the L7 test set (all charge models) and
32% (12/38) (Gasteiger–Hückel) for the L13 test set. We
expected this result, as the ranking-based method is de-
signed to enrich for orientations with similar scores that are
typically close in Cartesian space, whereas the clustering-
based algorithm is designed to enrich for diversity.

Further analysis of ligands that were unable to be
DOCKed correlated with ligands in the test set with a
positive formal charge (Fig. 3B). We hypothesized that the
naked charges on the backbone of the RNA targets were
creating artificial energy wells that were being scored as
false positives, even with the more advanced solvation
models. To address the issue, we added sodium counterions
to neutralize the backbone charge and two shells of explicit
water molecules to shield the charges. We then repeated the
comparison of the two sampling methods (Fig. 4, 3A–3C,
4A–4C). Because the active sites were more occluded with
the addition of the explicit water molecules and counter-
ions, the bump filter removed too many conformations
during DOCK runs and was not used.

With the clustering-based algorithm, the success rate for
the highest-ranking pose stayed at 60% (6/10) for the L7
test set (AM1-BCC) and improved to 37% (14/38) for the
L13 test set (AM1-BCC). In addition, for all conformations
generated, there is an improvement in the success rate with
fewer conformations for all three ligand charge models for
the clustering-based algorithm, reaching a maximum of
80% (8/10) (all charge models) for the L7 set and 71% (27/
38) (AM1-BCC) for the L13 test set. There was some,
less dramatic improvement in sampling for the ranking-
based algorithm as well. Finally, we compared whether the

FIGURE 3. Analysis of reDOCKing and rescoring successes and
failures. Successes (striped) and failures (open) are compared for
DOCKing using the ranking-based sampling method with Grid Score
and receptor in vacuum as (A) a function of the number of rotatable
ligand bonds or (B) formal charge of the ligand. (C) Cumulative
success rates for Gasteiger (m), AM1BCC (.), and RESP (j) charge
models are compared as a function of the number of rotatable bonds
for the AMBER score using the clustering-based sampling method
with explicit water molecules and counterions. (D) Success rates for
Gasteiger (horizontal stripes), AM1BCC (diagonal stripes), and RESP
(solid) charge models are compared as a function of the ligand formal
charge for the AMBER rescoring methodology. Success is defined by
the top-scoring pose being within 2 Å heavy-atom RMSD from the
experimental structure.

FIGURE 4. Exploration of entire list of generated conformations.
Success is defined as any pose in the cumulative list being within 2 Å
heavy-atom RMSD from the experimental structure. (1A–4A) Gas-
teiger–Hückel, (1B–4B) AM1-BCC, and (1C–4C) RESP ligand charge
models are compared for each analysis. (1) Cumulative success rates
of clusterheads (lowest-scoring member of each cluster) for cluster-
ing-based sampling methods with receptor in vacuum. (2) Cumula-
tive success rates for ranked list of conformations for ranking-based
sampling method with receptor in vacuum. (3) Cumulative success
rates of clusterheads for clustering-based sampling methods with the
receptor plus explicit water molecules and counterions. (4) Cumula-
tive success rates for ranked list of conformations for ranking-based
sampling method with the receptor plus explicit water molecules and
counterions. Test set is divided into less than seven (u) and less than
13 (4) rotatable bonds.
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increase in success rate for the clustering-based algorithm
for the L13 test was a subset of the successes from the
vacuum calculations (Table 2). As expected, all but one of
the vacuum calculation successes were maintained in the
water plus counterion calculation successes.

The results from the clustering-based algorithm suggest
that the sampling algorithm is sufficient to identify the
experimental orientations for the L7 test set, but the scoring
function has problems properly ranking these orientations.
For the L13 test set, there is a need to improve the sampling
algorithm as well as the scoring function to ensure the
experimental orientation is sampled as well as scored pro-
perly. The ranking-based algorithm performs better than
the clustering-based algorithm for top-ranked poses, but
still needs improvement in both sampling and scoring.

Comparison to protein test set

Previous studies of the DOCK algorithms have explored
the ability to predict ligand orientation with proteins
(Moustakas et al. 2006). Because the previous protein test
set was restricted to ligands with seven or less rotatable
bonds and performed without explicit waters or counter-
ions, we compared the success rates of the L7 RNA test set
with the receptor in vacuum to the success rates of a subset
of the protein test set with less than six rotatable bonds
(101 complexes). Also, because the sampling parameters
are slightly different for proteins and for RNA, we com-
pared how the success rate for each test set performed using
each set of sampling parameters (Table 3). In DOCK ver-
sions 4 and 5 (clustering-based algorithm), the protein test
set success rates were better than RNA success rates. This
result was expected as the number of complexes in the pro-
tein test set is much higher and more diverse, thus giving
less emphasis to any one particular failure or fold class. For
version 6 (ranking-based sampling algorithm), the RNA
test set success rate was better than the protein test set. This
result may not be surprising as the ranking-based sampling
method was optimized specifically for RNA targets.

We also compared the diversity of generated conforma-
tions for both proteins and RNA targets for the clustering-
based algorithm (Fig. 5). As expected from the success rate
based on the top-scoring conformation, the RNA confor-
mational ensemble does not generate as diverse a set as for
proteins when the standard receptor preparation is used for

sampling. However, when the counterion-solvent prepara-
tion is used, the success rate for the ensemble of con-
formations approaches that of the protein set. Because the
same sampling method was used in each case, these results
indicate that the counterions and explicit solvent are
critical for properly modeling the energy landscape for
RNA targets.

Rescoring ensembles of generated orientations

As a first comparison, we rescored just the best-scoring
pose using AMBER GB/SA and PB/SA with minimization
for both the clustering- and ranking-based sampling algo-
rithms. There was no change in the success rate for the test
set, indicating that simply minimizing and rescoring with a
more advanced scoring function does not rescue bad poses.
However, in all members of the test set for all charge
models, the interaction energy between the ligand and re-
ceptor changes became less negative in the vast majority of
cases. This result was expected as, by design, both the
AMBER GB/SA and PB/SA scoring functions are more
sophisticated in shielding electrostatics than Grid Score.

Next, we explored rescoring all poses generated with the
AMBER GB/SA Score. For the ranking-based clustering
algorithm, there was minimal change in the success rate,
regardless of the number of poses rescored (data not
shown). This result was not surprising, as the conforma-
tional ensemble for the rankings was less geometrically
diverse than for the clustering-based algorithm. For the
clustering-based algorithm using receptors in a vacuum,
the success rate did not improve for any of the charge
models regardless of how many poses were rescored. In
fact, the more poses that were rescored, the worse the
success rate became, emphasizing once again that explicit

TABLE 2. Analysis of changes in success due to scoring function

Grid
Score

Grid
Score + Solvent

AMBER
GB/SA PB/SA

Grid Score 7 6 5 6
Grid Score + Solvent 6 11 10 8
AMBER GB/SA 5 10 22 15
PB/SA 6 8 15 18

TABLE 3. Success rate (measured as percent of complexes in test
set where best scoring pose is within 2 Å heavy-atom-RMSD from
experimental structure) of test set of proteins with ligands with six or
less rotatable bonds as compared to RNA L7 test set

Sampling
optimized

for protein set

Sampling
optimized

for RNA set

DOCK 4 Protein set 45% 51%
RNA set 40% 50%

DOCK 5 Protein set 68% 66%
RNA set 50% 60%

DOCK 6a Protein set NAb 57%
RNA set NAb 70%

Sampling parameters optimized using the protein test set are
compared to sampling parameters optimized using the RNA test
set as well. A bump filter was applied in all cases.
aCalculations were run using the ranking-based sampling algorithm
(see Materials and Methods).
bFor version 6, sampling parameters were not optimized for the
protein test set and thus could not be evaluated.
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waters and counterions were critical for properly modeling
the energy landscape of RNA targets, even in the presence
of more sophisticated implicit water models.

For receptors with explicit waters and counterions, we
first compared minimizing the ligand alone using the
conjugate gradient method while the receptor was kept
frozen. The average length of the rescoring calculation
increased slightly from 17 to 21 min per complex for the
L13 test set. The success rate improved quickly as more
conformations were rescored, achieving a converged suc-
cess rate of 50% (5/10) (Gasteiger and RESP) for the L7 test
set and 42% (16/38) (Gasteiger) for the L13 test set.

Because there was some improvement in the success rate
with minimization only, we also examined using molecular
dynamics in combination with minimization of the ligand,
keeping the receptor rigid. Here, the length of the cal-
culation increased significantly from 75 to 112 min per
calculation for the L13 test set. However, as with the
minimization-only protocol, success rates converged at
50% (5/10) (RESP) for the L7 test set. More impressively,
success rates converged at 58% (22/38) (Gasteiger) for the
L13 test set.

We next examined the effect of allowing portions of the
receptor to move during rescoring. We compared allowing
receptor residues from 1 to 7 Å of the spheres to move to
the ligand alone (Fig. 6). As the number of flexible residues
increased, the trend indicated an initial improvement in
success rates for a distance threshold #2 Å with greater
thresholds yielding progressively worse rates. Using the 2 Å
distance as representative, the success rates once again
converged at 50% (5/10) (Gasteiger) for the L7 test set and
50% (19/38) (Gasteiger) for the L13 test set when the
minimization protocol was applied. For the minimization/
MD/minimization (MDM) protocol (see AMBER GB/SA
scoring function in Materials and Methods), the success
rates once again converged at 50% for both the L7 (RESP)
and L13 (Gasteiger) test sets (Table 4). Here, the addition
of solvent and counterions increased the length of the

calculation from 27 to 46 min for the minimization
protocol and from 106 to 191 min for the MD protocol
for the L13 test set. Greater radii yielded progressively
worse success rates and longer calculation times. We
hypothesize that the decrease in success rate as increasing
amounts of the receptor are allowed to move indicates that
the experimental structure is not fully equilibrated prior to
DOCKing studies.

Using the 2 Å cutoff as a model, we also calculated the
heavy-atom RMSD of receptor residues within 13 Å of the
ligand to verify whether the lower success rates were due to
the receptor moving even if the ligand was DOCKed
properly. In all cases, the receptor moved <1 Å heavy-atom
RMSD from the experimental structure. In addition, in all
cases, the receptor residues moved about the same amount
for all poses in the ensemble and regardless of the ligand
charge models. However, as the radius around the receptor
was increased, the RMSD increased as well, but only in
structures solved by NMR. We hypothesize the success rates
when the receptor is allowed to move in increasing
amounts would improve if the experimental structure were
fully equilibrated before DOCKing.

Finally, we explored rescoring all poses generated with
PB/SA Score. As for the AMBER Score, there was only
minimal improvement in the success rate for the ranking-
based clustering algorithm, regardless of the number of
poses rescored as well as a decrease in the success rate for
the clustering-based algorithm for receptors in vacuum
(data not shown). However, for receptors with explicit
water and counterions, success rates improved for all test
sets with all charge models, converging at 80% (8/10)
(AM1-BCC and RESP) for the L7 test set and at 47% (18/
37) (Gasteiger and AM1-BCC) for the L13 test sets (Table
4). There was only a small effect on the length of the
rescoring calculation, increasing from 1.8 to 2.2 min for the
L13 test set.

In an attempt to explain the differences in the scoring
functions, we investigated the contributions of the various
components of the scoring functions. For the AMBER
score, the bond, angle, and torsion terms cancel to several
places past the decimal point in vacuum and to somewhat

FIGURE 5. Comparison of the success rates for reDOCKing of
generated conformational ensembles for protein (closed symbols)
and RNA test sets (open symbols). Success is defined as any pose in
the cumulative list being within 2 Å heavy-atom RMSD from the
experimental structure. All ligands have six or less rotatable bonds
and AM1-BCC partial charges. Both sets were DOCKed using the
clustering-based sampling algorithm. The protein test set (d) was
DOCKed with receptors in a vacuum. The RNA test set was DOCKed
both with receptors in a vacuum (u) and with two shells of explicit
water molecules plus sodium counterions ()).

FIGURE 6. Effect of allowing increasing portions of receptor to move
using the MDM protocol during rescoring with AMBER GB/SA Score.
Ligand alone (0 Å) is compared to the ligand plus all residues within
1–7 Å of the spheres. Ligand charge models Gasteiger–Hückel (—),
AM1-BCC (–), and RESP (���) were compared.
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less with explicit waters and counterions. This result is
expected as there is very little change in any of these
values for the receptor and ligand upon complex forma-
tion. The VDW energy for all three scoring functions was
also very similar. This result, too, is not surprising as the
Lennard-Jones function for PB/SA and Grid is a grid-based
simplification of that used for AMBER. There was some
difference in the electrostatics between the methods, with
both AMBER GB/SA and PB/SA values tending to be
more negative than the Grid Score’s distance-dependent
dielectric, as expected from the more advanced solvation
models. The largest contribution to the difference in the
AMBER GB/SA and PB/SA scores, however, was the
solvent-accessible surface area term; for the former, these
are in the range of �1 kcal/mol to �5 kcal/mol with a mean
of �2.7; for the latter, these are in the range of 0 kcal/mol
to �30 kcal/mol with a mean of �20. These results suggest
that the solvent-accessible surface area for AMBER GB/SA
could be improved to better discriminate ligands and active
sites of different shapes and sizes.

We also compared the subsets of complexes that were
successes for both the AMBER GB/SA and PB/SA scoring
function (Table 2). A total of 15 out of the 22 AMBER GB/
SA and 18 PB/SA complexes were the same for both sets.
Those complexes that the AMBER GB/SA scoring function,
but not PB/SA, were correctly able to identify had seven or
more rotatable bonds. This result supports the hypothesis
from the scoring breakdown that the solvent-accessible

surface area portion of the PB/SA scoring function needs to
be improved, particularly for large, floppy molecules.

Comparison to other DOCKing methods

As mentioned above, developers of AutoDock and Drug-
ScoreRNA have also evaluated their DOCKing algorithms
against rigid receptors using similar test sets. Based on these
data, the success rate for the L13 test set with the receptor
in a vacuum, 26%, is below that of AutoDock’s and
DrugScoreRNA’s success rates of 44% on 16 RNA–ligand
complexes and 42% on 32 RNA–ligand complexes, respec-
tively (Table 5). However, for DOCK using AMBER re-
scoring with ligand minimization and rigid receptors with
explicit waters and counterions, the success rate of 58% is
comparable to the other algorithms for a larger, more di-
verse test set. Unfortunately, neither code base has posted
the RMSD-based results for their test sets, so a direct com-
parison cannot be made.

Analysis of remaining failures

Even with improvement in the success rate by rescoring
with a more advanced scoring function, there were several
ligands that could not be reDOCKed. In general, the re-
scored cumulative success rates for the L13 test set as a
function of rotatable bonds is much flatter than the success
rate based on simple DOCKing (Fig. 3C). Looking more
specifically, there appears to be two types of behavior. For
ligands with six or less rotatable bonds, both the Gasteiger
and AM1-BCC charge models behave similarly, moving
between 40% and 60% success rates, as compared to RESP
charges that decrease from 50% to 35% by six rotatable
bonds. After six rotatable bonds, the Gasteiger charge
model success rates remain between 55% and 60%.
However, the AM1-BCC charges continue to decrease,
mimicking the behavior of RESP charges and decreasing

TABLE 5. Comparison to other DOCKing methods

Method Success

DOCK 6 26% (38)
Receptor in vacuum
Ranking-based sampling

DOCK 6 58% (38)
Receptor + water and ions
Clustering-based samping
Rescoring by AMBER

AutoDock 50% (16)a

DrugScoreRNA 42% (32)b

Number of receptor–ligand complexes in test set.
aSuccess is defined by top-ranking cluster of poses within 2.5 Å
RMSD of experimental structure.
bSuccess is defined as top-ranking pose being within 2 Å RMSD of
experimental structure.

TABLE 4. Success rate (measured as percent of complexes in test
set where best scoring pose is within 2 Å heavy-atom RMSD from
experimental structure)

L7 test set

Charge model Grida,b

AMBER
GB/SA

ligandb,c

AMBER
GB/SA

active sitec,d PB/SAb,c

Gasteiger 60% 40% (5) 40% (1) 70% (15)
AM1-BCC 70% 50% (3) 40% (30) 80% (4)
RESP 70% 40% (3) 50% (30) 80% (4)

L13 test set

Charge model Grida,b

AMBER
GB/SA

ligandb,c

AMBER
GB/SA active

sitec,d PB/SAb,c

Gasteiger 26% 58% (30) 50% (25) 47% (5)
AM1-BCC 26% 39% (20) 39% (30) 47% (20)
RESP 21% 29% (20) 39% (35) 32% (4)

aSuccess rate of best scoring pose for ranking-based sampling
method.
bLigand is free to move but receptor is held rigid.
cConverged success rate (minimum number of conformations that
needed to be rescored).
dLigand plus all receptor residues within 2 Å of the spheres used for
DOCKing are allowed to move.
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from 43% to 32%. However, as it is not entirely clear why
the charge models would behave differently based on the
number of rotatable bonds, other factors were required to
explain these failures.

When broken down by ligand formal charge, it becomes
apparent that the Gasteiger charge model had a better
success rate for positively charged ligands, which is the
predominant species in this test set, than in either AM1-
BCC or RESP models (Fig. 3D). It was not entirely
apparent why this would be the case, as previous studies
have shown that RESP in combination with PB/SA is a
better predictor of experimental hydration-free energies, a
standard model for determining the accuracy of the charge
model, than Gasteiger (Rizzo et al. 2006). We hypothesize
that, because Gasteiger partial charges tend to be smaller,
the electrostatics were effectively down-weighted, possibly
mimicking screening. Previous studies found improvement
in fitting known ligands to RNA targets when electrostatic
contributions were substantially reduced (Lind et al. 2002)

Finally, we compared success rates as a function of the
experimental method used to generate each structure. In all
three charge models, success rates for X-ray structures were
substantially better than for NMR structures (76%, 19/25
complexes, success rate for X-ray versus 23%, 3/13 com-
plexes for NMR). We hypothesize that this result is due to
the fact that the NMR structures are of lower resolution
than X-ray structures and possibly because the receptor–
ligand complex came from a structural ensemble rather
than the crystal structure single solution; there is no
guarantee that our representative single structure choice
from the NMR ensemble is the best structure for DOCKing
purposes. This problem could potentially be addressed by
DOCKing to the minimized lowest-energy NMR structure,
or cross-DOCKing within an ensemble of structures and
developing a method for combining the scores (Knegtel
et al. 1997).

DISCUSSION

In the course of this study, we optimized the DOCK
clustering-based sampling algorithm for RNA ligands. We
also developed a ranking-based sampling algorithm that ad-
dressed some previously identified issues in the clustering-
based algorithm. Based on our results, the ranking-based
method should be applied in cases where time is critical, as
the calculation is faster and has a higher success rate when
looking at just the top-scoring pose. However, the cluster-
ing-based algorithm generates a more diverse set of con-
formations, which is more appropriate when rescoring with
more advanced scoring functions. When we compare the
success rate for ligands with less than seven rotatable bonds
using the most simplified scoring function, Grid Score, to a
similar study with protein complexes, we see that the
success rate for the RNA set, 70%, is comparable to that
of proteins, 68%.

Knowing that RNA–small molecule interactions are
dominated by electrostatics, we explored more advanced
methods for modeling charges as well as the contribution of
solvent. We determined that the addition of explicit water
molecules and sodium counterions increased the number
of poses in each individual conformational ensemble placed
close to the active site even with the most basic scor-
ing function, Grid Score. We also found that neither a
more advanced implicit solvent model, AMBER GB/SA nor
PB/SA, was sufficient to counteract the naked phosphate
charges on the backbone. Rather, explicit waters plus
counterions in combination with more advanced implicit
solvent models are critical for properly modeling the RNA
energy landscape. With both models in combination, suc-
cess rates increase to 80% with PB/SA for ligands with less
than seven rotatable bonds and 58% with AMBER GB/SA
and 47% with PB/SA for ligands with less than 13 rotat-
able bonds. We also determined that AM1-BCC charges
were optimal for ligands with charges close to neutral,
confirming results from a recent study on absolute free
energies of hydration, and that Gasteiger charges perform
better with highly positively charged ligands (Rizzo et al.
2006).

An additional underlying purpose of this paper is to
show the ease of extensibility of DOCK. In the course of
this study, we were able to add a range of new function-
alities to the code, which was critical to the improved suc-
cess rate for the RNA test set. Specific to this study, we
found that DOCK can be successfully employed for binding
mode prediction for RNA–ligand complexes and should be
useful in the drug design setting. More generally, we believe
that DOCK is a dynamic tool for a wide variety of
structure-based drug design projects both because of the
range of currently available functionality as well as the ease
with which new functions can be added to address project-
specific problems.

In this study, we have focused on rapid DOCKing to a
rigid RNA target. However, we have recently described a
promising new program, MORDOR, which enables flexi-
bility in the ligand and limited flexibility in the RNA re-
ceptor for an induced fit (Guilbert and James 2008).
MORDOR performed well on a test set and in discovering
ligands for a novel target (Gómez Pinto et al. 2008; Guilbert
and James 2008). MORDOR performed better than DOCK
6 on ligands in the test set with a large number of rotatable
bonds. As suggested by our studies, such large ligands may
need some degree of RNA flexibility in order to be accom-
modated in the complex. While a rigorous comparison has
not been carried out, local experience suggests that DOCK
6 screens z3–10 times faster than MORDOR. Therefore,
DOCK 6 is most useful for screening a large database of
ligands, while MORDOR is most useful for screening a
more focused database.

In looking forward toward using DOCK in combination
with other DOCKing programs in a setting in which RNA
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is the target, we would recommend that the libraries being
explored be subjected to the same constraints as typical
protein screens (e.g., Lipinski Rule of 5), restricting ligands
to fall within the definition of our more successful less than
seven test set as well as restricting the partial charge of the
ligands. For bigger, more complicated molecules, we would
recommend using DOCKing algorithms only in the con-
text of a larger modeling effort with support from more
extensive sampling methodologies, like full molecular
dynamics simulations, or methods that do not depend on
energetic evaluation, such as QSAR.

MATERIALS AND METHODS

Preparation of structure-based test set

To generate the test set, we collected all NMR and X-ray crystal
structures with both an RNA molecule and a ligand from the
Protein Data Bank (PDB) (Berman et al. 2000). X-ray structures
with resolution <3.0 Å were removed, as were all complexes where
the ‘‘ligands’’ were either ions or artifacts of the structural
determination method (e.g., ethanol). To bias toward biologically
relevant structures, all receptors with <15 residues were also
removed. Next, complexes with chemistries not available in our
parameter set, including cobalt and receptors with modified or
incompletely built nucleic acid bases, were removed. Four com-
plexes had more than two ligands bound to a single receptor,
which led us to remove them from the test set due to nonspecific
binding. Of the remaining complexes, 15 had two ligands bound
in two separate active sites. Each active site was treated as unique
and prepared separately.

Receptor preparation

To identify a single structure from the NMR ensembles, we
selected the structure in the ensemble that was closest to the
average by RMSD. Receptor structures were processed with
the Dock Prep module in Chimera (Pettersen et al. 2004). The
graphical interface allows control over which tasks are performed,
in this case: solvent deletion, deletion of alternate positions
(retaining only the highest-occupancy positions), hydrogen addi-
tion, partial charge assignment, and output in Mol2 format.
Hydrogen atoms were positioned to avoid clashes and to form
hydrogen bonds where possible; this was done in the presence of
bound ligand (Moustakas et al. 2006). Standard residues (receptor
nucleotides) were assigned AMBER parm99 partial charges
(Cornell et al. 1995). AM1-BCC charges were computed for the
receptor cofactors with ANTECHAMBER, which is included in
Chimera (Jakalian et al. 2000; Wang et al. 2006). Dock Prep
recognizes which residues are standard and nonstandard, and
presents options accordingly. The formal charge of each non-
standard residue can be specified prior to the charge calculation.

Active site identification

Active sites were identified and prepared following the procedure
described previously, resulting in an average of 130 6 29 spheres
per active site (Moustakas et al. 2006). Spheres selected at different
distances from 1 to 10 Å from the ligand were explored. We found

that there was no change in the success rate using anything
between 1 and 10 Å and only minimal changes in the energy
(�98.9 6 2.5 kcal/mol) and length of calculation (1207 6 3 sec).
We therefore selected the 10 Å radius from the ligand for
historical purposes to compare with the results from the protein
test set. Next, to account for the receptor contribution to the score
during DOCKing, grids that store the VDW and electrostatic
values for the receptor were calculated, also using procedures
previously described. The final grids, with 0.15 Å spacing,
averaged z40 3 103 Å3 in volume.

Counterions and explicit waters

Counterions and explicit waters were added to each receptor–
ligand complex using LEaP, an AMBER accessory (Pearlman et al.
1995). Sodium ions were added along the backbone to neutralize
the phosphate charges as well as any other negatively charged
species. In some cases, chloride ions were added to attain overall
neutrality when charged ligands or cofactors were present. LEaP
uses a Coulombic potential grid to calculate the location for each
ion. An octagon of TIP3P water was then built around each
receptor such that the shortest distance between the walls of the
octahedron and the closest receptor atom was 5 Å (Jorgensen et al.
1983). Solvent molecules were placed according to an equilibrated
room temperature molecular dynamics simulation of a bubble of
TIP3P water. Chimera was used to remove any waters >5 Å from
any receptor atom, resulting in approximately two shells of water
molecules plus counterions in the final structures. The ligands
were removed and the receptors and active sites were once again
prepared following the procedure described above.

Ligand preparation

The ligands were protonated and assigned AM1-BCC charges with
Chimera’s Dock Prep module, as described above for the re-
ceptors. For the comparison and evaluation of the scoring func-
tions, Gasteiger–Hückel and RESP partial charges were calculated
using the ANTECHAMBER accessory in AMBER for ligands with
less than 13 rotatable bonds (Gasteiger and Marsili 1980; Bayly
et al. 1993; Jakalian et al. 2000; Wang et al. 2004, 2006). Finally,
each ligand was minimized while keeping the receptor rigid to
detect complexes that were not stable with our scoring function.
The ligands that moved >2 Å heavy-atom RMSD from the starting
structure, a total of six structures, were removed from the set. The
final set had a total of 70 structures (53 structures without the
multiple binding sites) (Table 1).

Modifications in sampling and Grid Score

The ligand flexibility sampling algorithm is an incremental
construction method called anchor-and-grow. In this method,
the ligand is first divided into the largest rigid portion and layers
of flexible regions (see Fig. 2, for example). The largest rigid
portion of the ligand, or anchor, is identified and then oriented in
the active site and minimized. All orientations with scores >1000
kcal/mol were removed and the remaining ranked by score, then
clustered by RMSD using a greedy algorithm (cluster-based
pruning). One layer of flexible bonds is then grown from each
cluster, minimized, ranked, and clustered again. The growth phase
is repeated until the molecule is fully built. In a previous study, we
had shown that the pruning portion of the algorithm was limiting
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sampling during growth and preventing energy convergence. In
addition, we found that flexible sampling failures often occurred
as a result of minor clashes between the ligand and the protein
receptor, which we hypothesized were due to clashes resulting
from overly coarse sampling (Moustakas et al. 2006).

To address the limitations of cluster-based pruning, we com-
pared several different clustering algorithms. In the end, it was
determined that the clustering itself was limiting the sampling,
because all anchors that were close to the correct position fell into
the same cluster. Thus, in the worst case, only one of these an-
chors would be propagated to the next stage even though several
were generated by the sampling algorithm. Instead of clustering,
we found that using a simple scoring cutoff of 25 kcal/mol and a
hard upper limit of 100 ranked orientations increased the number
of orientations near the active site in the final list. To overcome
the clashes due to coarse sampling, we scaled down the radius of
each atom used for the repulsive term in the Lennard-Jones
potential. This modification shifts the energy function toward
lower energy but maintains the overall functional shape.

Modification of bump filter

In previous versions of DOCK, the bump filter could be applied to
remove orientations that significantly overlap with receptor atoms
before minimization. Because minimization is the most time-
consuming portion of the calculation, filtering helps to increase
the speed of the calculation by directing sampling toward more
productive routes. In DOCK 6, we have implemented the same
filtering by bump during growth, in this case between torsional
sampling and minimization. Because the number of atoms in the
anchor is much larger than in each flexible layer, we added user
parameters to separately control the maximum number of bumps
allowed for both the anchor and growth stages.

Optimization of parameters for DOCKing

Parameters for both the clustering- and ranking-based sampling
methods as well as for the bump filter were optimized according
to the protocol used for the protein test set (Moustakas et al.
2006). The final version of the code, including all functions de-
scribed in this paper, was posted to the DOCK website as version
6.3 (http://dock.compbio.ucsf.edu) and will be referred to as
DOCK 6 for convenience. All experiments performed with the
previous versions of DOCK used version 4.0.1 and version 5.4.0
and will be referred to as DOCK 4 and DOCK 5, respectively. All
sampling calculations were run on AMD Opteron 248 dual pro-
cessors. All rescoring calculations were performed on the Ohio
Supercomputer Center’s IBM Cluster 1350, which includes AMD
Opteron multicore technologies and the new IBM cell processors.
The code was compiled using open-source GNU compilers
(http://www.gnu.org).

AMBER GB/SA scoring function

The AMBER scoring function employs the Nucleic Acid Builder
(NAB) library (Macke and Case 1998). As stated in the introduc-
tion, the AMBER GB/SA score is calculated via a thermodynamic
cycle. The Cornell and colleagues force field was used (Cornell
et al. 1995). The solvation component of the score can be cal-
culated using: (1) Hawkins, Cramer, and Truhlar model with pa-
rameters described by Tsui and Case, (2) Onufriev, Bashford, and

Case model, and (3) Onufriev, Bashford, and Case model with
modified parameters (Hawkins et al. 1995, 1996; Onufriev et al.
2000; Tsui and Case 2000; Feig et al. 2004; Onufriev et al. 2004).
For these studies, model 3 was used. The library also enables
conjugate gradient minimization and molecular dynamics simu-
lations. In the current implementation, this increased sampling
functionality is only available for the AMBER Score function. The
NAB library is constructed using the lex and yacc language
specification, which has special support for macromolecules and
has a C-like syntax. It is included in the distribution of DOCK, but
can also be downloaded from the Case laboratory website (http://
www.ambermd.org/).

Many sampling protocols are possible with the AMBER GB/
SA score. Initial development began with a minimization only
approach. Later work by Graves and colleagues developed a
minimization/MD/minimization formulation (MDM protocol)
(Graves et al. 2008). For the simulations with minimization only,
ligands were minimized to a convergence criterion of 0.01 fol-
lowed by a final energy evaluation (Min protocol). The conver-
gence criterion was computed as the root-mean-square of the
components of the energy gradient and was selected based on the
convergence of the test set success rate. For simulations including
molecular dynamics, we performed 100 steps of minimization
with a conjugate gradient method followed by 3000 steps of
molecular dynamics simulation (Langevin molecular dynamics at
a constant temperature of 300 K), another 100 steps of minimi-
zation, and a final energy evaluation (Graves et al. 2008).

The flexible parts of the receptor–ligand complex are denoted
by the parameter movable_region. Four movable regions are
available: (1) nothing—all ligand and receptor atoms were frozen;
(2) ligand—all ligand atoms were movable and all receptor atoms
were frozen; (3) distance—all ligand atoms and all receptor atoms
in residues that were within a user-defined distance of the ligand
were movable and all other receptor atoms were frozen; (4)
everything—all ligand and receptor atoms were movable. Note
that for the distance movable region the movable receptor re-
sidues were predefined and thus independent of any particular
ligand molecule or conformation.

PB/SA scoring function

The Poisson–Boltzmann with solvent-accessible surface area (PB/
SA) scoring function is an implementation of the ZAP library
from OpenEye (Grant et al. 2001). The VDW interactions are
modeled by interpolating values from a precomputed grid, as in
Grid Score. The solvent potential comes from the solution for the
Poisson–Boltzmann equation in combination with atomic point
charges summed over each atom in the system. Finally, the hy-
drophobic component is calculated using the solvent-accessible
surface area multiplied by an interfacial surface-free energy
obtained from partition coefficients of nonpolar solutes trans-
ferred from a low-dielectric solvent to water. The ZAP library is
object-oriented and written in ANSI C and is free to most
academics and government institutions. It is available in the form
of a linkable library and prepackaged binaries for Linux, Win-
dows, and Cygwin platforms and can be accessed from the
OpenEye website (http://eyesopen.com). The implementation of
the library in DOCK as well as the defaults are based on the
‘‘Solvation Energies: PBSA’’ example from the ZAP library
documentation.
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